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To describe the evolution of spectridly narrow wave packets of finite amplitude for a specific, 
nonlinear-dispersive system, a perturbation-theory method has been developed which 
allows one to reduce the initial system of nonlinear equations to a model equation for the 
envelope in the form of an asymptotic expansion of the time derivative in two independent small 
parameters which characterize the cimallnesses of the amplitudes (6) and the slowness of 
their spatial variation (p) .  ' b e  influence of nonlinear dispersive terms of the "higher" nonlinear 
Schrodinger equation so obtained on the conditions of modulational instability of gravity 
waves in deep water is investigated. The dependence of the instability growth rate on the direction 
of propagation of the modulations relative to the direction of the main wave is 
determined. O 1995 American Institute of Physics. 

1. INTRODUCTION 

At present it is well knownlv2 that the evolution of the 
amplitude of the envelope of a weakly nonli~~ear quasimono- 
chromatic wave as it propagates in a nonlinear dispersive 
medium is described to lowest order by the nonlinear Schro- 
dinger (NLS) equation with cubic nonlinearity. The simplest 
exact solution of this equation, in the form of a plane wave 
of constant amplitude, is modulationally unstable, and the 
criterion for the existence of this instability depends on the 
sign of the product of the coefficients of the nonlinear and 
dispersive  term^.^'^ The NLS equation for gravity waves in 
deep water was first obtained by Zakharov by the spectral 
method: later independently by Hasimoto and 0n06 and 
~ a v e ~ '  by the multiscale expansion method, and also by 
Yuen and ~ a k e ~  by the method of the averaged Lagrangian. 

These and otherg.10 methods based on classical perturba- 
tion theory assume the existence of a single :small parameter 
E, which, for small amplitudes of the pertuhations, charac- 
terizes the weak nonlinearity of the system. In the case of 
weak dispersion, slow space-time modulations of the enve- 
lope are characterized by one more small parameter p, which 
is artifically related to E. The result of using the expansion in 
one small parameter (instead of two) in the perturbation 
theory is that even at the outset one must assign a relation 
between the two parameters, and this in fact determines the 
form of the nonlinear and dispersive terms that will be con- 
tained in the leading order of the perturbaiion theory. All 
remaining terms appear in the higher orders ,an can be taken 
into account only as corrections after finding the solutions of 
the equation of the leading order (in our case. the NLS equa- 
tion). A study of the evolution of the envelope with simulta- 
neous treatment of the other terms with higher derivatives 
(both linear and nonlinear) using this perturbation theory is 
possible only under the assumption that the coefficients of 
the main terms also have a corresponding orcer of smallness 
in E. In particular, for a liquid layer of finite depth, ~ohnson" 
and Kakutani et a1.,I2 using the multiscale method, obtained 
a higher NLS equation valid near the crrtical value kh 
= 1.363 and analyzed the niodulational instability of flow 

when the coefficient of the cubic nonlinearity in the NLS 
equation vanishes. 

In the present paper, a perturbation theory method is 
developed to describe spectrally narrow wave packets of fi- 
nite amplitude in the specific example of gravity waves on 
the surface of a deep liquid, which allows one to reduce the 
initial system of nonlinear equations in arbitrary order to a 
model evolution equation for the complex amplitude of the 
envelope. This equation is an asymptotic expansion of the 
first time derivative of the amplitude of the principal har- 
monic in the two independent parameters E and p. These 
parameters characterize the smallness of the amplitudes and 
their rates of variation in space, respectively. 

When only the cubic nonlinearity, is retained the enve- 
lope in the problem evolves so that the second harmonic of 
the quasimonocharomatic signal gives no contribution in any 
order of the perturbation theory, while the contribution of the 
zeroth harmonic is associated with the appearance of nonlin- 
ear dispersion. 

The instability of the exact homogeneous solution of the 
equation is investigated. Taking nonlinear dispersion into ac- 
count, the criterion of modulational instability, the region of 
unstable wave numbers of the modulation for prescribed am- 
plitude, the maximum growth rate of the amplitude in the 
initial stage of the development of the instability, the fre- 
quency shift, and the dispersion are all determined. 

The nonlinear interaction of the zeroth and first har- 
monic leads to a difference of the growth rates for modula- 
tions propagating in the forward and backward directions 
relative to the direction of propagation of the main wave. 

2. BASIC EQUATIONS OF THE WEAKLY NONLINEAR 
THEORY 

We will investigate potential flow of an infinitely deep, 
inviscid and incompressible liquid with a free surface in a 
uniform gravity field as a planar problem of hydrodynamics. 
We choose the Cartesian coordinate sytem so that the Y axis 
points vertically upward and the unperturbed free surface 
coincides with the Y = O  plane. The profile of the surface is 
defined by the equation y = v ( x , t ) .  
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The velocity potential v=V+,  in the region D- occupied 
by the liquid, is found by solving the boundary problem (in 
dimensionless variables) 

The quantities 4, v, and also x and t, are written in 
dimensionless form. Assuming that the problem has some 
characteristic length 1, the remaining normalization values, 
namely those of the velocity, the potential, and time are 

where g is the acceleration due to gravity. The time depen- 
dence of the potential is parametric. Differentiation with re- 
spect to x, y ,  and t will be denoted by subscripts. 

In the weakly nonlinear approximation e= ( ~$114 1 the 
boundary condition (2) reduces to the plane y = O  and the 
resulting boundary problem for the half-plane can be refor- 
mulated in terms of the complex potentia~'~. '~ 

where +(x,y,t) is the hydrodynamic potential, @(x,y,t) is 
the flow function, and the variable t is a parameter. 

For the boundary value of the complex potential 

w(x,t)= lim W(z,t) 
yp-0 

a nonlinear integrodifferential equation with a Caudry kernel 
was obtained in Refs. 13 and 14: 

The quadratic and cubic terms in the integrand in Eq. (7) 
are equal to 

1 
- - (Re w,)' Im sxx . 

2 (9) 

Here Re and Im denote the real and imaginary parts of 
the complex functions, the bar over a variable indicates its 
complex conjugate, and s(x,t) is the lower limit of the aux- 
iliary complex Keldysh functions S(z,t) (Ref. 15): 

3. EVOLUTION EQUATIONS OF HIGHER ORDER 

Let us consider the evolution of a spectrally narrow 
wave packet of finite amplitude according to the nonlinear 
equation (7). We assume that the packet is characterized by 
two spatial scales 1 = k -  ' and L = K -  ' such that p = 1IL = K /  

k< 1,  where k and K are the characteristic wave numbers of 
the carrier and modulation waves. In the weakly nonlinear 
approximation we represent the solution in the form of a 
Fourier series in the multiple harmonics of the carrier wave. 
It is assumed that, due to nonlinearity effects, the main wave 
excites multiple harmonics and the zeroth harmonic, which 
in turn leads to its modulation. For simplicity, we will take 
account of only the zeroth and second harmonics in the ex- 
pansion, in addition to the principal harmonic (of order €). 

These two harmonics are generatede by the quadratic terms 
and therefore are of order 2 

In writing dowm the expansion (II), we have used di- 
mensionless variables, with k-' as the normalization length, 
and the frequency and wave vector of the principal harmonic 
satisfy the dispersion relation for linear gravity waves, 
o2 = gk. The slowness with which the amplitudes of the en- 
velopes vary in space is characterized by the independent 
small parameter p and is taken into account explicitly by 
introducing scale stretching: 5= px. 

The space and time derivatives of the potential (11) of 
order 1 and m,  respectively (wlX,,,= wl,,), have the same 
structure 

where the subscripts on A,  B, and C, separated by a comma, 
denote n- and p-tuple differentiation with respect to [and t. 

Correspondingly, for the boundary value of the Keldysh 
function (10) we have 

s(x,t) = ~ s ( * ) ( ~ x , t ) e ' ( ' - ~ ) +  ~ ~ ( s ( ~ ) ( p x , r )  + s(') 

where 

(16) 
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S [ , ~ , ( X , ~ )  = € i j ~ ~ ( p ~ , t ) e ~ ( ~ - ~ "  + E ~ [ S ~ : , : ( ~ L X , ~ )  

+ $ C )  
I , , I I P ~ J ) ~  2 i ( r - . x ) ]  + 0 ( ~ 3 )  ,, 

The expressions for i,,, are analogous to expressions (13) 
and (14). If we substitute relations (11)-(16) into the master 
equation (7)  and make use of the asymptotic limit16 

we obtain a system of differential equations for the ampli- 
tudes A, B ,  and C: 

S ( ~ ) ( X , ~ ) + ~ ~ W F ~ = O ,  

where 

" A )  W ( 2 )  - - - S(  
CA- 4 I x 9 

We have retained the nonlinear terms of order 2 in the 
equation for the amplitude of the principal harmonic [Eq. 
(18)], whereas in Eqs. (19) and (20) we have retained only 
the terms of order 2. 

It is evident that stretching the coordinate (c=,ux) in- 
duces an ordering of the spatial derivatives, as a result of 
which the system (18)-(20) is found by expanding in the 
parameters E and p and also contains time derivatives of the 
amplitudes A ,  B, and C of various orders. In order to estab- 
lish a similar hierarchy of time derivatives, it is necessary to 
stretch the time coordinate. 

The key idea in the construction of the s~rstematic pro- 
cedure enabling one to reduce systems of the form (18)-(20) 
to simpler forms is to represent the first time derivatives 
A l ( t , t ) ,  B 1 ( t , t ) ,  and C,(E, t )  of the complex amplitudes by 
asymptotic power-series expansions in the par,lmeters and 
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p of the most general form with undetermined constant co- 
efficients. Since all higher time derivatives can be expressed 
in terms of the first time derivatives, the problem reduces to 
finding these coefficients. In this regard, the character of the 
expansion is determined by the specific structure of Eqs. 
(18)-(20). 

Restricting ourselves, as before, to an account of the 
nonlinear terms with powers no higher than cubic, we repre- 
sent the expansion for A, ( t , t )  in the form 

The nonlinear terms of order 2 in various powers of ,u 
can in general contain such terms as the following: 

Proceeding from the specific form of Eq. (18) and taking into 
account only terms of order 2,u, we obtain the expansion for 
AjNL) in the form 

The constant coefficients a, and qn need to be defined. All of 
the expansions for the higher time derivatives can be ex- 
pressed in terms of the expansion (28) of the first time de- 
rivative, for example 

The harmonics B(x,r )  and C ( x , t )  are generated by the 
main wave as a result of the nonlinearity and therefore must 
be determined as particular solutions of the inhomogeneous 
equations (19) and (20). Their expansions in the parameter E 

should begin with terms that are quadratic in A 

Following expansion (26), we also divide the function 
d A ) ( x , r )  into a linear and a nonlinear term: 
dA)= s(IA)+ e2siA), where 

J3 

s l A ' =  C p"ff,,A,,&S,f), 
11=0 

(33) 
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The first few coefficients a , ,  according to the expansion 
(27), have the form 

Obviously, independently of the nature of the nonlinear- 
ity in the equation for the envelope of the main harmonic 
(18), the undetermined coefficients a ,  of expansion (27) are 
uniquely determined by the equation slA)=O. Consequently, 
equating all the a, to zero, we obtain recurrence relations for 
a,. The general expression for a , ,  taking account of the 
dispersion law w = & of the waves, can be represented in 
the form 

It is easy to show that for such values of a ,  the linear 
parts of the functions s(Pg) and s\$ vanish: 

Since we limit ourselves to nonlinear terms no higher 
than cubic, with derivatives no higher than first, all the terms 
in expressions (21)-(25) containing s fall out, and the ex- 
pressions themselves substantially simplify 

Substituting them in Eq. (18) allows us to determine the 
remaining undetermined coefficients q ,  

According to Eq. (28), the parameters E and p have only 
a formal character, and in what follows we will set them 
equal to unity ( ~ = p = l ) ,  with the understanding that the 
power of the amplitude A(x, t )  in each term corresponds to 
the order of that term in c, and the total order of all of the 
derivatives of the amplitude with respect to 6, corresponds to 
the order of the term in p. The final form of the evolution 
equation for the amplitude of the envelope of the principal 
harmonic of nonlinear gravity waves in deep water, with 
nonlinear dispersion taken into account, has the form 

Thus, in the cubic approximation the second harmonic 
does not contribute to the evolution of A(x,t).  The zeroth 
harmonic gives rise to the single integral term in Eqs. (39) 
and contributes only to the nonlinear dispersion. 

4. MODULATIONAL INSTABILITY 

With the aim of isolating the effect of the individual 
terms, we will analyze the stability of the homogeneous so- 
lution for an equation that is more general than Eq. (39) 

In the case of gravity waves, the corresponding coefficients 
are given by Eqs. (37) and (38), the primes denote the de- 
rivatives of the dispersion function o ( k )  taken at the point 
k = l .  

We introduce a small modulation in the form of a plane 
wave with wave vector K and frequency 0: 

where p= ~ / k  and v = N o .  The instability occurs when 
2<0. Without loss of generality, we will assume that the 
coefficients A. and b ,  are real. After substituting expression 
(41) into Eq. (40) and making use of the inequality 
(b,14Ao,  we linearize the resulting system of equations in 
b ,  . Solving the linear problem for the eigenvalues, we ob- 
tain a dispersion relation from which the instability condition 
follows: 

where 

The wave vector interval of the modulation for qow"<O 
follows directly from inequality (42): 

where 
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The maximum growth rate of the amplit~ide in the insta- 
bility region is attained at two values of the rr~odulation wave 
vector 

and is equal to 

(47) 

Thus, in Eq. (40), along with the main terms propor- 
tional to w" and go ,  which govern the evolution of the am- 
plitude of the envelope in the classical NLS equation,' new 
terms are present which give corrections associated with lin- 
ear (rnw"') and nonlinear dispersion. It is clear from Eqs. 
(42)-(44) that the terms proportional to w"' and q l  contribute 
only to the frequency shift. Here the term ~ I J " '  describes the 
ordinary dispersive spreading of the It becomes 
necessary to take it into account in some special cases, e.g., 
when w"-0 (Refs. 18 and 19). The term (q, 4- q3/2)A; rep- 
resents a nonlinear correction to the group velocity of the 
gravity wave. 

The nonlinear term mq3 associated with the contribution 
of the zeroth harmonic (Stokes flow) plays a apecial role. As 
follows from Eqs. (46) and (47), it introduces an asymmetry 
into the conditions of the modulational instabltlity of the per- 
turbations propagating in the forward and backward direc- 
tions relative to the direction of propagation of the main 
wave. 

In our case of weakly nonlinear gravity waves in deep 
water (Ao4 1) ,  according to Eqs. (37) and (38) we have 

The second term in parentheses in each equation is a 
correction to the known expression, first obtained by Ben- 
jamin and ~ e i r ~  and is the result of accounting for nonlinear 
dispersion. The difference in the maximum growth rates for 
the forward and backward propagating modulation waves is 
N A ~ .  And although this difference is small for a broad modu- 
lation spectrum, only that fluctuation is manifested which has 
the maximum growth rate, namely the fluctuation propagat- 
ing in the direction opposite the direction of propagation of 
the main wave. 
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