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We discuss the nonlinear nonstationary problem of resonant Cerenkov radiation by a magnetized 
relativistic high-current electron beam with a front propagating in a transverse-uniform 
plasma waveguide of finite length. IJsing numerical simulation we demonstrate the existence of 
optimal values for the beam-plasma system parameters corresponding to maximum 
amplitude of the wave radiated at the output. When the optimal beam current is chosen, an 
almost steady value of the amplitude of the output radiation is observed. Further increases in the 
current destroy the steady state: the output radiation becomes chaotic, and the radiated 
power stops increasing. O 1995 American Institute of Physics. 

1. Interest in the study of stimulated emission, or, 
equivalently, beam-plasma instabilities in systems of finite 
length, is not only theoretical. The range of practical appli- 
cations that involve these instabilities is exten,sive, a fact that 
motivates experimentalists to study them intensely even to- 
day. Among these applications we should list transport of 
high-power beams through a neutral plasma background,' 
excitation of comparatively slow waves in a plasma in order 
to accelerate ions: etc. Our interest is in using these beam 
instabilities to excite coherent electromagnetic oscillations in 
a plasma and radiate them from the plasma, i.c., the problem 
of a plasma oscil~ator.~ The task of this paper is to investigate 
the theoretical aspects of this problem. 

It is well known that a radiative resonant Cerenkov in- 
stability develops in the electrodynamic structure of a plasma 
oscillator? In this case, waves are excited in the plasma with 
phase velocities close to the velocity of the electron beam. 
~ x ~ e r i m e n t s ~ ' ~ ~ ~  and numerical calculations based on direct 
solution of the full system of Maxwell-Vla:;ov equations7 
show that the average frequency o of radiation from the 
plasma is considerably larger than the width of the radiation 
spectrum 6w: 

The frequency itself is close to the frequency of exact Cer- 
enkov resonance: 

where w, is the Langmuir plasma frequency, k., is the trans- 
verse wave number of the electrodynamic structure of the 
oscillator, u is the beam velocity, and y = ( 1 -- u21c2) - ' I 2 .  

Condition (1) allows us to develop a fairly simple model 
(compared to Ref. 7) of the plasma oscillator based on the 
method of slowly-varying amplitudes8-'0). At this point, we 
should note that both (1) and (2) are violated at high beam 
currents, which limits the range of applicability of the sim- 
plified model we will discuss below." As shown in Refs. 10, 
11, a reliable criterion to ensure that (I) and (2) are fulfilled 
is the condition 

where J b  is the beam current and J o  is the limiting vacuum 
current.12 If a metallic waveguide of radius R is used as the 
electrodynamic structure for the oscillator, and the beam is in 
the form of a thin tube, then 

where r b  is the beam radius and A is its thickness. 
We should also note that the beam instability in a plasma 

waveguide in the linear and nonlinear stages of evolution 
was discussed rather thoroughly in Refs. 13, 14. However, in 
the majority of cases, this instability has been treated for 
beams and waveguides of infinite length, which corresponds 
to the classical initial-value, boundary-value, and initial- 
boundary-value problems.'5 Although these problems are im- 
portant for understanding the physics of the phenomenon and 
for designing plasma amplifiers,16 they are insufficient for 
the study of plasma oscillators. For this reason, there is in- 
terest in studying the nonlinear dynamics of systems of finite 
length where the wave excited by the beam is reflected from 
the radiating horn. 

2. Consider a waveguide in the region 2 3 0  with metal 
walls. Let the segment of waveguide OSzSL be filled with 
a uniform plasma strongly magnetized by an external longi- 
tudinal magnetic field. We will treat the boundary z = L be- 
tween plasma and vacuum as infinitely sharp, which is the 
simplest model of a radiating horn. At the waveguide bound- 
ary z = 0  itself, we place a constriction, which ensures that 
this boundary will not be completely transparent at the oper- 
ating frequency of the oscillator. 

Assume that at time t =  0 we begin to inject a fully mag- 
netized electron beam with a sharp front into the waveguide 
through the boundary z=0.') We will not include the pro- 
cesses of charge neutralization, reverse current generation, 
etc.,I7 which are unimportant here; rather, we will limit our- 
selves to discussing the interaction of the beam with the 
microwave fields alone. Due to spontaneous Cerenkov radia- 
tion, the injected electron beam excites a copropagating 
wave of frequency w (Ref. 2). As it propagates into the re- 
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gion ~ 3 0 ,  this wave is partially reflected from the radiating 
horn at z=  L. For the usual model of a horn, the reflection 
coefficient has the form:'' 

where n2(wp) = 1 - k: c2/(02 - o i ) .  The reflected counter- 
propagating wave has the same frequency w, but propagates 
in the direction opposite to the copropagating wave. Due to 
the beyond-cutoff constriction at z= 0, the counterpropagat- 
ing wave is entirely converted at this point into a copropa- 
gating wave. 

We present here a brief derivation of the equations that 
describe the interaction of the beam, the copropagating 
wave, and the counterpropagating wave. We should note im- 
mediately that the counterpropagating wave, which is not in 
Cerenkov resonance with the beam, does not interact with it 
on the average; it arises only from reflection from the bound- 
ary z = L. Once it is reflected at = 0, the counterpropagating 
wave creates a copropagating wave, which interacts with the 
beam and is amplified by stimulated Cerenkov emission. 
Furthermore, as shown in Ref. 18, the electrons of the 
plasma may be treated in the linear approximation. 

Let us begin with the wave equation for the polarization 
potential of a TM waveguide model9 

The perturbation of the electron charge density pp of the 
plasma is determined in the linear approximation by the 
equations 

where E, is the longitudinal component of the electric field. 
As for the beam charge density perturbation pb , it is conve- 
nient to calculate it by using the expression20 

Here r ,  is the coordinate in the transverse cross section of 
the waveguide, r b  is the transverse position of the thin beam, 
z j  is the longitudinal position of the jth electron, nb is the 
electron beam density, Sb is the area of the transverse beam 
cross section, and A is a certain characteristic length in the 
longitudinal direction (see below). It is obvious that N is the 
number of electrons (macroparticles) in a segment of unper- 
turbed beam of length A.  The coordinates z j  are determined 
from the relativistic equations of motion: 

d u .  e 2 312 
dz; 
-= uj ,  L=- ( 1  -3) E,(z,,t). 
dr dr m 

Taking ( 1 )  and (2) into account, we seek a solution to 
Eq. (6) in the form 

where cp, are membrane eigenfunctions of the waveguide, 
A, is a slowly varying function of z and t, and k,= o lu ,  
which takes into account the condition for Cerenkov reso- 
nance. It is obvious that if we use this definition of k,, we 
must set A=2.rrlkZ=2nulo. 

The beam interacts resonantly with only one transverse 
mode in the solution (10); for definiteness we assume this is 
the m-th mode. In this case, we should understand by k, in 
(2) the quantity k,, . 2 )  The most interesting case is, of 
course, rn = 1. The other transverse modes are excited non- 
resonantly due to the distortion of the transverse structure of 
the field by the beam. 

From here, we can substitute (10) into (6), taking into 
account the orthogonality of the cp,, and average with re- 
spect to z over a spatial period equal to A. When we do this, 
we obtain equations for the amplitudes A,. The equation for 
the resonant amplitude A, cannot be simplified any more. As 
for the nonresonant amplitudes A, ( n #  m),  when (3) is sat- 
isfied they can be calculated explicitly.21 This latter step al- 
lows us to greatly simplify the right side of the second equa- 
tion (9). Omitting the lengthy calculations whose essence is 
described above (see also Ref. lo), we present the final result 
of transforming Eqs. (6)-(9): 

Here 

is the group velocity of the plasma wave, and 

is a geometric beam factor; the complicated expression for 
the geometric space charge factor Gpm for the beam can be 
found, e.g., in Ref. 21. The beam density enters into ( 1 1 )  
through the parameter v, defined by the expression 

In writing the equations (1  1) we have used the dimensionless 
variables 

e k z  
a,,, = - 7-3 (P)),(~~I)A,, 9 rn y - u  
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The expression for ( p ) ,  i.e., the function (8) averaged over z 
and the transverse cross section of the resonance harmonics, 
is 

where 8 is the Heaviside function. We note that the equation 
similar to (11) obtained in Ref. 10 is an approximation be- 
cause not all of the terms given here were in,cluded. 

Let us discuss the counterpropagating wave. We will de- 
note its slowly varying dimensionless amplitude by b, .  
Since the counterpropagating wave does not interact with the 
beam (on the average), and propagates counter to the beam 
direction, the equation for b,  is obvious: 

u db, db, ----- -0. 
v, 37 dx 

The only connection between a ,  and b ,  is via the following 
reflection conditions at the boundaries z = 0 imd z = L: 

where the coefficient K is defined in (5). Equations ( l l ) ,  
(16), (17) and (18) constitute a closed prol~lem, which is 
solved numerically. 

3. Let us first consider some results from linear 
theory.22923 In the presence of feedback, i.e., when KZO, 
holds the frequency w acquires a complex correction Sw 
which is quite complicated in form.1° For Im(Sw)>O the 
field in the structure grows, implying that it is self-excited, 
i.e., oscillation begins. The equation Im(Sw) = 0 determines 
the startup condition for the beginning of oscillations. 

For low-current beams when 1 K I  4 1 holds, the expres- 
sion for Sw simplifies greatly:22 

where Wg=3u,ul(2u,+u) is the drift velocity during the 
amplification stage, c= k Z ~ v t 3 ,  and vo= vG,, . 

From (19) we obtain the equation Im(Sw:, =O in explicit 
form: 

For small 5, the oscillations in the structure decay, while for 
large 5 the system oscillates. In general, the stiutup condition 
can only be evaluated numerically (see Fig. 1). The system is 
self-excited if 5 lies above the curve shown in Fig. 1. This is 
fully confirmed by numerical calculations. Calculations with 
the feedback switched off (K=O) imply that an optimum 
oscillation regime exists in the region above startup, i.e., for 
certain values of 5 the wave reflected from the radiating horn 
will cause feedback most efficiently once the latter is 
switched on. In this case, the value of the smplitude la,,,1 

LlG. 1. Startup conditions for oscillations. 

established at the output (z=L) is close to the maximum 
value this amplitude can have when the system acts as a pure 
amplifier (see below). 

We note further that, in addition to other corrections, 
Sw is proportional to V, IL- EL. IL. Consequently, in the 
regime far -above startup k e  field in the structure increases 
within a time on the order of the propagation time of the 
beam and electrons over the length of the oscillator (for any 
method of creating the initial perturbation). 

4. We now present the results of our numerical simula- 
tion. A structure was designed with parameters close to those 
of a real e~periment:~ a cylindrical waveguide with radius 
R = 1.8 cm, filled with plasma to a length L = 16 cm. A thin 
hollow beam of radius rb=0.8 cm and thickness A =0.1 cm 
excites the fundamental mode of plasma oscillations 
(m = 1). The relativistic factor for the beam is y=2. 

Let us present the results of calculations for ~ = 0 . 3 3  
(w,= 8 .  10lOs- ', w= 4.6- 10'~s-'). Similar results are also 
obtained for other reflection coefficients. We varied the pa- 
rameter l ,  whose values are denoted by the numbered points 
in Fig. 1. In order to compare with dimensional parameters, 
we refer to Table I, which lists the ratio of beam current to 
the maximum vacuum current JblJo (for the specified pa- 
rameters, the latter was Jo=4.52 kA) and the average radia- 
tion efficiency are computed from the expression: 

where P ,  is the wave power at the output, P b  is the input 
power of the beam, and the angle brackets imply averaging 
over time. 

Incidentally, it is clear from (19) that ISolwl- v:l3. 
From the third column of Table I we see that v;l3 4 1 holds, 
i.e., for the systems we have designed here inequality (1) 
holds. The same is true for inequality (3). 

Figure 2 shows the time dependence of the quantity 
~ ( 7 ) .  One scale division along the T axis corresponds to the 
transit time of the wave over the system length L. For 
l=2.41 (curve 1 in Fig. 2, point I on Fig. l ,  respectively) the 
startup condition is not satisfied and there is no self- 
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TABLE I .  

excitation. Therefore, oscillations initially excited by the 
beam front will gradually decay with time. We note that the 
startup value of 6 for the chosen K is 2.55. 

For 6=2.65 and 6=2.79, the startup condition is fulfilled 
and self-excitation of the structure is observed (curves 2 and 
3 in Fig. 2, points 2 and 3 on Fig. 1). The gradual growth of 
the output amplitude is clear. However, this regime is still 
only slightly above startup. Therefore, the radiation effi- 
ciency listed in Table I is reached only after a long period of 
time. 

Point 4 on Fig. 1 (5=3.03) corresponds to curve 4 
shown in Fig. 3. This is the optimum oscillation regime, 
where the wave amplitude at the output reaches the values of 
the clamped amplitude.24 That is, in this regime beam elec- 
trons are trapped by the plasma wave around the coordinate 
z= L. In the optimal regime, the output amplitude increases 
significantly, and a steady-state oscillation regime is clearly 
established; the radiation efficiency is very high, of order 
0.2. 

As 6 is increased further, electron trapping occurs even 
for z<L; this causes the amplitude at the output to drop, 
which leads to a decrease in the radiation efficiency. Curves 
5, 6, 7 illustrate this (points 5, 6, 7 on Fig. 1). It is also 
apparent that when 6 is larger than this optimal value, the 
output amplitude of the wave becomes chaotic. 

At still higher values of 6 ([=3.96, point 8 on Fig. 1 and 
curve 8 in Fig. 2), the signal is observed to be highly chaotic, 
and the radiation efficiency drops abruptly. 

Figure 3 shows the phase plane for the complex ampli- 
tude a(7)  =a,(x= ~ , L , T )  v:l3 : along the x axis we show Im 
( ( ~ ( r ) ) ,  while on the y axis we show Re[a(r)]. Figure 3a 
corresponds to the pre-startup regime of oscillations (point 1 
on Fig. I). The uncoiled portion of the spiral corresponds to 

excitation of waves by the front, while the central portion 
corresponds to attenuation of the signal after the front passes 
through. Figure 3b corresponds to the optimum regime (point 
4 on Fig. 1). Figure 3c shows the onset of chaos (point 7 on 
Fig. 1). And, tinally, Fig. 3d shows a strongly chaotic signal 
(point 8 on Fig. 1). 

In all the cases we considered, we observed an abrupt 
increase in the oscillation amplitude at the output during the 
initial stage of the process. This increase lasts a time on the 
order of the beam transit time over the length of the system. 
This is because the rate at which the system begins to oscil- 
late is initially characterized not by the gain Im(Sw), where 
Sw is determined from (20), but rather the usual spatial am- 
plification of a forward wave excited by the beam front by 
stimulated Cerenkov emission. Soon after this, the backward 
wave begins to appear and the system becomes self-excited, 
i.e., acts as an oscillator (for values of 5 above startup). 

Thus, the numerical simulation quantitatively confirms 
the conclusions of the linear theory regarding the existence 
of startup values of the structure parameters for which self- 
excitation of the plasma oscillator begins. Simulation of the 
nonlinear dynamics of these processes shows that optimum 
values of the parameters exist (which somewhat exceed start- 
up) for which the steady-state value of the output signal is 
observed to reach its maximum level. Further increases in 
the beam current destroy the stationary oscillations, and cha- 
otic oscillations are observed. 

5. In conclusion, we will attempt to explain the high 
radiation efficiency. It is known that the wave amplitude 
reaches a maximum at the point where electrons are trapped 
by the beam.10.11.14,'8 For small 5, trapping does not occur 

for z<L, and the efficiency is low. For a certain optimum 
value of 6, trapping takes place at z= L and the efficiency is 

0.2 

FIG. 2. Oscillation regimes: below-startup 
(I), slightly above startup (2,3), optimal (4), 

0. I and strongly above startup (5-8). 

0 20 40 60 80 r 0 20 40 60 80 r 
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FIG. 3. Phase plane for the complex ampli- 
tude a(7): (a) below-startup oscillation re- 
gime (point 1 on Fig. 1); (b) optimal oscil- 
lation regime (point 4 on Fig. 1); (c) 
beginning of chaos (point 7 on Fig. I); (d) 
fully developed chaotic oscillations (point 8 
on Fig. 1). 

a maximum. For larger 6, trapping occurs for z<L and the 
efficiency of radiation drops. Now, for comj>aratively small 
values of the current this would happen if we increased the 
value of 5 by increasing the length of the system L. How- 
ever, things could be otherwise (and are for our calculations): 
for a fixed length, we can increase 6 by increasing vo, i.e., 
the beam current. Nevertheless, it was shown in Refs. 10, 11, 
25 that in general there is a certain currentt for which the 
Cerenkov instability mechanism changes to a nonradiating 
regime of negative-mass typez6 In this case, the radiation 
efficiency drops abruptly due to a "phase transition." In our 
calculations, both factors were present, sincc: our model in- 
cludes everything that is necessary. 

One more effect should be mentioned: thee counterpropa- 
gating wave can be scattered by the beam with a frequency 
shift, causing a whole series of cascade processes to develop 
that probably have been observed experimentally. 

l~alculations for a beam with a smooth front lead to analogous results. 
2 ~ h e  eigenfunctions c p ,  correspond to the eigenvalue k,,,. 
3 ) ~ s  a result of the Cerenkov instability, the beam denslty is modulated. If 

the beam current is large, this modulation is associatc:d with a powerful 
longitudinal electric field at frequency w<w, [see (2)]. Since the dielectric 
permittivity of the plasma is negative at this frequency, the modulation of 
the beam will grow, causing further growth in the longitudinal field. In the 
literature, this process is referred to as an instability of negative-mass 
type.l"ll.25 
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