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Collapse (self-compression over a finite time) of a solitary wave is studied. The process is 
described by a one-dimensional nonlinear Schriidinger equation, in which terms corresponding to 
damping and fifth-order nonlinearity are included. Numerical solution of a system of 
equations for the width, amplitude, and degree of modulation reveals that the dissipation can 
suppress collapse if it is strong enough. Analytical expressions for the threshold values of the linear 
and nonlinear absorption coefficients are found by means of qualitative arguments. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

The nonlinear Schrodinger (NLS) 

is widely used to describe the evolution of nonlinear waves 
in dispersive media, where q ( t , r )  is the complex envelope of 
the wave. The term containing the Laplacian A represents 
the diffractional (dispersive) broadening, while the last term 
in (1) describes the nonlinear action that limits spreading of 
the wave. 

In the one-dimensional case ( A  = 3:) the NLS equation 
is an example of a completely integrable evolution equation 
that can be solved by the inverse scattering method?.1° In 
this case Eq. ( 1 )  possesses particular solutions in the form of 
steady solitary waves, called solitons, and unsteady multi- 
soliton solutions describing the interactions between solitons. 
Besides these there are many others, including periodic 
solutions" and solutions related to the transcendental Pain- 
lev6  function^.'^.'^ 

In d-dimensional space (d>  I )  the NLS equation has 
been used to describe self-focusing of light  beam^^-^ and 
optical c ~ l l a ~ s e . ' ~ ~ ' ~  In these cases the NLS equation cannot 
be integrated by the inverse scattering method, and it be- 
comes quite complicated. In addition to numerical integra- 
tion, the variational method first developed by Anderson for 
the one-dimensional caseI6 has been used successf~l l~ .~  

As shown in Refs. 17 and 18, in the one-dimensional 
case a soliton can collapse if a higher-order nonlinearity is 
included in (I): 

This phenomenon can be described analytically by use of 
either the variational method or the generalized moment 
technique.19 These approaches, as well as the adiabatic per- 
turbation theory for s o ~ i t o n s ? ~ . ~ ~  have been employed fre- 
quently in analytical studies of the effect of small perturba- 
tions on NLS solitons. In particular, it has been found that 
dissipation associated with lines?' and n0nlineaI-2~ absorp- 
tion causes broadening of the soliton. Here it should be men- 
tioned that the variational approach provides a picture of the 
evolution of the soliton width that is closer to that observed 

in numerical simulations. Strictly speaking, the term "soli- 
ton" should not be used; it is more accurate to say "solitary 
wave," since the perturbed NLS equation is in general not 
integrable. But for brevity one often refers to a solution as a 
soliton if its behavior resembles that of solitons. With this in 
mind one can conclude that dissipation causes an increase in 
the width of a soliton, while a higher-order nonlinearity [like 
that in Eq. (2)] can produce the opposite effect (self- 
compression and collapse of the soliton) for P>O and 
a> 0. 

The purpose of the present work was to study the effect 
of linear and nonlinear absorption on the change in width of 
a solitary wave (soliton) propagating in a medium having a 
fifth-order nonlinearity as in Refs. 17 and 18. When the soli- 
ton begins to compress, so that its width approaches zero, a 
theory based on the NLS equation (1) or (2) becomes inad- 
equate. In this case it is necessary to take into account 
higher-order derivatives of the wave envelope q ( t , x ) ,  and 
the same is true of nonlinear effects. But if we are interested 
in the time dependence of the soliton parameters close to the 
threshold determining collapse, then it is permissible to re- 
strict the treatment to this model. 

Using the formalism of the reduced description of soli- 
ton evo~ution,'~ which is a simple generalization of the adia- 
batic perturbation theory for solitons?072' we will find ap- 
proximate expressions for the absorption coefficients above 
which collapse becomes impossible. The derivation of these 
coefficients is based on results found by numerical solution 
of the system of equations describing the behavior of the 
width of the solitary wave (soliton). 

2. BASIC EQUATIONS OF THE MODEL 

We assume that the complex envelope q( r ,x )  of the soli- 
tary wave satisfies the perturbed NLS equation 

i9 , ,+~9,xx+CL1912q=~[91,  (3) 

which includes Eq. (2) as a special case. If we set ourselves 
the task of studying the behavior of the wave amplitude 
A ( t ) ,  its width x , ( t ) ,  the corrections to the phase velocity 
C ( t ) ,  the position of the center of mass x , . ( t ) ,  and the degree 
of phase modulation B ( t ) ,  then from (3) we can derive a 

275 JETP 81 (2), August 1995 1063-7761 /95/080275-05$10.00 O 1995 American Institute of Physics 275 



system of equations for these variables.I9 F R ~  this it is nec- 
essary to assume that the envelope has some definite shape, 
which is equivalent to the choice of a test function in the 
variational method. If we take q(t,x) in the form 

then a system of equations can be derived which provides a 
coarsened description of the time dependence of the solution 
of Eq. (3) in terms of the variables A(t), xp(t), xc(t), C(t), 
and B(t): 

m 

-=x@ f-msech y im p dy, 
dt  

sech y Im p dy, (5.2) 

X c 
- = 2 a ~ + x @ - '  y sech y I m p  dy, dr 

X (:m[y tanh - k] sech y Re p dy , 

where p=R[q]exp(-iQ). The equation for cb(t) is omitted, 
since this variable plays no role in the prob1r:m. 

For the perturbation in (3) we take a sum of terms de- 
scribing the effects of dissipation and collapse of the solitary 
wave, viz., 

where the choice T[q] =T,q corresponds to linear damping 
( r l>O)  or growth (TI<O), and the term ~ [ q ] = r , l q 1 ~ q  
describes nonlinear damping. This may be, e.g., two-photon 
absorption for an optical pulse in a nonlinear dispersive me- 
dium, as in Ref. 22. 

3. ROLE OF LINEAR DAMPING 

For T[q]= r I q  we can derive a systern of equations 
from (5) for the variables that are significant in this case: 

where pn= 16p115. Here we have written 
C=  CO= const and x,(t) = 2aCo.  

From (7.1) we find 

where Wo is an integration constant determined by the initial 
conditions at t=O. Eliminating B(t) from (7.2) and (7.3), we 
find the following equation for the soliton width xp(t): 

This equation can usefully be written in dimensionless 
form for the variable r =xp lxp(0), which is a function of 
r= t[4a17rx~(0)], where we assume a > O  (the case 
ap<O does not give rise to collapse): 

where y = r l  .rrx;(0)12a is the scaled absorption coefficient 
and we have introduced the parameters a= ,uxp(0)Mu and 
S= Pn/2a. 

Since the coefficients in (9) depend on r ,  we took a 
numerical approach in studying the solutions of this equa- 
tion. But some preliminary conclusions of a qualitative na- 
ture can be drawn. 

When there is no dissipation in (9) (y=O), for 
SW;< 1 either the width xp(r) of the solitary wave grows 
monotonically or xp(r) varies periodically about a steady 
value that coincides with the soliton width.I6*l7. The absence 
of damping is a consequence of the approximation we have 
used: the nonsoliton part of the solution of the NLS equation 
has been dropped from (4). For SW;- ' 1 both variables on 
the right-hand side of (9) are negative and the soliton width 
decreases monotonically, becoming equal to zero after a fi- 
nite time rm,, i.e., the wave collapses.23 If we write 

then the dependence r =  r ( r )  can be written parametrically:23 

r = a ( l  + p  sin $), r = a l ~ ~ J - ~ ' ~ ( $ - ~  cos $)+TO, (10) 

where r0 is chosen to satisfy r ( r =  0)  = 1. 
In the parameter space associated with Eq. (9) the sur- 

face 6 ~ : =  1 separates the range of parameters for which 
collapse can occur from that for which collapse is impos- 
sible. We will call the values of 6 and Wo lying on this 
surface "critical." For such 6 and W,, the time rcOl at which 
collapse occurs is given by 
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FIG. 1. Dimensionless width of the solitaly wave as a function of time for 
different values of the linear absorption coefficient y (for m;V,> 1). FIG. 2. Calculated S= S,( y) for a= 1 and different values of the soliton 

energy Wo. 

which follows from (10). 
If dissipation is present ( y # 0), then the equation for 

the critical surface changes. To derive an approximate equa- 
tion relating the critical parameters, we can argue as follows. 
In Eq. (9) the first term on the right-hand side (which varies 
as r increases) should remain negative until r ( r )  goes to 
zero. The characteristic time for this process can be taken to 
be on the order of the time rcol given by (11): ?=mrcol, 
where m is a correction factor of order unity, which must be 
found numerically. Consequently, the approximate equation 
for the critical surface can be written as 

Assuming y+ 1 and using (1 I), we can derive an expression 
for the critical value Sc= Sc( y,Wo) or yc= ye(& W,): 

From these expressions it is clear that the energy W o  of the 
original solitary wave must exceed a value of order S-'I2, or 
the collapse regime will not be reached. But in the presence 
of damping the energy must be even larger than the value 
determined by Eqs. (12). 

The evolution of the width of the solitary wave as a 
function of the scaled absorption coefficient y was also stud- 
ied via numerical solution of Eq. (9). We took r= 1 and 
drld r= 0 as the initial conditions at r= 0 and used a fourth- 
order Runge-Kutta technique. 

In the absence of dissipation the solitary wave under- 
went collapse when its energy exceeded KV2,  which is con- 
sistent with the known facts. For small y and sufficiently 
large energy Wo the soliton width r ( r )  also decreased to 
zero. But as the absorption coefficient increased the collapse 
regime disappeared and the compression of the solitary wave 
in the initial stage was replaced by unrestricted spreading 
(Fig. 1). Repeating the numerical solution of Eq. (9) for dif- 
ferent choices of the parameters, we find the threshold (criti- 
cal) value of the scaled absorption coefficient y, as a func- 
tion of S, W o ,  and a. 

In the course of our investigation it was found to be 
more convenient to specify Wo and a and determine the 

curve S= Sc( y )  that divides the ( S ,  y )  plane into a region 
where collapse takes place and a region where it does not. 
Under the condition a = 1 the function S= Sc( y ,  Wo)  was 
plotted for different values of the initial energy W o .  The 
points lying above the curves in Fig. 2 labeled with values of 
W o  belong to the collapse region. It turned out that in the 
ranges 0 s  y S  1, 0 .2s  W o S  5 the behavior of S= Sc( y,Wo) 
is approximated well by the function 

If there is no damping we recover the well known result 

1 
Sco( Wo) = 7. w 0 

The slope Scl (Wo)  in Eq. (13) decreases as a function of 
W o  (Fig. 3), and this behavior can be fitted well by a function 
of the form 

Scl(Wo)= 1 . 4 2 ~ :  

with k =  -2.28. Thus, by using (13) we have derived an 
approximate formula for the critical curve: 

S c ( y , ~ o ) =  wi2+ 1 . 4 2 ~ 0 ~ . ~ ~ ~ .  (14) 

FIG. 3. Dependence of the slope 6,,[Eq. (13)] on the soliton energy for 
a= I .  
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Comparing this expression with (12.1), we can discern 
better agreement between these results by recalling that 
a= 1 was assumed for (14) and taking the correction factor 
m to be 0.64 in (12.1). 

Thus, using either (12.2) or (14) we can find an approxi- 
mate value of the threshold (critical) scaled iibsorption coef- 
ficient y, as a function of the rest of the parameters of the 
problem, i.e., either 

respectively. When the linear damping is chiuacterized by a 
coefficient y> y,, then the solitary wave is not subject to 
collapse. 

4. ROLE OF NONLINEAR DAMPING 

When the dissipation results from nonlinear damping, 
assumed to be describable by putting r[q]= r21q12q in Eq. 
(6), we can derive the following system from Eq. (5): 

which now determines the variation of the parameters of the 
solitary wave. This system is more complicated than (7), so 
we went immediately to numerical solution in. order to deter- 
mine the critical curve. It is convenient to rewrite Eqs. (16) 
by introducing variables similar to those used in the previous 
section. Accordingly, for W = X # ~ ,  r =xp(r)lxp(0). and 
y = ~X;(O)B(T) as functions of r= t[4ul.rrxi(0)] we derive 
the following system of equations from (16): 

where a= pxp(0)/2a, S = 6, / 2 a ,  and the scaled (nonlin- 
ear) absorption coefficient is y,= .rrr2xp(0)/:3a. 

Numerical solution of this system demonstrated that the 
soliton can collapse until yn exceeds some threshold value, 
just as in the case of linear damping (Fig. 4). By repeating 
the numerical solution of (17) for different values of the 
parameters and the initial soliton energy Wo we can find this 
threshold value y,,, of the absorption coefficient as a func- 
tion of 6, a, and Wo. The search procedure for the function 
S= 6,( y,, ,Wo) is the same as that described earlier, and for 
small values of y,, and W o  and for a= I we can immediately 
write down a result analogous to (14): 

FIG. 4. Dimensionless width of the solitary wave as a function of time for 
different values of the nonlinear absorption coefficient y, . 

This approximate formula can be derived semi- 
analytically by arguing as follows. When collapse begins to 
occur the derivatives satisfy drldr<O and Idrldrl+ 1 and 
the second term on the right-hand side of (17.2) is positive, 
so the first term makes the main contribution to drldr .  
Moreover, it is negative, as can be seen from Eq. (17.3) close 
to collapse. In this case Eq. (17.2) can be replaced by an 
equation similar to (9): 

Assuming that the damping is weak, we can find the 
function W( 7) approximately from (17.1): 

which can be used to write down an approximate equation 
for the critical surface: 

where m is a correction factor. Assuming ynWo4 1, we can 
find from this an expression for the critical curve 
S= S,( yn , W,) on the ( yn , W,) surface: 

Comparing this expression with (18) we find m = 1.73 for the 
correction factor. 

An approximate value of the threshold scaled nonlinear 
absorption coefficient as a function of the parameters of the 
problem can be obtained either from (19), 

ync(S,~o)=0.26a112~~0~63(S~~- I ) ,  (22.1) 

or from (21), 

5. CONCLUSION 

In this work we have studied the effect of linear and 
nonlinear absorption on the collapse of a solitary wave that 
can occur in a one-dimensional nonlinear dispersive me- 

278 JETP 81 (2), August 1995 A. E. Astrakharchik and A. I. Maimistov 278 



FIG. 5. Critical absorption coefficient as 
a function of the energy W, for a= 1 : a) 
linear absorption; b) nonlinear absorp- 
tion. 

dium. In the absence of dissipation this phenomenon is due 'B. B. Kadomtsev and V. I. Karpman, Uspekhi Fiz. Nauk 103, 193 (1971) 

to nonlinearities of higher order than the Kerr nonlinearity. 
Rather than solve the partial differential equation directly, we 
used a set of ordinary differential equations which yields the 
time dependence of the width of the solitary wave (some- 
times called a soliton merely for brevity). This simpler ap- 
proach enabled us to derive approximate formulas for the 
threshold values of the scaled absorption coefficients. If the 
dissipation is characterized by values greater than these co- 
efficients, then there is no collapse and the soliton width 
increases in time without bound. 

Dissipation is not the only mechanism that prevents col- 
lapse of a solitary wave. Diffraction or dispersive effects can 
also enter in this role. But in contrast to the other mecha- 
nisms, the one treated here does not depend on the soliton 
width. This is important. 

It should be noted that the time dependence of the di- 
mensionless width of the solitary wave exhibits little quali- 
tative change when we go from linear to nonlinear absorp- 
tion (compare Figs. 1 and 4). But these two cases lead to 
very different behavior for the critical absorption coefficient 
as a function of the initial soliton energy [Figs. 5(a,b)]. This 
is reflected in Eqs. (15) and (22). The difference is greatest 
for negative y and y, , i.e., when the solitary wave is grow- 
ing. In our view this case requires further study, preferably 
through numerical solution of the NLS equation itself with 
the correction terms (6). 

Analysis of the effect of dissipation on the collapse of 
two- and three-dimensional solitary waves is also of inde- 
pendent interest. Those results may turn out to be useful for 
the "optical bullet" theory of Ref. 14, aside from their gen- 
eral physical significance. 
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