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We develop in this paper a theory for the spontaneous and stimulated emission by relativistic 
electrons in a magnetic field which is a superposition of the spiral field of an undulator 
and a uniform longitudinal field. We show that the electron trajectories precess in the transverse 
plane, while along the axis of the undulator longitudinal oscillations are excited with an 
amplitude which depends on the magnitude of the longitudinal field. We find in analytical form 
the frequency and angle distribution of the emitted energy when the electrons move along 
such trajectories. Using the results for the spectra of the spontaneous emission and the energy and 
longitudinal quasimomentum conservation laws for the emission and the absorption of a 
photon by an electron we obtain relatively simple analytical expressions for the amplification 
coefficient. We give an analysis of the effect of the longitudinal field on the efficiency 
with which the electron energy is transformed into radiative energy. O 1995 American Institute 
of Physics. 

I. INTRODUCTION 

Free electron lasers in which a spiral undulator with an 
additional longitudinal magnetic field is used have been stud- 
ied experimentally in a number of and in Conde 
and Bekefi's experiment3 the longitudinal magnetic field was 
varied not only in magnitude but also in direction. The pres- 
ence of the additional longitudinal field leads to a significant 
change in the power of the emission and the efficiency with 
which the energy of an electron beam is transformed into 
electromagnetic radiative energy. The set of nonlinear equa- 
tions describing the interaction of a beam of relativistic elec- 
trons with an external electromagnetic wave in the field of a 
real undulator with an additional longitudinal magnetic field 
was formulated in Ref. 4. The authors there took into account 
that the magnetic field of a real undulator is inhomogeneous 
in the transverse direction and has an oscillating longitudinal 
component, while inside the undulator there is a waveguide 
and the electrons interact with the TE or TM modes of the 
electromagnetic radiation. In a more recent paper5 the effect 
of the eigenfield of the electron beam was also taken into 
account in the set of equations. The existing a n a ~ ~ s i s ~ - ~  of 
the experimental results of Ref. 3 was performed via numeri- 
cal integration of the set of nonlinear equations. In contrast 
to this approach, which is essentially a method for numeri- 
cally simulating the experiments, in the present paper we 
shall develop a theory which enables us to find the spectral 
and angular distribution of the spontaneous emission and the 
amplification coefficient in a spiral undulator with an addi- 
tional longitudinal field in analytical form. Although some 
minor details such as the transverse inhomogeneity of the 
undulator field and nonlinear effects in the interaction of the 
electron beam with the accelerated wave are neglected in our 
calculations, the main effect connected with the important 
change in the nature of the transverse and the longitudinal 
motion of the electrons when there is a uniform magnetic 
field superin~posed on the spiral field of the undulator can be 
analyzed in detail in each stage of the theory developed here. 

2. SOLUTION OF THE EQUATIONS OF MOTION AND 
ANALYSIS OF THE TRAJECTORIES 

In order later to calculate the emission spectra we need 
to find the solution of the electron equation of motion, 

where E is the total electron energy ( m  = c = 1 ) in the mag- 
netic field, which is the sum of the undulator field and a 
longitudinal field, 

H(z)=H,(n ,  cos w,z+ny sin o, , , z )+H,n, .  (2) 

The quantities n,,  ny , and n, are unit vectors along the 
coordinate axes; we have written wlv=2.rrlX,, where X I ,  is 
the period of the spiral undulator; H,>O is the amplitude of 
the undulator field, and H, is the longitudinal magnetic field 
strength, which is directed along the z-axis. Positive values 
of Hz correspond to situations when the sense of rotation of 
the electron in the xy-plane in the field of the undulator (for 
H,=O) is the opposite to that of the rotation in the uniform 
field (i.e., for H,=O), while negative values of Hz corre- 
spond to the same sense of rotation. We neglect the in- 
homogeneities of the fields in the transverse directions, i.e., 
H ,  and H ,  are independent of the transverse coordinates x 
and y. 

We introduce linear combinations of the transverse ve- 
locity components: v ( + ) = u , + i v , ,  v ( - ) = v , - i v y .  We can 
then write the equations of motion in the form 

where the dot indicates a time derivative, w,,=eH,IE is the 
relativistic cyclotron frequency, and p = eH , l o , ,  is the spiral 
undulator parameter. The last of Eqs. (3) is a consequence of 
the conservation of the electron energy E in a magnetic field. 
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We assume that the transverse (with respect to the z-axis) 
velocity components of the electron always remain small 
compared to the longitudinal component v , .  Since the esti- 
mate v , -p lE  is valid for the transverse component, the 
electron energy must be at least relativistic, and unless lim- 
ited by small undulator parameters p the energy must be 
ultrarelativistic, E S P .  In that case one can solve the nonlin- 
ear set of Eqs. (3) by the method of consecutive approxima- 
tions in the small parameter v , lu , .  In the zeroth approxima- 
tion we get v Z w l ,  z-t. We put these values in the first two 
equations of the set (3). After this we find the solution to the 
first approximation 

Here v o  is the initial value of the magnitude of the transverse 
velocity with a direction which makes an angle I/ with the 
x-axis of the chosen coordinate system, q= W ~ / W H  is the 
ratio of the cyclotron frequency to the frequency of the spiral 
undulator. Note that when one changes the direction of the 
longitudinal field the quantities H z  and oH and also q be- 
come negative, and the condition v ,  < v ,  used when solving 
the equations of motion according to (4) takes the form 
E + p l l l +  ql . For negative q close to q = - 1 this condition 
imposes more rigorous restrictions on the upper limit of the 
electron energy than for q>O. Using the approximate equa- 
tion 

which follows from the last equation of the set (3) and sub- 
stituting (4) into (5) we get for the longitudinal velocity com- 
ponent 

The quantities k and a introduced here are connected with 
the initial velocity through the relation keia= Aei*( 1 + q )  - 1 
with A=Evolp.  They can be expressed as follows in terms 
of the components v o ,  and voy of the initial velocity 

Subsequent integration of (4) with the initial conditions 
x(0) = y (0) = 0 leads to the following expression for 
p(+)=x+ iy: 

where Ro=pl(Eo, , , ) .  The nature of the electron trajectories 
in the transverse xy-plane becomes clearer if we introduce 
cylindrical coordinates p(t),q(t) for the electron using the 
relations 

where ph=Re p-iIm p. As a result we find 

with R = R ~ I ~ ~  + q l .  
In the transverse plane the electron thus carries out radial 

oscillations with a frequency W,=O,+ W H  equal to the alge- 
braic sum of the undulator frequency ww and the cyclotron 
frequency W H .  The pericenter pmi, and the apcenter p,, of 
the orbit are then determined by the relations 

The coordinates x, and y ,  of the center about which the 
radial oscillations take place are connected with the initial 
transverse velocity through the equations 

The turning angle of the electron around the center is a 
quasiperiodic function of the time, i.e., the equation 
q(t + T,) = q(t)  + Aq holds, where T p = 2 ~ l o p  is the period 
of the radial oscillations and Aq is the precession angle. 
Apart from an unimportant term which is a multiple of 27r, 
the latter can be written in the form 

For the precession frequency R defined, as usual, by the 
relation R=Aqo/T, we get the equation 

The precession frequency is thus, apart from the sign, the 
same as the cyclotron frequency. Integrating (6) with the 
initial condition z(0)=0 we find the longitudinal coordinate 
of the electron as a function of the time in the form 

Here we have introduced the notation 

for the longitudinal velocity averaged over a period of the 
radial oscillations and 

for the amplitude of the longitudinal oscillations. According 
to (12) the longitudinal oscillations occur with the frequency 
w, of the radial oscillations and an amplitude a and the os- 
cillations take place relative to a center which moves uni- 
fotmly along the z-axis with a velocity (u , ) .  
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The special initial conditions for which the initial trans- 
verse velocity is directed along the x-axis (vo,=O) and has 
magnitude equal to v,,= pl E correspond to situations such 
that the electron is in a circular transverse orbit of the undu- 
lator until t=O (this is possible if the amplitude of the undu- 
lator field grows adiabatically from zero to H, and v,=O at 
t =  -m) while the longitudinal magnetic field is switched on 
at time t=O. In that case we have p,=O. Hence the electron 
precession occurs relative to the point of injection x=O, 
y=O, while the parameter k in Eqs. (8) to (14) becomes 
equal to l q l ,  the initial phase of the oscillations in (8), and 
(12) is determined by the equation 

and the pericenter becomes equal to zero, As a result the 
electron trajectory can be written in a simpler form: 

2 

z(t)=(v,)t-ii sin wpt, i i = L  (c)  4 
o ,  E ( l + d 3 '  

If there is no longitudinal field (q=O) the trajectory (15) 
becomes a circle of radius Ro with center in the point (O,Ro), 
while for q = l  (antiresonance) it becomes the section 
x(t)=Ro sin o,t, y(t)=O. We note that in the more general 
case when k may differ from I q l  the trajectory (8) is in the 
antiresonance point q = 1 an ellipse with eccentricity equal to 
2&l(k + 1). 

We can distinguish two other special initial conditions. If 
the electron enters the field parallel to the undulator axis 
(vo=O) the coordinates of the precession center are deter- 
mined by the equations xc=O, yc=pl(EwH) and the value of 
the parameter k in Eqs. (6) to (9), (12), and (13) which we 
found earlier becomes equal to unity. In the other case when 
the initial transverse velocity satisfies the conditions 
vox=pl[E(l +q)] ,  uo,=O the quantity k vanishes and the 
electron trajectory becomes a circle of the form p(t) = R, 
q(t) = ~ / 2 +  o,,t with its center in the point [0, Rsign(1 
+q)]. This last case is characterized by the fact that the 
amplitude of the longitudinal oscillations (14) vanishes. 

For general initial conditions the orbits (8) and (15) are, 
depending on the value of the parameter q ,  precessing ro- 
settes or spirals which, in general, are not closed (Fig. 1). 
The orbits close after a well defined number of periods of the 
radial oscillations only when the ratio of the precession fre- 
quency to the frequency of the radial oscillations, i.e., the 
quantity Iql(l +q)l, is a rational number. The precession 
increases the transverse motion of the electrons while, on the 
other hand, an increase in the longitudinal magnetic field 

FIG. 1. 'Qpical transverse electron trajectories in a spiral undulator with a 
longitudinal field for various parameters q  and k :  1: q  = 2k13 = 0.1 ; 2: 
q = 2 k / 3 = 0 . 3 ; 3 : q = 2 k 1 3 = 1 . 2 ; 4 :  q = k = - 0 . 1 ; 5 : q = k = - 0 . 3 ; 6 :  q = k  
= - 1.6. 'The sides of the squares bounding the trajectories are taken equal 
to 2 R o = 2 p l ( E o , )  for the trajectories with q>O and equal to 4R0 for 
trajectories with q<O. The arrows on the trajectories indicate the direction 
of the motion from the starting point. 

strength for positive q decreases the distance to the center (9) 
and causes a corresponding compression of the transverse 
motion. The same picture is observed also for negative val- 
ues of q < - 1. Meanwhile, in the range - 1 <q <O the dis- 
tance to the center increases sharply as the resonance q = - 1 
is approached. If the center of the initial circular orbit (15) 
was lying on the undulator axis a significant increase in the 
possible distance of the electron from the axis under the ef- 
fect of the longitudinal field may make it necessary to in- 
clude the dependence of the transverse component H, of the 
undulator field on the transverse coordinate p and also cause 
a longitudinal component of the field to arise for a real un- 
dulator (oscillating with a period A,).~ The condition for the 
effects to be small when the field is nonuniform or nontrans- 
verse in a real undulator is o,,,p+l, where p is the maximum 
distance of the electron from the undulator axis due to pre- 
cession. This implies 

which is the same as the condition, introduced earlier, that v, 
be small as compared to v, . 

3. DERIVATION OF FORMULAS FOR THE SPECTRAL AND 
ANGULAR DISTRIBUTION OF THE EMISSION FROM 
AN UNDULATOR WITH A LONGITUDINAL FIELD 

The general formulas for calculating the spectral and an- 
gular distribution of the intensity of the emission by ul- 
trarelativistic particles with transverse trajectories which pre- 
cess with an arbitrary frequency fl have been obtained 
before9 in connection with the analogous problem of the 
axial channelling of electrons in a crystal. According to Ref. 
9 the differential (with respect to the frequency and the solid 
angle of the emission) intensity of the emission by an elec- 
tron can be written in the form 
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Here w is the frequency of the radiation; k,=w cos O 
-w(1- 8212); d o =  Ode dq, is the differential solid angle; 
0 < 1 and qr are, respectively, the polar and azimuthal angles 
of the radiation; and n,m are the radial and azimuthal num- 
bers of the harmonics corresponding, respectively, to the fre- 
quency wp of the radial oscillations and the precession fre- 
quency R. The Fourier components of the current which 
occur in (17) are determined by the following integrals over 
the period Tp of the radial oscillations 

1 
( ')-- Jd9,(Kp)exp[imr- i(&+nw,) Jnm - 

TP 

where we have set Az= z(t) -(u,)t and K-Ow is the trans- 
verse component of the wavevector of the radiation. The 
angular brackets indicate averaging of the corresponding 
quantities over a period of the radial oscillations and the dot 
indicates the time derivatives of the cylindrical coordinates 
p(t) and q(t) of the electron. 

It was noted in Ref. 9 that Eq. (17) is the spectral and 
angular distribution of the intensity of the radiation which is, 
generally speaking, averaged over the azirnuthal angle 9,. 
since the emission turns out to be axially symmetric only for 
transverse orbits, which are not closed, with an infinitely 
large number of radial oscillations, and when deriving (17) 
we cannot carry out an additional averaging over the azi- 
muthal angle of the radiation. Because of the analogy of the 
electron trajectories noted above we can use the general re- 
sults represented by Eqs. (17) and (It?), with certain modifi- 
cations, to calculate the emission spectra from a spiral undu- 
lator with a longitudinal field. The Dirac delta-function in 
(17) corresponds to an infinite electron-field interaction 
length. If we take into account the finite length L*A, of the 
undulator we must replace a t )  by the function 

and the spectral and angular distribution d2wldwd0 of the 
energy of the emission by the undulator is then obtained 
from (17) by multiplying by the electron-field interaction 
time tit,,= Llu,=L. 

Substituting Eqs. (8) for the transverse electron coordi- 
nates p(t) and q ( t )  and (12) for the longitudinal coordinate 
(relative to the uniformly moving center) Aztt) into the gen- 
eral formulas (18) leads, apart from an unumportant phase 
factor exp(-iwa sin a), to the following integrals for the 
Fourier components of the current 
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Xexp[im(a+ ~ 1 2 ) - i w a  sin xldt ,  

(20) 

~ ( k + e " X ) e - ' " ~ ~ '  exp [ im(a+~ /2 ) - iwa  sin xldt.  

We have here introduced the notation x=wp t - a  and, ac- 
cording to (8) we have 

One can evaluate the integrals (20) as follows. We use the 
Jacobi-Anger formu~a '~  

exp(-iwa sin x ) =  2 ~ , ( w a ) e - ' ~ x ,  
v= -m 

and also Gegenbauer's summation formula for Bessel 
 function^'^ 

After this the term-by-term integration of the series we have 
obtained is elementary. As a result we get, apart from an 
unimportant phase factor which is the same for all three com- 
ponents of the current, 

In the case considered we obtained for the frequency of the 
radial oscillations and for the precession frequency the equa- 
tions wp=w,+w,, , O=-w,, so that it is more convenient 
to change in (17) from summations over the radial and azi- 
muthal harmonics n and m to a summation over the undula- 
tor harmonic n and the cyclotron harmonic n ' = n - m. The 
spectral and angular density of the emission energy from a 
spiral undulator with a longitudinal field can then be rewrit- 
ten in the form 
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In accordance with (19) and (21) we have here introduced 
the notation 

m 

.(*)- I,,! -RO, y= C -m Jv(wa) 

According to (13) we can write the phase shift 
@=w-kz(v,), which occurs in (23), in the form 

We bear in mind that, according to the results obtained 
above, the other quantities occurring in (22) to (25) have, the 
following form: K = ~ o ,  R , ,=~I(E~, ) ,  R = R , , I ~ I + ~ ~ ,  
p=eH,lw,, q =  W ~ I O , ~ ,  OH=~H, /E,  and the quantities k 
and a are defined by Eqs. (7) and (14). 

4. ANALYSIS OF THE GENERAL EXPRESSION FOR THE 
SPECTRAL AND ANGULAR DISTRIBUTION OF THE 
RADIATION 

The possible frequencies of the emission at an angle 8 to 
the axis of a spiral undulator with a longitudinal magnetic 
field are concentrated near the positive zeroes of (,,,I re- 
garded as a function of the frequency. Denoting these zeroes 
by w,,~ we find 

The emission can thus take place both at frequencies which 
are multiples of the undulator frequency (nl=O, n #O) or of 
the cyclotron frequency (n ' #0, n =0) and at combination 
frequencies (nr#O, n#O), and in the last case even when 
w,>O holds one of the numbers n and n '  may be negative 
(only the sum no,,+ n' w, must be positive). The Doppler 
shift of the emitted frequencies w,,l relative to the sum 
n w,v + n ' wH depends both on the undulator parameter p and 
on the parameter q = wH/ w,, . The homogeneous spectral line 
width is, according to (22), determined by the total undulator 
length 

However, in real situations there are also inhomogeneous 
broadening mechanisms. In particuli~r, the spread in energy E 

FIG. 2. The frequencies on,, of the radiation at a zero angle B of the various 
harmonics (nn') as functions of the ratio q =  oH/o, of the cyclotron fre- 
quency oH to the undulator frequency ow. The numbers on the curves 
correspond to the following harmonics: 1: (1.0); 2: (0.1); 3: (0,- 1); 4: (1.1); 
5: (-1.1); 6: (1,- I); 7: (-1,-I). 

or in the square of the initial transverse velocity vi (angular 
spread of the beam) in the electron beam leads to a Doppler 
broadening with a magnitude which one can estimate as the 
corresponding variation in on,!. 

The dependence on the parameter q of the frequencies 
o,,~ emitted at an angle 8=0 for a fixed p =  1 and for the 
special initial conditions [see (15)] when k =  lql holds are 
shown in Fig. 2. The intersection of the curves for several 
values of q means that the frequency spectrum becomes de- 
generate. In particular, for q = 1 the frequencies w,,! in (26) 
depend only on the sum n + n '. The degeneracy of the spec- 
trum is connected with the closing of the transverse orbits, 
mentioned in $2, for those values of q. In the region of the 
resonance q=-  1 all frequencies w,,~ decrease fast; this is 
connected with the steep increase in the transverse velocity 
(4) and the corresponding decrease in the longitudinal veloc- 
ity (13) which determines the Doppler shift. One should bear 
in mind, however, that in the immediate vicinity of the reso- 
nance the conditions for the applicability of the theory de- 
veloped here may be violated (see $2). 

4.1 Limiting cases of motion along a circular spiral 

The general equations (22) to (25) which determine the 
spectral and angular distribution of the emission from a spi- 
ral undulator with a longitudinal magnetic field can be sig- 
nificantly simplified in a number of limiting cases. In par- 
ticular, for Hz =O or H ,  =O they yield well known results for 
the emission by electrons in a spiral or in a uniform magnetic 
field, respectively. Indeed, for wl,=O the amplitude of the 
longitudinal oscillations vanishes together with q, so that in 
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the sums over v in (24) only the term with v=O remains. 
Assuming that initially the electron is on the circular orbit 
k =  lql we find 

Substitution of (28) into (22) and use of the: identity1' 

and of the recurrence relations between adjacent Bessel func- 
tions J, , J,+ leads to the result which is (in the E S l ,  M 1 
limit) the same as the corresponding result obtained earlier in 
Ref. 11, for the case of a spiral undulator. In the other limit, 
H,=O, we have p=O, R-10, a = O  so that in (24) only the 
term with v=O remains, and k=uol(Rw,)-+m. As a result 
we get 

where Sno is the Kronecker symbol. Substitution of (29) into 
(22) leads in this case to the well known result from the 
theory of the emission by ultrarelativistic electrons entering 
at an angle O0=uo in a uniform magnetic field and moving 
along a circular spiral with radius uolwH. 

We noted above that for the special initial conditions 
corresponding to k=O the transverse trajectories are circular 
(with radius R)  even when neither of the components Hz or 
H, of the field (2) vanishes. Under the condition k=O the 
amplitude a of the longitudinal oscillations (see (14)) van- 
ishes and in the sums (24) only the terms with v=O and 
n =0 remain: 

As one should expect, this result is analogous to the case 
(28) considered above and goes over into it for q=O. 

4.2 Emission along the undulator axis 

The results (22) to (25) can be greatly simplified also for 
emission at a zero angle 0. In that case the z-component of 
the current in (22) does not play a role, and since we have 
K=O for the other components we find 

The spectral and angular density of the emission energy then 
takes the form 

We see thus that for 8=0 the numbers of the undulator and 
the cyclotron harmonics can differ from one another only by 
unity. An additional analysis shows that for 0=0 the harmon- 
ics n,nl = n - 1 are right-polarized and the harmonics 
n ,n l=n+  1 are left-polarized. It was noted in $2 that for 
q = l  the transverse orbit is transformed into an ellipse, and 
for the special initial conditions k= lql the length of the mi- 
nor axis of the ellipse is equal to zero, i.e., we have plane 
transverse oscillations. In antiresonance (q = 1) the frequen- 
cies of the harmonics of order n,nl = n +  1 are the same as 
the frequencies of the harmonics of order n + 1 ,n ' = n. If, 
moreover, we have k = 1 q 1 the spectral and angular distribu- 
tion of the emission energy along the undulator axis (30) can 
be written in the form 

The emission in this case is linearly polarized in the xz-plane 
of the transverse oscillations. Equation (32) is the same as 
the analogous one for the case of emission in a plane undu- 
lator with a sinusoidal field (see, e.g., Ref. 11); this is due to 
the plane harmonic transverse oscillations with a frequency 
wJ2=ww in the two cases compared here. 

4.3 Dipole radiation 

If the angle through which the electron is deflected by 
the field (2) is significantly smaller than the effective emis- 
sion angle lIE, i.e., if the inequalities uoE& 1, pll 1 + ql G 1 
are satisfied, the arguments of all the Bessel functions in (24) 
are small compared to unity. We can therefore neglect the 
retardation of the radiation field within the region of the 
finite motion of the electron around the uniformly moving 
(with velocity (u,)) center, and the emission therefore has a 
dipole character. In the dipole limit the nonvanishing Fourier 
components of the current (24) have the form 
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In this limit only the first undulator harmonic (n = 1, nl=O) 
and the first cyclotron harmonic (n =0, n '= 1) are emitted. 
The partial spectral and angular density of the emission en- 
ergy W,,I for these harmonics can be written in the rela- 
tively simple form 

The dipole emission of the cyclotron harmonic (35) vanishes 
if the initial conditions are such that voy=O, 
vox=pl[E( 1 + q)], i.e., k=O [see also (30)l. On the other 
hand, if the electron enters parallel to the undulator axis (in 
which case we have vex= voy = 0)  the maxima of the spectral 
and angular density of the emission of the undulator and 
cyclotron harmonics are equal in magnitude. It follows from 
(34) that in the dipole approximation the effect of the longi- 
tudinal magnetic field on the emission of the undulator har- 
monic is reduced to the appearance of the denominator 
(l+q)2 in (34), which decreases the spectral and angular 
density for q>O or q<-2 but increases it for -2<q<0. The 
longitudinal magnetic field also affects the position of the 
center of the emission line due to the presence of the same 
denominator in the expression for bO. Although the quantity 
[pl( l  +q)12 is small, in the dipole limit this shift can be 
comparable with the line width of the emission. 

5. AMPLIFICATION COEFFICIENT AND EFFICIENCY OF THE 
TRANSFORMATION OF THE ELECTRON ENERGY 

So far we have considered the theory of the spontaneous 
emission by electrons in the field (2). We can find the char- 
acteristics of the stimulated emission, when there is not only 
an electron beam but also a source of external radiation in 
the undulator, starting from the results of $3 for the charac- 
teristics of the spontaneous emission. In particular, if we as- 
sume the amplification to be relatively weak and neglect the 
feedback of the stimulated emission on the dynamics of the 
electron beam the amplification coefficient G,,! at a fre- 
quency close to the frequency w,I,,l~ of one of the harmonics 
can be written (see, e.g., Ref. 12) 

Here I is the electron current, S is the electron beam cross- 
section, X=27~lo is the wavelength of the radiation, A@ is 
the difference between the values of the phase shift @ [see 
(25)] for stimulated emission and absorption of a photon by 
an electron when one takes into account quantum correc- 
tions, which can be found using the conservation laws in a 
quanta1 discussion of the processes, and W,,! is the partial 
emission energy of the nn' harmonic. 

From a quantum point of view the state of an electron in 
the field (2) is characterized by the energy E(p, ,v) which 
depends on the longitudinal quasimomentum p, and the 
quantum number v which corresponds to the finite transverse 
motion of the electron in the longitudinal magnetic field. 
Because of the translational symmetry of the field (2) along 
the z-axis the longitudinal quasimomentum p, is conserved 
in the emission (absorption) process, apart from a quantity 
which is a multiple of 27r/hW, where A, is the translation 
period (period of the spiral undulator). The energy and qua- 
simomentum conservation laws when an electron makes a 
transition from a state (p:) ,di)) with energy Ei to a state 
(p!f ) , df )) with energy Ef ,  emitting (upper sign) or absorb- 
ing (lower sign) a photon with energy o and longitudinal 
momentum k, can be written in the form 

Here we put fi=rn=c= 1 ,  AE=Ef-Ei, ~ p , = p ~ ~  )-p:) 
and n is an integer corresponding to the multiplicity of the 
longitudinal momentum transferred to the field. In the quasi- 
classical limit the relative change in the quantum numbers 
in the electron transition is small, so that we can restrict 
ourselves to a few basic terms of the series expansion of 
AE 

We then use the Bohr-Sommerfeld correspondence prin- 
ciple: 

where (v,), o,, and n'  are the classical quantities intro- 
duced earlier: the average longitudinal velocity, the cyclotron 
frequency, and the number of the cyclotron harmonic, re- 
spectively. Taking also into account that in the ultrarelativis- 
tic case the relation kz=w(l - @/2)+no, is satisfied we can 
use (37) to (39) to obtain 
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where the quantity on the left-hand side of the equation is the 
phase shift, taking into account quantum corrections. Hence 
follows an expression for the difference in the quantum cor- 
rections to A@ for emission and absorption 

We next consider the case of amplification at the first 
undulator harmonic (n = 1, n =0) when radiation with right- 
handed circular polarization propagates along the undulator 
axis (8=0). Using Eqs. (31), (36), and (40) we find the am- 
plification coefficient 

Here we have used the notation lo=mc3/e, y=~ l rnc2 ,  and 
N =  LIX, is the number of undulator periods, 

In what follows we assume k= Iql, i.e., initially the electron 
is on a circular undulator orbit. One sees easily that for 
k= l q l  = O  Eq. (41) is the same as the well known result for 
the usual spiral undulator (see, e.g., Ref. 13). The function 
f (5) has a maximum for er= - 1.30 with a magnitude equal 
to 0.54. The amplification coefficient is positive in the range 
-.rr<&O which includes the principal maximum. We study 
the amplification coefficient (41) as a function of the magni- 
tude of the longitudinal magnetic field strength H ,  , assum- 
ing the other parameters to be fixed. Since the ratio 
q =  w,/w, is proportional to H, it is more convenient to 
study the q-dependence of GIo. We introduce the notation 
F (q )= ( l  +q2)l(1+q)2, and the value go corresponding to 
the center of the spontaneous emission line with wavelength 
A is then determined by the equation 

The analytical form of the function F(q) yields the relation 
F(q)=  F( l lq) ,  so that there are, in general, two values q t )  
and qi2)= llqbl) satisfying Eq. (43) and in what follows it is 
sufficient to choose qil) from the range IqL1)I<1. We can 
rewrite the variable 6 in the form 

The dependence of the amplification coefficient (41) on the 
quantity q>O for an undulator with a number of periods 
equal to N=50 and a parameter p = l  for different q t )  cor- 
responding to different radiation wavelengths in (43) is 
shown in Fig. 3. If q t )  is much smaller than unity one ob- 
serves essentially a single principal maximum. As q t )  in- 
creases this maximum broadens and approaches the antireso- 
nance point q = l .  At the same time another maximum 

FIG. 3. The amplification coefficient G ,o at the first harmonic of an undu- 
lator with a number N=50 of periods and a parameter p= 1 as a function of 
the ratio q of the cyclotron frequency w~ to the undulator frequency ow. 
The curves correspond to different values of qo from (43): 1: qo=O.l; 2: 
qo=0.5; 3: qo=0.6; 4: qo=0.65; 5: q0=0.7; 6: qo=0.8. As the unit in which 
Glo  is measured we use the value G =  ( I I I ~ ) A ~ ' ~ A ~ ~ N ~ / S .  

appears above the antiresonance point. These maxima are, 
generally speaking, separated by a dip at the antiresonance 
point. However, as q!) increases (and qi2) correspondingly 
decreases) the maxima approach one another and broaden, as 
a result of which the dip in the antiresonance region ulti- 
mately is replaced by a maximum the magnitude of which 
gradually decreases as qil) approaches unity. The width of 
the principal maxima is determined by the inequalities 

where we have Fo = F(qo) . In the region O<q < 1 the behav- 
ior of F(q) is well approximated by the formula F(q) 
= 1 - q and in the region 1 <q 5 5  by the formula F(q) =0.5 
+ 0.056(q - 1 ). Hence we get the following estimate for the 
width of the maxima: 

For small p 2 e 1  these widths are inversely proportional to 
N~~ and the absolute width of the maximum which lies 
above the antiresonance point is much larger than the width 
of the maximum below the antiresonance point, as long as 
these maxima do not overlap. 

In the region of negative q corresponding to electrons 
rotating in the same sense in the spiral field and in the 
uniform longitudinal field the derivative F r (q )  of the func- 
tion F(q)  is relatively large, F r (q )  = 2(~7-  1 ) / ( I  +q)', 
which is connected with the presence of a resonance at the 
point q = - I .  As a result the maxima in the negative q re- 
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on which the considerations in the present paper are based no 
significant increase in the efficiency is observed when the 
sense of rotation of electrons in the spiral field is opposite to 
that in the longitudinal field. 

FIG. 4. The quantity G ,o as a function of the electron energy E in a mono- 
chromatic beam. Along the abscissa is plotted the difference E-Eo divided 
by Eo (in percent), where Eo is the energy corresponding to the center of the 
spontaneous emission line. The curves are constructed for the following 
pairs of parameters p and qo=q(Eo): I: p=  1.415, qo=O; 2: p=0.082, 
go=- 1.213; 3: p=0.253, qo= - 1.455; 4: p=0.644, qo= - 1.760. 

gion, according to Eq. (45), are found to be relatively narrow 
and are always separated by a relatively broad dip. 

We now consider the behavior of the amplification coef- 
ficient as a function of the deviation of the electron energy E 
from the value Eo corresponding to the center of the sponta- 
neous emission line. Since q is inversely proportional to the 
energy we can write y in (42) in the form y=qO/q, where go 
corresponds to the value of q for E=Eo. As a result the 
variable 5 can be written in the form 

where we have q=qoEo/E.  The dependence of the amplifi- 
cation coefficient G,o on the relative shift in energy 
(E-Eo)IEo for an undulator with N=50 is illustrated by a 
series of graphs in Fig. 4, each of which corresponds to well 
defined values of go and the parameter p of the undulator. If 
there is no longitudinal field (q=O) the width of the curve 1 
is determined by the quantity 1 / 2 ~ - - - - 1 0 - ~ .  However, in rela- 
tively strong longitudinal fields corresponding to q < - 1 the 
width of the curves increases and the values of the amplifi- 
cation coefficient then remain relatively high. This means 
that the requirement of an electron beam energy spread is 
weakened. If, however, we consider a spread in the electron 
energy as the result of energy losses to stimulated emission, 
the width of the curves in Fig. 4 determines a possible effi- 
ciency of the transformation of the electron energy into ra- 
diative energy. The efficiency can thus be enhanced if q<O 
holds, i.e., if the direction of the longitudinal field corre- 
sponds to pumping of the transverse oscillations. However, 
we noted earlier that when the field is in the opposite direc- 
tion (q>O), the function F ( q )  depends very little on q ( E )  
and the width of curves such as those shown in Fig. 4 re- 
mains practically unchanged relative to the usual spiral un- 
clulator, q =0, since it is basically determined by the factor 
( q ~ q ~ ) ~  in Eq. (46). Therefore, in the linear approxin~ation 

CONCLUDING REMARKS 

We have shown in the present paper that the transverse 
motion of relativistic electrons in a spiral undulator in the 
presence of an additional longitudinal field is characterized 
in the general case by two frequencies, the frequency wp of 
the radial oscillations and the precession frequency a. They 
are linearly connected with the undulator frequency w,,, and 
the relativistic cyclotron frequency w,. This enabled us to 
obtain relatively simple expressions for the spectral and an- 
gular energy distribution of the spontaneous emission and the 
amplification coefficient. The method can be applied also in 
the more complicated case when the emission occurs not in 
an open space but in a waveguide, e.g., in the experiment of 
Ref. 3 with millimeter radiation. However, in the case of a 
waveguide it is necessary to use the results obtained when 
the radiation field is expanded in waveguide modes instead 
of Eqs. (17) and (18), which correspond to the expansion of 
the radiation field in free cylindrical waves. In that case the 
possible radiation frequencies are determined as before by 
the equation 5,,l(w,k,) =0 [see (23)] in which now the fre- 
quency w and the z-component of the wavevector are con- 
nected by the dispersion relation corresponding to a well 
defined waveguide mode. 

The analysis of the amplification coefficient at the basic 
undulator harmonic, given above, shows the possible exist- 
ence of a dip in the vicinity of the antiresonance (q= 1), 
which may serve as an explanation of the corresponding dip 
in the power of the stimulated emission observed in the ex- 
periment of Ref. 3. Moreover, the linear theory does not a 
significantly increase the efficiency with which the electron 
energy is transformed into radiative energy for positive val- 
ues of q ,  as observed in the experiment. This apparent con- 
tradiction may be explained by the influence of nonlinear 
effects, in particular, the dependence of the field of a real 
undulator on the transverse coordinates, which was neglected 
in our calculations. A numerical simulation6 of the experi- 
ment of Ref. 3 showed that the field variations decrease the 
efficiency relative to the idealized case of a uniform field. 
However, the effect of the inhomogeneity decreases with in- 
creasing q ,  since the transverse orbits shrink in that case, as 
we showed above. This behavior of the orbits may serve as a 
qualitative explanation of the relative increase in the effi- 
ciency for q>O. The corresponding quantitative theory is 
connected with going beyond the framework of the approxi- 
mation for the undulator field which was used in the present 
paper. 

Since the relativistic cyclotron frequency w,, decreases 
with electron energy, small values q 4  1 are characteristic for 
relatively high energies EP 1 (since values q=l would cor- 
respond to values of the longitudinal field strength which are 
too high). In that case ( y e  I )  the main difference between the 
amplification coefficient Eq. (41) ant1 the an~plification co- 
efficient in the i~sual spiral undulator is the shift of the reso- 
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nance, which is determined by the quantity p 2 ~ ( q )  
= p 2 (  1 - 2q) in Eq. (42) for 5. The dependence of the reso- 
nance on the longitudinal field can in principle be used to 
enhance the efficiency of an undulator when the parameter p 
is not too small if one uses a field whose strength gradually 
increases along the undulator axis to compensate for the de- 
crease in in (42) due to radiation losses. 
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