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We find the transition amplitude for one version of the Keldysh-Faisal-Reiss model in the pA 
gauge by summing over periods of a laser pulse. Calculating the contribution of an 
individual period provides a simple, transparent picture of the quantum transition. Specifically, 
ionization in the tunneling regime can be viewed as a Landau-Zener transition from a 
bound state to a continuum state characterized by a definite momentum and time-dependent 
energy. The latter is equal to the kinetic energy of a classical electron in an electromagnetic field. 
We estimate the spectral width of photoelectrons in strong short laser pulses. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

The model of ionization proposed by Keldyshl in 1964 
has been actively exploited now for more than 30 years to 
treat the physics of the interaction of matter with strong elec- 
tromagnetic fields. An attractive feature of the model is that 
it incorporates effects of a strong field without recourse to 
perturbation theory while retaining a simple analytic form. In 
a broad sense, the Keldysh model subsumes the theory in 
which a nonrelativistic Volkov solution is the final state in 
the quantum transition amplitude between a bound state and 
the continuum. In the Western literature, it is often called the 
Keldysh-Faisal-Reiss model. Its present status and its var- 
ied applications have been described in a number of recent 
publications.2'3 

To a certain extent, the model's simplicity derives from 
the assumed constancy of the envelope of the oscillating la- 
ser field. This assumption makes it possible to expand the 
periodic factor in Fourier series and integrate over time in the 
expression for the transition amplitude. As a result, the am- 
plitude ends up being proportional to an infinite sum of S 
functions that express energy conservation for each harmonic 
component. Standard calculations then yield the transition 
rate (transition probability per unit time) per unit solid angle, 
which is equal to a sum of partial transition rates for the 
individual harmonic components. 

Some remarks are in order concerning this computa- 
tional scheme. In the tunneling limit, the many partial con- 
tributions are of comparable magnitude, and observables are 
determined by sums over a large number of harmonics. In 
general, the need to allow for a multitude of terms in a series 
suggests an inappropriate choice of expansion basis (a Fou- 
rier basis in the present instance). In the tunneling limit, an 
alternative picture of ionization, in which an electron tunnels 
through an oscillating potential barrier, provides a simpler, 
more transparent description. 

The idea of an oscillating potential barrier can be intro- 
duced into the theory when the variable electric field can be 
described by a scalar potential. If we are using a vector po- 
tential, then no oscillating barrier enters directly into the cal- 
culations. Nevertheless, such a barrier is still referred to, 
serving as a qualitative explanation of the fact that in the 

tunneling limit, the ionization probability in a variable field 
is proportional to the penetrability of the static barrier. 

The boundary of the continuum shifts by the mean value 
of the electron's oscillatory energy, due to energy conserva- 
tion in the Fourier harmonics. The major role played by the 
shift in the formation of the photoelectron spectrum has been 
the subject of a great many multiphoton-based studies of 
above-threshold ionizatiom2 In the tunneling limit, however, 
the continuum shift becomes enormous-much greater than 
the ionization potential of the free atom-and interpretation 
becomes difficult. 

The effect of a variable field envelope on ionization is a 
problem of high interest, as current experiments involve laser 
pulses that are so strong and so short that the mean oscilla- 
tory energy varies by the full magnitude of the photon energy 
during a single optical period. Problems arise even at a lesser 
rate of field growth. For example, as long as the intensity 
(and thus the mean oscillatory energy) is fixed, energy con- 
servation during a transition induced by the nth harmonic 
will relate the number of the harmonic to the energy of the 
photoelectron. As soon as we have a nonstationary field, 
uniqueness is lost: the electron has the same kinetic energy 
regardless of whether it is produced in photon channel n or 
( n  f I ) ,  as long as the mean oscillatory energy differs by the 
photon energy.4 Similar problems arise when one considers 
nonlinear Compton scattering in a focused field.5 

2. STATEMENT OF THE PROBLEM 

The point of departure for our calculations is the set of 
standard expressions for the Keldysh-Faisal-Reiss (KFR) 
model in the pA gauge. The field strength F of a laser pulse 
of width t- is assumed to vary smoothly, and to vanish at 
infinite times in the past and future. According to the KFR 
model, throughout the time the field acts, the transition am- 
plitude between the initial free-atom state $i with potential I 
and the final free-electron state with momentum p and en- 
ergy p2/2 can be written" 
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Here ~$~(p )  is the initial bound-state wave function in the 
momentum representation, and W(t) is the interaction en- 
ergy of the electron with the laser field, 

We take the electron charge to be e =  - I ,  and use atomic 
units ?i = m = 1. The field is assumed to be circularly polar- 
ized, and to be given in the dipole approximation by the 
vector potential 

A(t) = (Flw)(cos wt,sin wt,O). (3) 

We consider ionization by a low-frequency (@<I) field in 
the tunneling regime, for which the Keldysh parameter is 
y= o&ilF< 1. The mean oscillatory energy u = F2/2w2 is 
then automatically greater than the photon energy, and the 
strong-field parameter for the free electron is 
z = ~ ~ 1 2  w3 > 1. In other words, typical energies in this prob- 
lem are 

Finally, we assume that F<F,= (21)"~, i.e., that the laser 
field is weaker than the atomic field. 

3. SUMMATION OVER PERIODS 

The infinite integral in the expression (1) for the transi- 
tion amplitude can be written as a sum of integrals over a 
sequence of periods separated at wt, = 2 n-n (integer n): 

The phases l;l(tn) are identical with the exponents in (1) at 
time t, , and the contribution of one period is 

The electron velocity, canonical momentum p, and vector 
potential A(t) are related by 

which makes it possible to bring the phase of the integrand in 
(6) to the form 

in which ep(t) is the time-dependent kinetic energy of the 
electron in the electromagnetic field: 

Taking note of (8), if we move the integration contour in (6) 
to the complex plane, we obtain (to within a multiplicative 
factor) the transition an~plitude for the adiabatic Landau- 
Dykhne theory.2 

The phases in (5) satisfy the recurrence relation 

where for a complete phase excursion over a period we have 
introduced the convenient notation q,(21rl W) = 21rv,. Bn 
and v, depend on the number of the period by way of the 
field strength F =  F,(t,+ t). 

We can easily sum over period numbers in two cases. 
First of all, consider the case of F =const assuming a laser 
pulse consisting of N periods. From (8), 

.=L(f+I+ w 2 u) .  

Now B and v are independent of n ,  and using (lo), the sum 
in (5) reduces to a geometric progression. Dropping the com- 
mon phase factor, we have6 

sin ( I ~ N  V) 

M(p)=B(p) sin (sv) . 

For large N, the ratio of sines in (12) can be replaced by 
S(v- k) with arbitrary integer k. It is clear from (1 1) that we 
then have a relation identical with the energy conservation 
law for the kth harmonic in the conventional approach to 
Fourier expansion, and the transition amplitude (5) becomes 
a sum over quasienergy harmonics, 

With energy conservation borne in mind, the contribution of 
one period of B (p) can be expressed in terms of Bessel func- 
tions. Thus, in a monochromatic field with constant enve- 
lope, the two numerical techniques-dividing up the time 
interval, expansion in harmonics-lead to the same result. 

Note that in the time-domain approach, the transition 
amplitude to a state with momentum p that satisfies the en- 
ergy conservation law is a coherent sum of contributions 
from all periods in the laser pulse. Clearly, the conservation 
of energy in a time-dependent but monochromatic field is in 
fact a coherence condition. If the pulse does not satisfy this 
condition, interfering terms of the various periods will cancel 
one another. 

In the opposite limit, we have completely incoherent 
contributions from the various periods. The transition prob- 
ability to a state with momentum p, computed for the full 
duration of the laser pulse, reduces to a sum of incoherent 
contributions from all periods, 

Here, the energy conservation law does not come up. In the 
absence of saturation, the probability is proportional to the 
pulse width (the number of significant terms in the sum). 

Contributions from neighboring periods will be incoher- 
ent if the phase assigned to the period 27rv, differs by a 
quantity of order unity between the two neighbors, 
Su= u,,+, - v,,- 1. Since Su- u / w 2 ~ ,  the mean oscillatory 
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energy should rise in an optical period to something of the 
order of the laser photon energy. The criterion for total inco- 
herence can also be written in the form 

i.e., the strong-field parameter z must be at least of the order 
of the number of optical periods in the laser pulse. It is worth 
noting that this criterion does not depend on the electron 
energy or ionization potential, and it will hold under condi- 
tions that are not at all exotic, especially in the infrared. For 
example, a C02 laser with intensity 1014 w/cm2 will have 
z- lo4, and according to (15), the pulse need be no more 
than 100 ps wide. The criterion (15) and the requirement 
F<F, constrain the field from opposite directions, and they 
are compatible if o r<(21/o)~ .  For COz emission and 
I =  13.6 eV, the condition holds down to pulse widths of 
some tenths of a nanosecond. 

4. QUANTUM TUNNELING IONIZATION TRANSITION 

We now discuss the contribution of a single period to the 
transition amplitude. By virtue of (4), the exponential in the 
integrand of (6) oscillates rapidly, in general, but the oscilla- 
tions are unevenly distributed over a period, The time depen- 
dence of the kinetic energy modulates the instantaneous fre- 
quency of oscillation, which equals the derivative of the 
phase. With A(t)lc=pF(t), we can write the latter in the 
form 

The transverse component of the velocity (in the plane of 
polarization) comprises the constant mean momentum p, 
and the field component pF(t), which has invariant length 
pF= Flw and rotates uniformly at the field frequency o. The 
kinetic energy reaches a minimum once per period, when the 
spin angular momentum is directed opposite the mean. The 
neighborhood of that point makes the main contribution to 
the transition amplitude into a state of given momentum. 

If we consider the full momentum spectrum, we find that 
the absolute minimum of the oscillation frequency, which is 
equal to the ionization potential I ,  is attained at momenta 
with p,=O, arbitrary direction in the plane of polarization, 
and p, = p F ,  whereupon the transverse velocity can vanish. 
These are precisely the momenta at which the photoelectron 
spectrum peaks in a circular field. 

Near a kinetic energy minimum, o t =  v+ or' and 
o t ' 4  1. Here we can expand (16), retaining the quadratic 
term: 

ep(t)+I=A+ $PIPF(~t ' )2 .  (17) 

The minimum oscillation frequency is 

Substituting (17) into (6) and extending the limits of integra- 
tion to '-t m, the contribution due to a single period becomes 

where the argument of the Airy function is 

FIG. 1.  Quantum transition from level I to a continuum state with p,=O, 
p, =pF . and kinetic energy (solid curve) ~ ~ ( t )  for the case in which the 
mean oscillatory energy (dashed curve) is Ul l=  9. Then y= 113, the mean 
kinetic energy is 18 I, and the peak kinetic energy is 36 I. Vertical arrows 
mark the range in which the transition actually takes place. 

At 9% 1, we can employ the asymptotic expansion 

The properties of the photoelectron spectrum stemming from 
(19)-(21) are discussed in the next section. 

The principal contribution to the integral (6) comes from 
the time interval to over which the transition rate varies from 
a minimum value A to a quantity of order A .  This interval 
can be viewed as the duration of the quantum transition. 
When (4) holds-all the more so, when the inequalities are 
sharp-the frequency of oscillations near the spectral peak 
varies widely over the course of a period, from values of 
order U to a minimum 14 U .  The time to is therefore a small 
fraction of the field period, and the quantum transition is a 
rapid one. Assuming that p, -p, and A - I  in (17), we find 
to = &?IF. The duration of the quantum transition is thus 
identical to the tunneling time through a potential barrier, 
and coto= y equals the standard Keldysh parameter. 

These calculations give rise to the simple and transparent 
physical model of ionization sketched out in Fig. 1. Ioniza- 
tion by a strong low-frequency field in the tunneling regime 
( y  < 1) is fast, confined to the duration of the quantum 
transition from the energy level I of the initial bound state to 
a continuum state characterized by quantum number p and 
time-dependent energy E &t) = mv2(t)/2. This picture is 
analogous to an electronic transition between time-dependent 
molecular terms. The Landau-Zener quantum transition 
scheme also holds in a linearly polarized field. Only the time 
dependence of the kinetic energy changes: in contrast to Fig. 
1, it has two minima per period for nonzero momentum. 

Viewed from the perspective of the current study, con- 
firmations of the classical ionization model: in which the 
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electron is instantaneously ejected from the atom and has 
nonzero velocity at that instant, determine the position of the 
peak in the photoelectron spectrum. 

Formally, the instantaneous frequency of oscillations 
(16) is modulated because of the cross term in the expression 
for v2(t), which is a periodic function of time. A Fourier 
expansion "blurs" the effects of the cancellation of kinetic 
energy terms over many harmonics, and clouds the physical 
picture. For the cancellation to be evident, it is also impor- 
tant to preserve the term. 

5. THE SPECTRUM FOR SHORT PULSES 

We can find the momentum distribution of photoelec- 
trons for the tunneling regime of ionization by a strong low- 
frequency field in the constant-envelope case by substituting 
(19) into (13) and calculating the transition rate in the usual 
manner. The resulting expressions agree with previously de- 
rived results for this limit-results obtained in a different 
way. For example, the Airy function in (19) and in Ref. 8 
agree if we set p, =pF in the denominator of (20) and take 
I= 112. A tunneling spectrum proportional to the exponential 
in (21) was obtained in Ref. 9 for the ionization of atoms. 
For circular polarization, the energy spectrum peaks at 
E = & F  with a width9 

Note that this expression actually determines the spectral 
width if the position of the peak remains fixed. 

Let us consider the energy spectrum in a strong field 
with a variable envelope when (15) holds, and the probabil- 
ity is calculated according to (14). The energy dependence of 
the contribution made by the nth period to (19) is the same 
as in a field with constant amplitude F,. Variations in the 
amplitude of the field from period to period not only change 
the width (22), they also shift the position of the peak. After 
summing over all periods, the resulting distribution can be- 
come substantially wider if the displacement of the peak dur- 
ing the pulse duration exceeds the width of the original dis- 
tribution by one period. 

In a laser pulse with peak field F(O), the position of the 
peak B ranges from o to E ~ ( o ) = F ~ ( o ) / ~ w ~ .  ~t would be 
incorrect, however, to consider this quantity to be the spec- 
tral width. It must be borne in mind that the probability, 
which is proportional to exp[-2Fa/3F(tn)], decreases rapidly 
as the field drops. The probability will be comparable to the 
peak value only as long as the field remains within 
6 ~ -  F2(0)lF, of F(0). This much of a variation in the field 
shifts the peak by approximately 

If the ratio of the width (22) to the displacement (23) is less 
than unity, 

the spectral width will be determined by the displacement of 
the peak, and it will then be greater than in a field of constant 
amplitude. The ratio (24) is to be calculated at F= F(0). If 
ionization is saturated, then the field F(0) in (23) and (24) is 
taken to be the saturation field. For o=O.l eV and 
I= 13.6 eV, (24) holds when yC0.15. 

6. CONCLUSION 

The present calculation demonstrates that tunneling ion- 
ization in the Keldysh-Faisal-Reiss model can incontrovert- 
ibly be considered a Landau-Zener transition from a bound 
state to a continuum state with definite momentum and vary- 
ing energy, the latter being the kinetic energy of a classical 
electron in an electromagnetic field. A time-domain approach 
(with no Fourier expansions) to the ionization calculation 
and the consequent transparent interpretation of the quantum 
transition can provide the basis for new modifications of the 
Keldysh-Faisal-Reiss model that take account of the Cou- 
lomb field influence on the final state. One task of paramount 
importance that was not considered in the present work is an 
investigation of the multiphoton regime in short pulses. From 
an experimental standpoint, it would be interesting to exam- 
ine the spectral width in the tunneling regime more closely. 

The author thanks N. B. Delone, V. P., Krainov, and S. L. 
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