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The exact steady-state solution of the problem of optical pumping of the transitions j,= j - +  je= j  
where j  is a half-integer, where and j ,  and j ,  are the angular momenta of the ground (g )  
and excited (e) states, is found for light of arbitrary intensity and ellipticity. The properties of the 
obtained solution are investigated. Finally, the conditions for weak and strong saturation of 
the transition are established as functions of the ellipticity of the field. O 1995 American Institute 
of Physics. 

1. INTRODUCTION 

Problems related to resonant interaction of polarized 
light and atoms occupy a central place in atomic physics. 
Generally, this interaction involves exchange of energy, mo- 
mentum, and angular momentum between field and atoms. 
We can usually ignore momentum transfer from light to at- 
oms, however, and focus only on the redistribution of atoms 
among the Zeeman sublevels of degenerate energy levels 
caused by light-induced and spontaneous transitions. Among 
the various problems concerned with optical pumping of 
Zeeman sublevels the most interesting situation occurs when 
one level is the ground level. In this case light-induced an- 
isotropy is long-lived and makes it possible to gather infor- 
mation about very weak interactions, which is important for 
many applications, such as high-resolution spectroscopy, 
magneto-optics, and laser cooling of atoms. Since the prob- 
lem of optical pumping of the degenerate ground state re- 
quires simultaneous study of light-induced and spontaneous 
processes, the generalized optical Bloch equations (quantum 
transport equations) for the atomic density matrix are used to 
describe the medium.' Depending on the light intensity and 
the time it takes the atoms to interact with the field, two 
limiting cases can be specified: 

1. The intensity and interaction time are so small that the 
redistribution of atoms among the sublevels can be taken into 
account by perturbation techniques. Earlier Akul'shin et ~ 1 . ~  
applied the method of irreducible tensor operators293 to this 
case to obtain the solution of the corresponding Bloch equa- 
tions for a field of arbitrary ellipticity and for arbitrary Zee- 
man and hyperfine structures of the levels interacting with 
the field. 

2. The interaction time is so long that perturbation theory 
becomes inapplicable and one must find the steady-state so- 
lution of the Bloch equations corresponding to the interac- 
tion of the atoms with an elliptically polarized plane wave. 
The usual restriction is to consider only two degenerate 
atomic levels whose total population is conserved (a closed 
optical transition). The present paper is devoted to this case. 

Finding the steady-state solution of Bloch equations in ana- 
lytical form for a field of arbitrary ellipticity and for arbitrary 

angular momenta of the ground and excited states is a com- 
plex mathematical problem because of the large number of 
equations. 

At present the exact steady-state solution is known for 
two types of closed optical transitions: j ,  = j-+ je = j  - 1 and 
j ,  = j l -+  je= j 1  with j 1  an integer, where j ,  and j ,  are the 
angular momenta of the ground (g) and excited (e) states. 
For such transitions, as follows from Ref. 5, in the process of 
optical pumping the atoms accumulate in the so-called co- 
herent population-trapping states I t,bO), which do not interact 
with the field. These are superpositions of the wave functions 
of the Zeeman sublevels of the ground state and satisfy the 
equation CE-D(t,bo)=~, where (CE-D= - (GE) is the 
operator of the interaction of light and atoms in the electrodi- 
pole approximation (i is the dipole-moment operator). The 
steady-state density matrix is constructed from such states 
l *o). 

The steady-state solution of the optical Bloch equations 
for other types of optical transitions, j,= j - t  j e=  j +  1 and 
jg = j"-+ j ,  = j" with jN a half-integer, has been found for the 
particular cases of linear and circular polarizations of the 

The steady-state solution for light of arbitrary ellip- 
ticity has been found only for cases with moderate values of 
j ,  and j ,  (see Refs. 7 and 9-11). 

In this paper we find the steady-state solution of the 
problem of optical pumping of the closed transition 
j,= j-+ je= j ,  where j  is a half-integer, for light of arbitrary 
intensity and ellipticity. The solution has a number of inter- 
esting properties: 

1. The atoms are distributed isotropically among the 
Zeeman sublevels of the excited state, i.e., the populations of 
all the sublevels are the same and there is no coherence be- 
tween them at any intensity of the pump field. The aniso- 
tropic properties of the medium are determined here by the 
distribution of atoms among the Zeeman sublevels of the 
ground state, which are populated nonuniformly, and the co- 
herence is nonzero. 

2. At intensities so high that the transition becomes satu- 
rated the distribution of the populations of the ground state 
also becomes isotropic. However, the value of the saturation 
intensity strongly depends on the ellipticity of the light field. 
For instance, when the light is circularly polarized, coherent 
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trapping of populations occurs and saturation never sets in, 
no matter how high the intensity. 

2. STATEMENT OF THE PROBLEM 

Let us examine the resonant interaction of atoms whose 
ground and excited states form a closed optical transition, 
jg = j-+ je= j, with j a half-integer, and an elliptically polar- 
ized plane wave 

where e is the unit complex-valued field-polarization vector, 
and the e4 are its components in the cyclic basis 
{e, ; q =0,+ 1). The quantum transport equation describing 
the evolution of the density matrix of atoms in the external 
field (1) in the Wigner representation without recoil effects 
taken into account has the general form 

where v is the velocity of an atom, H, is the HamiItonian of 
a free atom in the center-of-mass reference frame, and the 
operator fib} describes the radiative relation of atoms. In 
the basis of the Zeeman wave functions {Igp)}  and 
{le,p)} of, respectively, the ground and excited states 
( p  = - j ,  - j + 1; - , j ) ,  the density matrix b can be parti- 
tioned into four (2 j + 1)-by-(2j + I )matrix blocks b g g ,  
bee, p ,  and p e :  

Here jgg and Gee have the meaning of the density matrices of 
the ground and excited states, respectively. The off-diagonal 
elements 6'8 and fige describe the optical coherence between 
the ground and excited states. Separating the rapid and slow 
dependence on time and position in the components j e g  and 
ige ,  

beg=exp[- i (o t  - kr)]pg, 

bge =exp[i(wt - kr) ] ;~~,  (3) 

and using the rotating wave approximation, we obtain from 
Eq. (2) the following system of generalized Bloch equations 
for the slow components of the density matrix: 

Here S= ( w  - we,- k.v) is the displacement from resonance 
allowing for the Doppler shift, o,, = (E , -  E,)lti is the tran- 
sition frequency, y- '  is the radiative lifetime of the excited 
state, = - ~~(e l Id l /g) l f i  is the effective Rabi frequency, 
and (eJJdJJg) is the reduced matrix element of the dipole 
moment. According to the Wigner-Eckart theorem,'* the 
matrix elements of Q are expressed in terms of the 
3 jm-symbols as follows: 

For closed optical transitions of the form j, = j-t j, = j the 
operator for the atoms to reach the ground state owing to 
spontaneous emission, %bee}, has the standard form (see, 
e.g., Ref. 1) 

The steady-state solution of the system of equations (4)-(8) 
can be found from the condition 

Equations (4) and (5) make it possible to express the off- 
diagonal elements of 6eg and ;,' in terms of the density 
matrices bgg and Gee: 

Substituting these equations into (6) and (7), we arrive at a 
closed system of matrix equations for the steady-state bgg 

and ge: 

where 

is the saturation parameter. 

(13) 
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Note that in reality atoms reach the steady state if the 
following conditions for the field-atom interaction time are 
met: 

3. THE EXACT STEADY-STATE SOLUTION 

3.1 The solution in the general case 

Before finding the solution of the system of equations 
(12), we note an important property of the incoming operator 
Kjee}, If we put the unit matrix i= 1 8yrtll instead of in 
(lo), the well-known rules of summation for 3jm-symbols 
(see, e.g., Ref. 12) yield 

= y6,,1. (14) 

Thus we find 

+{i} = yi, (15) 

which is true for all closed transitions of the form 
jg= j+ je= j. From the physical point of view this property 
follows from the fact that relaxation processes are isotropic. 
Note that for transitions of type j, = j+ j, = j 2 1 this prop- 
erty (15) is modified in the following way: 

where jg and ? are, respectively, (2 jg+ 1 )-by-(2 j,+ 1 ) and 
(2 j, + 1 )-by-(2 j, + 1 ) unit matrices. 

We can now write the exact solution of the system of 
equations (12): 

Direct substitution into (12) with allowance for (15) clearly 
shows that (16) satisfies the system (12) identically. The con- 
stant p can be found from the normalization condition (8): 

Substitution of (16) into (11) yields the following expres- 
sions for ieg and i g e :  

The solution (16) implies that the density matrix of the ex- 
cited state, ;"" is isotropic (;", a i )  for all field intensities 
and polarizations, which is quite unexpected. Here the Zee- 
man sublevels of the ground state are populated uniformly 
and the coherence between them is generally finite. Note that 
for the transitions j, = j+ j,= j-t 1 and j,= j-+ j, = j with j 
an integer, the matrix V is singular, so that the inverses 

FIG. 1.  The coordinate system suggested in Ref. 13 in which the z axis (the 
quantization axis) is directed along the axis of one of the cylinders built on 
the polarization ellipse e (the dashed lines stand for the second cylinder) and 
they axis is directed along the minor semiaxis of the polarization ellipse. In 
this basis the vector e is a superposition of the linear component and one of 
the circular components [see Eq. (19)]. 

c-' and (ct)- '  do not exist. Consequently, the solution 
(16)-(18) exists only for the transition j, = j-+ j, = j ,  where 
j is a half-integer. 

As the solution (16)-(18) shows, the matrix elements of 
b can be expressed in terms of the matrix elements of the 
inverse matrices c-', ( c t ) - l ,  and ( c t ~ ) - l = ~ - ' ( ~ t ) - ' .  
To calculate these we select the system of coordinates sug- 
gested in Ref. 13. As is well known, an arbitrary ellipse is the 
intersection of a cylinder and a plane, so that with each el- 
liptical polarization vector e there can be associated a cylin- 
der (generally there are two), and the given ellipse e  is the 
intersection of this cylinder. We direct the quantization axis 
(the z axis) along the axis of this cylinder and the y axis 
along the minor semiaxis of the polarization ellipse (Fig. 1). 
The angle 6 between the z axis and the wave vector k satis- 
fies the relationship 

?I- ?I- 
cos t9= +-tan s ,  - 4 s ~ <  - 

4 '  

where E is the ellipticity angle, whose value is defined so that 
[tan sl is equal to the ratio of the minor semiaxis of the 
polarization ellipse to the major semiaxis. Then, as the re- 
sults of Ref. 13 imply, the elliptical polarization e  is the 
superposition of the linear component and one circular com- 
ponent: 

e= J m e o  + fi sin E e+ I 

For the sake of convenience we select 

e= J a e O +  \/Z sin s e + ,  . 

The light-induced transitions corresponding to (20) are 
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p+p'-2v 
( j  2 I )  ( sin E ) 1 

- 
cos(2e) v=-j Jw 7 FIG. 2. The diagram representing light-induced (solid lines) and spontane- 

ous (wavy lines) transitions in the system of coordinates depicted in Fig. 1 
with the vector e specified by (20). 

depicted in Fig. 2. In this case the matrix ? is real and has 
lower triangular form with two nonzero diagonals: 

To calculate the constant p in (17) we must find the trace of 
(fit?)-', which value, as (24) implies, is 

~r ( ( f i++)-  1) 

where, in accordance with (9) and (20). 

sin E 
v I ) =  - - dGGGm. 

J j ( j +  l P j +  1) j - n  v+n 
1 ( j + a ) ( j - a +  1)  

A,= c -z n , v=-j v a = v + ~  a2 The inverse of the matrix also has lower triangular form 
and is real. Direct calculation of its matrix elements yields 

Here, as usual, I ! !  stands for the product of all even (odd) 
numbers up to 1 inclusive, with 0!!=1. Note that 
~ r { ( C ~ f ) - ' )  is an invariant, i.e., its value does not depend 
on the choice of the system of coordinates. 

- - j ( j + ) ( j + )  ( sine ) " "  - 1 Jm J pf 

3.2. The particular cases of linear and circular polarizations 

Let us now examine two particular cases most often en- 
countered in nature: linear and circular polarization of the 
field. 

1. Linear polarization (E = 0). Substituting E = 0 into 
(24) and (25) yields 

Here we have introduced the following notation: 

Since in the chosen basis is real, (c t ) - I  is obtained from 
Q 1  by transposition, i.e., [ ( C i ) ' l P P t  =[?- '],I,. NOW 
we can easily write the matrix elements of (vtv)-l: 
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FIG. 3. Illustration of the steady-state solution for the case of circular po- 
larization e=e+ , , when the atoms accumulate in states of the field marked 
by an * (such states do not interact with the field). 

2. Circular polariurtion (161 = $T). In this case /3= 0 
and the inverse matrices c- ', (qt)-  ', and ( c t c ) -  ' do not 
exist. However, the atomic density matrix can be determined 
by passing to the limit E-+ + ~ 1 4 :  

Thus, because of optical pumping by circularly polarized at- 
oms of arbitrary intensity the atoms accumulate in the coher- 
ent population-trapping state Jg , j )  and cease to interact with 
the field (Fig. 3). 

Note that the results of Sec. 3.2 coincide with those of Refs. 
6-8 and are given here for the sake of completeness. 

3.3. The conditions for weak and strong saturation 

We now find the conditions for weak and strong satura- 
tion of the transition as functions of the field intensity and 
ellipticity. 

1. When the saturation of the transition is weak, the ratio 
of the total population of the excited state to that of the 
ground state is much smaller than unity, i.e., 

which is equivalent to the condition 

In this case we can ignore the unit matrix j in the expression 
(16) for i g g  and write 

S ( c t e ) - l  
P- < I ,  p= 

~ r { ( f ? f )  - I }  ~ r { ( P f )  - I} . 
(29) 

As Eq. (25) shows, in the limiting case where the polariza- 
tion of the linear is close to linear (lsl=O and I sin < I )  the 
condition (28) assumes the form 

In the other limiting case where the polarization of the field 
is close to circular (]el = 7r14 and c o s ( 2 ~ ) e  1) we have 

S[2 C O S ( ~ & ) ] ~ ~ + '  
4 1. 

2 j ( j+  1 
(31) 

2. Strong saturation corresponds to the total populations 
of the excited and ground states becoming practically equal, 
Tr{iee}l Tr{bgg}= 1, and the condition becomes 

In this case the term (e tp) - ' s - '  in (16) can be ignored, 
i.e., 

Thus, in the strong-saturation region specified by (32) the 
atomic density matrix becomes completely isotropic and the 
populations of the ground and excited states become practi- 
cally the same. In the limiting case where the polarization of 
the field is close to linear (I E 1 = O  and I sin l), the 
condition (32) assumes the form 

In the other limiting case where the polarization of the field 
is close to circular (]el= d 4  and cos(2e)el) we have 

We see that when the polarization of the field is close to 
circular, strong saturation sets in only for extremely high 
field intensities, since cos(2e)el. In the case of circular po- 
larization ( e =  2 ~ 1 4  and cos(213)=0), where the matrix 
f is singular, the condition (35) cannot be met no matter how 
high the intensity of the field. 

4. CONCLUSION 

We have found the exact steady-state solution of the 
problem of optical pumping of transitions jg= j- je= j with 
j a half-integer, which, as any exact solution of a quantum 
mechanical problem, is of interest from the fundamental 
point of view. It can also be used in various applications 
related to the interaction of atoms with polarized radiation. 
Below we give examples of such applications: 

1. Averaging the velocity distribution of the atomic en- 
semble, we can easily use (18) to build the nonlinear dielec- 
tric susceptibility tensor and study the propagation of an el- 
liptically polarized plane wave in a gaseous medium. 

2. The solution (16) can be employed in polarization 
spectroscopy in a situation where the pump field is strong 
and the probe field weak. 
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3. If we assume that the atomic velocity v is zero and 
introduce a coordinate dependence in (1) for the amplitude 
Eo(r) and the polarization vector e(r), the solution (16) also 
becomes spatially nonuniform, with both S and ? depending 
on r. The solution can then be used to calculate the gradient 
force, the force of friction, and the diffusion coefficient in the 
quasiclassical description of the translational motion of slow 
atoms in a nonuniform monochromatic field. Note that 
~ l e k s e e v ' ~  used a perturbation-theory technique to obtain an 
expression for the radiative force that allows for the nonuni- 
formity in the initial distribution of atoms among the Zeeman 
sublevels. 

There are several other applications of the steady-state 
solution (16). 

Combining the results of the present work and those of 
Ref. 5, we can claim to have found the exact steady-state 
solutions for closed j, = j - t  j ,  = j  - 1 and j, = j- t  j ,  = j  op- 
tical transitions for arbitrary values of j. Hence in general 
only the exact solution of transitions of type 
j ,  = j t  j ,  = j  + 1 remains unknown. 
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