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We present the results of an analytical solution of the nonlinear equations for the propagation of 
an ultrashort intense laser pulse through a medium described by the density matrix for two- 
level systems with coherent stimulated Raman self-scattering. The pulse is assumed to be much 
shorter than the oscillation period in the Raman transition and the relaxation times. At 
certain intensities of the pulse high-order harmonic generation becomes possible. We express the 
spectrum of such a pulse in terms of integrals of the initial field strength. We also study 
the dynamics of the harmonic spectrum as a function of the pulse intensity with allowance for 
propagation effects. Finally, we estimate the efficiency for conversion of the initial 
radiation into high-order harmonics. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The recent rapid development of laser systems capable 
of producing pulses of a fairly high intensity in the femto- 
second rangelv2 has made it possible to study new nonlinear 
processes in the interaction of electromagnetic radiation with 
matter. One manifestation of such interaction of interest from 
the scientific and application viewpoints is the generation of 
high-order harmonics. Here the experimental spectra of the 
harmonics are in sharp contrast with the results obtained by 
perturbation-theory Hence in this field of re- 
search there is now great interest in obtaining exact solutions 
for different models of the interaction of the electromagnetic 
field with matter. 

Generation of odd harmonics up to the eleventh is ob- 
served even at low intensities (- 10" W ~ m - ~ ;  see Ref. 5). 
The transition to subpicosecond pulses made it possible to 
substantially raise the intensity at which gas breakdown oc- 
curs and to observe the generation of higher-order harmon- 
ics: the 31st,6 the 109th:, the lllth,' and the 143rd2. A de- 
tailed bibliography of the experimental work in this field is 
contained in Refs. 9 and 10. 

A possible theoretical interpretation of high-order har- 
monic generation in such experiments is usually linked to 
above-threshold ionization of atoms caused by multiphoton 
transitions and the subsequent one-photon transition to the 
ground state or an adjacent state, which leads to emission of 
a hard photon whose energy is approximately the sum of the 
energies of the n absorbed photons.'L-19 These studies usu- 
ally use the monatomic approximation (this approach can be 
called nonlinear Thomson scattering on a bound electron), 
i.e., do not allow for coherent multiparticle response of the 
medium and also use propagation effects; the latter, as noted 
in Refs. 20 and 21, lead to the strongest nonlinear effects 
when intense laser pulses interact with matter. 

At the same time it is known that an effective mecha- 
nism of nonlinear spectrum conversion is stimulated Raman 
scattering (SRS), which may involve the vibrational 
states20.22,23 and the purely electronic ~tates.~"~"n ul- 

trashort pulse satisfying the condition T,,< l / b Z ,  where T,, is 

the pulse length, and h a  = e2 - E ,  is the energy difference of 
the levels participating in SRS, propagates in the medium 
under the condition of so-called combination resonance. If 
the above condition is met, the pulse contains an infinite 
number of frequency components comparable in amplitude 
and satisfying the combination resonance condition, which 
leads to effective stimulated Rarnan self-scattering (SRSS) of 
these components.' And since the relaxation times of the 
oscillators participating in Raman scattering can be consid- 
erably longer than r,, the scattering processes occur in a 
coherent mode. In this case several phenomena may occur: 
2 T-pulses of self-induced transparency?2 spectral supercon- 
tinuum optical "re~tification,"~~ and, at certain 
threshold intensities, efficient generation of high-order 
harmonics.29 

We studied harmonic generation by numerically solving 
the system of nonlinear partial differential equations describ- 
ing processes in SRSS conditions. However, if 
rp4  1/a, T I ,  T2, where T1 and T2 are the times of longi- 
tudinal and transverse relaxation, respectively, these equa- 
tions can be solved analytically. The analytical approach 
makes it possible not only to check the numerical results but 
also to study the emission spectra of the harmonics in any 
frequency range, which is generally impossible in the nu- 
merical approach because of restrictions imposed on the ac- 
curacy of calculations and the finiteness of the calculation 
time. In this paper we examine a theoretical emission spec- 
trum generated by an ultrashort pulse of laser radiation with 
an arbitrary envelope in the passage through a Raman-active 
medium under the conditions specified earlier. 

2. THE BASIC EQUATIONS 

We investigate the one-dimensional problem of the 
propagation of a pulse through a medium in SRS conditions. 
The electric field of the pulse is polarized along the x axis, 
and the wave propagates parallel to the z axis. The dynamics 
of the field is described by the nonlinear wave equation 

210 JETP 81 (2), August 1995 1063-7761/95/080210-08$10.00 O 1995 American Institute of Physics 210 



and the material equations (the model of two-level 
systems20-23~3") 

dQ dp+P-Po a, E2-, - = -  
dt TI fin Jt 

where E is the electric field strength in the wave, c is the 
speed of light, Q is the normal coordinate of an oscillator, 
a= (e2 - el)/fi is the oscillator transition frequency, TI and 
T2 are the phenomenological longitudinal and transverse re- 
laxation times, p= n2 - nl  is the normalized difference in 
level populations (p  = - 1 corresponds to the situation where 
all the oscillators are on the lower level), a,= (daldQ)Q=o 
is the derivative of the polarizability with respect to the nor- 
mal coordinate at zero, P = PI + P ,  is the total polarization of 
the medium consisting of the linear (PI) and nonlinear 
(P,= Na,QE) parts, N is the oscillator number density, and 
m is the reduced mass. 

To obtain an analytical solution and calculate the spectra, 
we examine the case of purely coherent scattering?6 i.e., 
when the pulse length T, is much shorter than both relax- 
ation times and the vibration oscillator period. In this case 
the above system of equations reduces to a single nonlinear 
equation, 28 

where 

Z) fin 
Y=- J2hnm' P=2nNPo - C a,,/;. 

and v is the velocity due to the linear part of the polarization. 
The quantity P-I has the dimensions of length and can be 
considered the Raman scattering length. As in Ref. 26, we 
assume that the wave propagating in the direction opposite to 
the direction of propagation of the primary laser radiation is 
considerably smaller in amplitude than the one propagating 
in the direction of the primary radiation. We paid special 
attention to this problem when studying the equations nu- 
merically with the direct and reverse waves taken into ac- 
count. We found that at $ ( z , w ) = 2 ~ 1  ( I  = 1,2,3;..) the 
energy of the reverse wave is lower than that of the direct 
wave by five to six orders of magnitude. 

The initial conditions here are as follows: the medium is 
in the region z>0 and initially is not perturbed (the latter is 
taken into account in deriving (4)). At z=0 the input pulse is 
fixed, E(t,z = 0) = Eo(t), and, generally, is of an arbitrary 
shape, the only restriction being that Eo(t)+O as t--+ + m .  

3. SOLUTION OF THE EQUATIONS AND THE PULSE 
SPECTRA 

For the independent variables we take 5=P 
X (koz- oot)  and T= o0t  (wO is the carrier frequency of the 
laser pulse and ko is the wave vector; in the new variables 
oo= 1). We then return to the old notation in the equations, 
which should not lead to any misunderstanding. In the new 
variables Eq. (4) has the following form: 

Equation (5) clearly shows that $(t,z) satisfies a closed 
equation (only # is present in the equation). To derive this 
equation it is sufficient to multiply Eq. (5) by E  and integrate 
both sides with respect to time from -w to t using the defi- 
nition of $: 

Let us examine the properties of @(t,z) as a function o f t  in 
greater detail. 

1. For all values of z the function $(t,z) is a nonde- 
creasing function of t. 

2. Since E(t,z) is an oscillating function of t, the time 
derivative of $ vanishes at the zeros (toi) of the field E(t,z). 
However, the second time derivative of $ also vanishes at 
these points, i.e., in the neighborhood of such a point the 
function $ can be written as 

3. Items 1 and 2 imply that $ has an inverse function 
t=t($,z) for every value of z in the interval from -03  to 
+m, since between the zeros the function # monotonically 
increases and hence has a unique inverse, while in the neigh- 
borhood of a zero it has a unique inverse in the real domain 
in view of item 2. 

This behavior of $ makes it possible to go over to a set of 
new variables in Eq. (5), 

After this we can write Eq. (5) as follows: 

dE a+ dE -A+-=-- aE "]' sin $(z,t1)dtr 
d$ dz dz dJ/ dt -a 

+ E  sin $(z,t). (7) 

Combining this with Eq. (6), we get 

dE dE 
-(1 -cos #)+ -=E sin $(z,t). + dz 

Thus, the nonlinear equation (5) has been reduced to a 
linear equation thanks to the above transformations. The so- 
lution of the new equation can be found in the standard 
way3' and has the form 

where 4 is an arbitrary function. 
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The form of this function can be found from the condi- 
tions at z = 0. Then 

where u = cot($/2), and to is the inverse of 

To determine E in the temporal region we must obtain 
the function $(t,z) defined by Eq. (6). In solving this equa- 
tion we again take $ for the independent variable and t for 
the dependent variable, which can always be done in view of 
the properties of #(t,z) discussed above. Then, if we knew 
$(t,z), we would have the identity t=  t($ (t,z),z), which 
could be differentiated and hence 

Using these equalities and the initial condition that 
$(t,z)-40 as t t - m ,  we obtain 

Finding the $-derivative of both sides of this equation and 
introducing the notation 

we arrive at the linear equation 

The solution of this equation is sought in the same form 
as in the previous case, and it has the form 

where 4, is an arbitrary function determined from the con- 
ditions at z = 0. We then have 

4 1 

f= (1 - cos *)2 (1 +s(cot(*,2)+z)2)2 

Combining this with the definition off, we obtain 

The expressions (10) and (16) determine the solution of Eq. 
(5) in parametric form. Without specifying the shape of the 
initial pulse it is impossible to obtain an explicit expression 
for the solution of Eq. (5) as a function of r and z. More than 

that, for the majority of realistic cases even knowing the 
shape of the initial pulse does not allow the function 

to be found explicitly. 
However, the complex-valued Fourier spectrum of the 

signal can be expressed in terms of an integral of the initial 
field E0(7). 

By definition, 

Substituting into this equation the values of E and t from 
Eqs. (10) and (16) and performing time-consuming but oth- 
erwise simple transformations of the integrand involving 
transformations to other integration variables, we obtain 

where 

If we take the case z 4  1, then to within a linear term we have 

which coincides with the spectrum of the solution obtained if 
Eq. (5) is solved by the method of successive approxima- 
tions. Thus, Eqs. (17) and (18) provide a clear picture of the 
spectrum of the solution in terms of integrals of the initial 
pulse. It appears, however, that for realistic shapes of the 
initial signal these integrals cannot be expressed analytically, 
while numerically they can easily be calculated. 

4. ANALYTICAL SPECTRA IN THE SIMPLEST CASES 

Case 1. The initial pulse is specified on the interval 
(- t, ,t,) by the function 

Eo(T)= -Ao sign (T), 

where 2tm is the length of the pulse, and A. is the pulse 
amplitude. In this case all the integrals can be evaluated ex- 
plicitly and the complex-valued spectrum of the signal is 

where w2= y ~ i ,  t = z  J i T & i / w 2 ,  J, , (x)  is the Bessel 
function, and 
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The above formula shows that the spectrum of the pulse is 
continuous with peaks lying near the zeros of the denomina- 
tor; the frequency of such a peak is 

Thus, the spectrum contains quasiharmonics of frequency 
w2 that shift toward the red region as the signal moves 
deeper into the medium. 

Case 2. Now we take a more realistic initial pulse, speci- 
fied on the same interval by the function 

E(r)=Ao sin r. (22) 

The complex-valued spectrum of the signal can be ex- 
pressed as 

+ ( ~ / 2 ) ~ + , ] ) s i n ~  d r ,  (23) 

where 

For 

with k an integer, and if s periods of the field oscillations fit 
into one pulse, then w2= kls. 

The function @, can be calculated via the standard series 
expansion32 

exp(iz sin @)= n=-OD 2 J,(z)exp(in@) (24) 

and is specified by the following expression: 

To illustrate the theoretical spectrum we limit ourselves 
to the case of w 6 10, z S  0.5, and w2S 1. Then the complex- 
valued spectrum of the system is 

FIG. 1. Dynamics of the pulse power spectrum 
(a rectangular envelope) as a function of the ra- 
tio of the frequency to the frequency of the h i -  
tial pulse in the passage of  the pulse through the 
Raman-active medium. Here W is the power of 
a harmonic, A,, is the amplitude of the initial 
signal, 7,=2, k = 8 ,  (a) z=0.1, (b) z=0.25, (c) 
z=0.5, (d) z= 1.0. 
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where 

Thus, we again have a quasiharmonic spectrum whose 
peaks lie close to the zeros of the denominators; the frequen- 
cies of the quasiharmonics are 

In this case the frequencies of the quasiharmonics are 
labeled by two integers L and M, where L refers to the carrier 
frequency of the laser radiation and M to the frequency 
w2= k l s  = t,bo / r p  , where $,,= yJ"_~i(r) d r .  The charac- 
teristic feature of this case, as in the previous case, is the 
shift of the quasiharmonic frequencies toward the red region 
as the signal moves deeper into the medium. 

5. NUMERICAL ESTIMATES OF THE SPECTRA 

Using Eqs. (17) and (19), we can easily calculate the 
laser pulse spectrum for any distance and any shape of the 
pulse as the pulse travels through the nonlinear Raman- 
active medium. The results of such calculations are presented 
in diagrammatic form for different values of z and 
k =  yJ"_dr E;(T)/~.T~. 

Here we do not give numerical estimates of the spectrum 
of the signal described by the equation E(T) = sgn T because 
the structure of the spectrum is clear from the exact analyti- 
cal expression (20). We limit ourselves to the spectra of 
pulses whose envelopes are rectangular and Gaussian. 

1. Rectangular envelope. The shape of the signal is 
specified by the equation Eo=Ao sin r. The results of spec- 
trum calculations are shown in Fig. 1 for r,, = 2 and k = 8 at 
z  = 0.1, 0.25,0.5, and 1 .O. The peaks in the spectrum usually 
correspond to the odd harmonics of the camer frequency. 

An analysis of the other cases shows that as k grows the 
harmonic spectrum acquires a plateau with small maxima; 
the plateau shifts to higher frequencies as k grows. The high- 
harmonic generation efficiency (the ratio of the power at the 
peak of the harmonic to that in the first harmonic) increases 
with k. At z= 1.0 and k =  16 the efficiency of conversion into 
the first harmonic is v= 

2. Gaussian envelope. More interesting from the practi- 
cal viewpoint is the case of a pulse with a Gaussian enve- 
lope, 

~ ~ ( 7 )   ex ex^{- ( r / ~ ~ ) ~ ) s i n ~  

(in what follows r,, is expressed in fractions of the period of 
the laser carrier frequency). 

Figure 2 displays the dynamics of the spectrum as a 
function of z  for rp = 2 and k=8 at z  = 0.1, 0.25,0.5, and 1 .O. 
The quasiharmonics are clearly visible in the spectrum. The 
efficiency of conversion into the 31st harmonic is at 
z= 0.25, at z= 0.5, and 2.OX at z= 1.0. Clearly, 
as the pulse travels through the Raman-active medium, the 
pulse gets "enriched" with high-order harmonics. 

The dynamics of the spectrum of a Gaussian pulse at 
fixed z=0.5 and rp= 2 and different energies k of the input 
pulse is demonstrated by Fig. 3. For k = l  the spectrum re- 
sembles a superc~ntinuurn~~ and effective generation of har- 
monics begins as k grows, with the conversion efficiency 
increasing with k. 

An analysis of the results of numerous calculations dem- 
onstrates the possibility of generating high-order harmonics 
by the above mechanism with a fairly high efficiency. For 
instance, harmonics close to the 30th can be generated with 
an efficiency of to depending on the length and 
intensity of the pulse and on z. 

The general structure of the spectrum for high harmonics 
is shown in Fig. 4 (at k = 8 and rp= 2). The spectrum 
clearly exhibits a band nature, with each band consisting of 
discrete quasiharmonics differing little in amplitude. An es- 
timate of the conversion efficiency of this emission mecha- 
nism in the 100-200 A wavelength range shows that for the 
harmonics of the frequency of a Ti:sapphire laser it is 
5.0X 1 0 - ~ - 5 . 0 ~  which is of the same order of magni- 
tude or higher than the conversion efficiency of an x-ray 
laser.33 For laser radiation in the water "window" (-40 A) 
with the same pump laser the conversion efficiency is 
10-~-10-', and the mechanism can be used for practical 
generation of pulses of coherent radiation in this wavelength 
range. 

6. CONCLUSION 

We have obtained an analytical solution of the problem 
of propagation of a short intense laser pulse through a 
Raman- active medium on the assumption that the medium is 
described by the model of two-level systems and that the 
pulse length is much shorter than the oscillation period and 
the transverse and longitudinal relaxation times. On the basis 
of this solution the spectrum of the pulse is expressed in 
terms of integrals of the electric field of the initial pulse. The 
representation obtained makes it possible to analyze the gen- 
eral structure of the spectrum. Generally, the spectrum con- 
tains many peaks, which can be interpreted as the contribu- 
tion of the quasiharmonics present in the pulse that 
propagates through the medium; the energy of the quasihar- 
rnonics depends both on the properties of the medium and on 
the length, shape, and intensity of the pulse. At low intensi- 
ties (rjlg = 2 ~ )  the spectrum resembles a supercontinuum, 
while at higher intensities peaks corresponding to quasihar- 
monics emerge, and the height of these peaks grows both in 
absolute value (the conversion efficiency increases) and rela- 
tive to the continuous background. The quasiharmonic fre- 
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FIG. 2. As in Fig. 1 ,  but with a pulse having a 
Gaussian envelope. 

FIG. 3. The power spectrum as a function of the 
intensity of the initial pulse ((a) k= I .  (b) 
k = 4, (c) k= 8, and (d) k= 12) for a pulse with a 
Gaussian envelope with T,= 2 at z = 0.5. 
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FIG. 4. m e  spectrum structure over a broad frequency range for a pulse 
with a Gaussian envelope: k = 8 and z = 0.5. 

quencies are specified by two integers (see Eq. (28)), one of 
which refers to the carrier frequency of the initial pulse and 
the other to a certain effective frequency proportional to the 
ratio of the total energy of the initial pulse to the pulse 
length. Although the latter was demonstrated for the case of 
a pulse with a rectangular envelope, one can expect that this 
is true for any short pulse. The height and width of the peaks 
in the spectrum change as the pulse propagates through the 
medium. For short paths, when the conversion efficiency is 
still moderate, odd harmonics of the carrier frequency are 
usually observed. 

The analytical solution enables estimating the behavior 
of the spectrum over a broad frequency range, which is dif- 
ficult or even impossible to do numerically. We have shown 
that the spectrum has a band nature, i.e., the heights of the 
peaks are modulated in magnitude (see Fig. 4). Studies of the 
spectra for different values of the parameter k, which char- 
acterizes the pulse energy, and for different pulse lengths 
allow us to estimate the efficiency of conversion of the initial 
radiation into various spectral ranges; for one thing, the 
emission of a Ti:sapphire laser can be converted into the 
100-200 A wavelength range with an efficiency of lop6- 
low5, which is of the same order of magnitude as in X-ray 
lasers in the same range. This means that the mechanism 
considered here is unquestionably of interest for generating 
short pulses of coherent soft X-ray radiation. 

Let us estimate the possible values of the parameters y 
and /3 for several realistic media. For instance, in benzene at 
the transition frequency ( R / 2 ~ c  = 992 cm- I ) ,  for the differ- 
ential forward SRS cross section ( i ~ = ( o ~ l c ) ~ ( h 1 2 r n R ) a ~ )  
we have a= 3 X cm2, and lIT2.rrc=2 cm-' (see Ref. 
30). Here for pulses with T,,= 10 fs the conditions 
r p < R - ' , ~ ,  ,T2 are met, and for N- 10" cmF3 and a pulse 
intensity lo- loL3 W cm-2 we have P- 1 cm- ' and 
$0- 2 T. Clearly, higher intensities and densities make it 
possible to shift to the range of parameters discussed in this 
paper. Note, however, that benzene is not quite suitable in 
representing the two-level system considered here because 
its spectrum has a multilevel nature, which makes it impos- 
sible to limit ourselves to the two-level approximation at 
high intensities of the initial pulse. 

The model can be appliecl with greater success to ions of 

inert gases. For instance, in the Ne' the two states in the 
structure of the ground level (2 P and p3/2) form a two- 
level system with a transition with R / ~ T c =  780.4 cm- ', 
which is parity-forbidden in the electrodipole approximation; 
all the other states are separated in frequency from those just 
mentioned by more than 2 X  1 6  cm-'. A similar pattern is 
observed in Ar+, Kr+, and Xe+ ions.34 We also note that in 
experiments with multiphoton ionization of Kr it was shown 
that laser pulses with an initial intensity of roughly 
1013 W cm-2 can effectively alter the populations of the 
states 'pIC! and 2 ~ 3 , 2  in ~ r +  (see Ref. 35). The situation is 
approximately the same with halogen atoms. Hence these 
gases can be used, for one thing, to study the generation of 
high-order harmonics by the mechanism elaborated in this 
paper- 
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