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The influence of the isotropic exchange interaction and slow atomic and molecular motions in a 
solid on the free-induction decays of the nuclear spins in a rotating reference frame with 
radio-frequency narrowing of the NMR lines by magic angle spinning is considered. The 
Anderson-Weiss approach [P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 
(1953); P. W. Anderson, J. Phys. Soc. Jpn. 9,316 (1954)l is employed. It is shown that under 
conditions such that the contribution of a two-spin interaction to the precession frequency 
can be described by a Gaussian random process, the contribution of a three-spin effective 
interaction is described by two independent Gaussian random processes, one of which is 
taken quadratically. A Gaussian-Gaussian process is used to describe the exchange narrowing, 
and a Gaussian-Markovian process is used to describe the fluctuations of the local field 
at the selected spin due to the mobile spins, while the variation of the precession frequency of 
the subject spin as it moves is assigned by a purely discontinuous Markov process. 
Relations which replace the Anderson-Weiss equations are derived. The dependence of the 
transverse relaxation time in the rotating frame on the exchange integral or the mean frequency of 
atomic motions in three motion models is calculated. Differences between these dependences 
in systems with two- and three-spin interactions, as well as in the different motion 
models, are revealed. The theoretical temperature dependence of the transverse relaxation time in 
solid benzene is qualitatively consistent with the experimental dependence [A. E. Mefed 
and V. A. Atsarkin, Phys. Status Solidi A 93, K21 (1986)l. O 1995 American Institute of Physics. 

I. INTRODUCTION 

In the modem techniques of high-resolution nuclear 
magnetic resonance (NMR) in solids1 the dipole-dipole in- 
teraction, which is a primary factor in shaping broad absorp- 
tion lines in conventional NMR, is eliminated by a strong 
radio-frequency (rf) field. Under the new conditions the line 
shape or its Fourier transform, i.e., the free-induction decay 
(FID), is now determined by the weaker effective interaction 
obtained after averaging the processes occurring during the 
rapid oscillations caused by the action of the strong rf field. 
The Harniltonian of the effective interaction differs signifi- 
cantly from the original dipolar interaction. This is true of 
the Hamiltonian of the three-spin interaction when a continu- 
ous rf field is applied with magic angle and of 
the Hamiltonian of the four-spin interaction for the WHH-4 
multiple-pulse narrowing sequence.' The main features of 
FID's in a rotating frame in the case of a three-spin interac- 
tion were discussed in Refs. 4-7 for systems of stationary 
atoms (in a rigid lattice). The influence of the fluctuations of 
the spin precession frequency caused by the motion of the 
atoms and molecules in a solid or by an isotropic exchange 
interaction on such FID's was investigated in the present 
study. 

Information on the internal mobility is valuable for solid 
state physics on both the scientific and practical levels. NMR 
has proven itself as one of the most informative methods for 
studying it. In the modern techniques of high-resolution 
NMR in solids1 the possibility of manipulating a many- 

particle effective Hamiltonian provides a chance to signifi- 
cantly expand its possibilities when the finescale character- 
istics of slow atomic and molecular motions are studied. 
However, the theory needed to extract this information is still 
not available. In Ref. 8 we theoretically demonstrated the 
possibility of further motional narrowing of a high-resolution 
NMR line in a solid. This conclusion was confirmed by At- 
sarkin and ~hazanovich? but was questioned by other 
investigators.10 The debate was continued in Ref. 11, in 
which such cascade narrowing of a line in the NMR signal of 
solid benzene by an rf field under magic-angle-spinning con- 
ditions and then by molecular motions was observed. 

In solid benzene each spin has many neighbors; there- 
fore, the theoretical results obtained for a rotating two-spin 
system in Ref. 9 cannot be used. In Ref. 8 equations were 
derived for the WHH-4 multiple-pulse sequence in fairly 
rapid motion. In this paper a simple theoretical model, which 
is a generalization of the familiar Anderson-Weiss 
mode112.13 to the case of three-spin interactions, is proposed 
for the purpose of covering the entire range of motions down 
to a rigid lattice in the dense spin system of a solid. That 
model is based on the replacement of the real motion of a 
magnetic moment resulting from its interaction with many 
spins in its environment by its precession in a fluctuating 
one-component local magnetic field, whose time dependence 
is treated as a random process. A Gaussian-Gaussian process 
was chosen to describe the narrowing of an absorption line 
by an exchange interaction, while a Gaussian-Markovian or 
Markov process was chosen for motional narrowing. 
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The Anderson-Weiss approach was recently applied in 
Refs. 6 and 7 to a system with a three-spin effective interac- 
tion in a rigid lattice to explain the long-time exponential 
tails of FID's in a rotating frame. A Markovian random pro- 
cess was selected. It was theorized in Ref. 6 that the value of 
the precession frequency varies abruptly, while in Ref. 7 this 
variation was described as a continuous diffusion process. A 
function, which is the product of a Gaussian function and a 
third-degree polynomial, was proposed for the distribution 
density of the longitudinal local fields. The parameters of the 
distribution were determined from the second and third mo- 
ments of the NMR line shape in the rotating frame.5 Instead 
of such phenomenological use of the Anderson-Weiss 
model, the present paper treats this model on a microscopic 
level, which makes it possible to obtain all the necessary 
parameters and functions in a consistent manner. 

In the second section of this paper it is shown that in the 
case of a three-spin effective interaction and an exchange 
interaction the variation of the precession frequency with 
time is described in the Anderson-Weiss approximation by 
two independent Gaussian random processes, one of which is 
taken quadratically. Equations which replace the Anderson- 
Weiss equations in such systems are derived. The depen- 
dence of the spin temporal correlation functions on the pa- 
rameters of the fluctuating local field is studied. In the third 
section the precession frequency is represented by a Markov- 
ian random process, which describes the random motions of 
atoms and molecules. The dependence of the characteristic 
time of FID in the rotating frame (T2,) on the frequency of 
motion is calculated for three models. The theoretical tem- 
perature dependence of T2e is compared with experiment." 
Finally, the statistical properties of the new Gaussian contri- 
bution to the precession frequency is considered in Appendix 
A, and the exponential function of the quadratic Gaussian 
noise is averaged with a correlation function of arbitrary 
form in Appendix B. 

2. EXCHANGE NARROWING 

Let us consider a system of spins in a strong constant 
magnetic field Ho and a strong rf field with an amplitude 
H1 and a frequency o ,  which is close to the Larmor preces- 
sion frequency wo= yHo. In a frame rotating with a fre- 
quency o about the field Ho, an effective field of strength 
o, (in frequency units), which forms an angle 8 with the 
field Ho, acts on the spins: 

- S f ( S ~ S ~ + S ~ S ~ ) [ 4 b i j b j k -  bijbik]), (2.2) 

where bij= y2h(l - Oij is the angle between 
the internuclear vector rij and the constant magnetic field 
Ho, and {Sf ,Sr ,Sf) denotes the components of the vector 
operator of the spin at site i in a coordinate system with its z 
axis parallel to the effective field we. 

The relaxation of the component of the magnetization 
which is orthogonal to the effective field in a doubly rotating 
frame (the second rotation is about the effective field) is 
given by the spin temporal correlation function 

su=C sp, 
i 

where the time dependence of the operators is specified in 
the usual manner: 

Sa(r) = U(t)SffU- '(t), 

where T is the Dyson chronological ordering operator. The 
time dependence of the Hamiltonian in (2.4) is either a result 
of variation of the coupling constants bij due to the motions 
of the atoms or a result of variation of the spin orientations 
resulting from the isotropic exchange interaction 

Nuclear spin systems with an exchange interaction include, 
for example, solid 3 ~ e  (Ref. 14). 

In the general case the spin temporal correlation function 
(2.3) cannot be calculated exactly. A qualitative representa- 
tion can be obtained by following Refs. 12 and 13 and re- 
taining the interaction between the z components of the spins 
in the Hamiltonian (2.2). Then from (2.3) we find 

where 

The angle 8 and, thus, the form of the effective Hamiltonian 
can be varied by varying the amplitude and frequency of the 
rf field. The greatest narrowing of an NMR line in the rotat- 
ing frame is achieved at the magic value of the angle 8: 

at which the dipolar interaction is completely averaged by 
the strong rf field, and the interaction of the spins (S= 112) is 
described by the effective ~ami l ton i an~-~  

In (2.7) two constants a, and a 3  were introduced for conve- 
nience in the further transformations, although it follows 
from Hamiltonian (2.2) that a 2  = a 3  = B/2we . Expression 
(2.6) was obtained by taking into account the fundamental 
property of the raising operators S+ and the translational 
invariance of the crystal. The subscript 0 refers to one of the 
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spins of the system, whose precession is described by expres- 
sion (2.6). It is assumed that all the spins occupy equivalent 
sites in the crystal; therefore, we include an identical fre- 
quency shift w l  for all of them in o , .  The angle brackets 
denote averaging with respect to the random process. 

In this section we consider the exchange narrowing of an 
NMR line in the rotating frame. To describe it we assume 
that Sf in the expression for the precession frequency (2.7) is 
a classical variable, which varies randomly with time. We 
first focus on the thoroughly studied case of a two-spin di- 
polar interaction, in which the precession frequency is deter- 
mined by the projection of the local field on H o ,  

When there is a large number of neighbors, Anderson and 
weiss12 proposed representing the variation of the precession 
frequency with time by a Gaussian random process & t ) ,  i.e., 
h( t )  = t ( t ) ,  with the correlation function 

in the form of the Gaussian function 

Extending the Anderson-Weiss approximation to systems 
with the three-spin interaction (2.2), we note that the contri- 
bution w2 is expressed in terms of the square of the z com- 
ponent of the local field: 

Although the third contribution w 3 ( t )  is also quadratic with 
respect to the spin projections, it differs from w2 with respect 
to the position of the selected spin with the label 0, which is 
located on the end, rather than in the middle, of the chain of 
three coupled spins. 

Due to the special form of the last term in (2.7), to av- 
erage (2.6) it is not sufficient to specify the stochastic prop- 
erties of the local field as such. We must proceed further and 
ascertain the corresponding microscopic conditions imposed 
on the motion of the spins themselves. The analysis which 
we previously performed in Refs. 15 and 16 showed that a 
random local field whose fluctuations are caused by a two- 
spin interaction is Gaussian, if the correlation between the 
contributions of different spins to the local field is discarded. 
Since lattice sums having the form of loops of the interac- 
tions bij are responsible for the correlation in the power se- 
ries in time for the spin temporal correlation functions, such 
sums should be discarded. This can be achieved, for ex- 
ample, by considering spin systems in lattices of large di- 
mensionality d ,  for which the contribution of the lattice sums 
with loops become negligible in the limit d - t w  (Ref. 16) in 
comparison with the contribution of the lattice sums without 
loops, which have the form of trees. However, as the calcu- 
lations in Refs. 5 and 16 show, these contributions differ by 
a large factor even in real systems. 

We now proceed to the averaging of (2.6), for which we 
expand the exponential function in a series: 

We substitute the powers of the frequency (2.7) into the se- 
ries (2.12). For n = 2 we have three terms: 

Here the subscript 0 is fixed, and the summation is carried 
out over all the other site labels under the condition that the 
labels on each individual interaction constant are unequal; 
the averaging (. . .) now means taking the trace and dividing 
it by the total number of states. 

The difference between the contributions 0 3 ( t )  and 
wz( t )  with respect to the position of the subject spin at the 
end or in the middle of the chain of three coupled spins 
causes loops of interactions to unavoidably form when spins 
from w 3 ( t )  and 0 2 ( t )  are coupled. An illustration is pro- 
vided by expression (2.14). Loop formation can be avoided 
only when the spins in the product of 0 3 ( t )  contributions are 
coupled with one another and the spins in the product of 
0 2 ( t )  contributions are coupled with one another. Therefore, 
in the approximation under consideration, after the terms 
forming interaction loops are neglected in the time series, the 
two contributions to the precession frequency 0 3 ( t )  and 
w2( t )  become statistically independent, i.e., 

where 

V 2 ( t ) =  exp - ia2  w2(t1)dt'12 , i c  I) 
V 3 ( t ) =  exp - ia3  o 3 ( t ' ) d t 1  . ( I 6  I) 
Moreover, as is shown in Appendix A, in this approxi- 

mation w 3 ( t )  is a new Gaussian random process, and, there- 
fore, V 3 ( t )  is expressed by the Anderson-Weiss formula 

For g3(7)  we shall use the approximate expression (A3).  
A different result is obtained when V 2 ( t )  is averaged. In 

the product of 0 2 ( t )  contributions in the series (2.12) for 
(2.17), each of the two Gaussian variables in the square 
t 2 ( t , )  of one cofactor can be coupled with &tq)  from dif- 
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ferent cofactors. As a result, loops of different numbers of 
the correlation functions g(tp- tq) form (they should not be 
confused with the already discarded loops of the interactions 
bi j ) .  For example, a loop of n correlation functions is de- 
scribed by the expression 

- t3) ...g( t,,- t l)dtldt2dt3 ... dt,, . (2.21) 

Therefore, while [(t) breaks down during the averaging into 
a product of pair averages, ['(t) breaks down into a product 
of group averages in the form of loops described by (2.21). 
Thus, the result of averaging 02(t)  in the series (2.12) for 
V2(t) is the sum of every possible way of subdividing it with 
respect to loop length and number of loops. After summation 
of the series described in Appendix B, we obtain 

where 

and R(t,t is a solution of the equation 

Equations (2.22)-(2.24) make it possible to calculate the 
spin temporal correlation function for g(t) of arbitrary form. 
A special averaging method was developed for the special 
case of an Omstein-Uhlenbeck process, i.e., when 

@(t)=exp(-ffltl), (2.25) 

in Ref. 17. For our case we find 

v2(t) =[cosh(aat) + [ ( a 2 +  1 ) / 2 a ]  

x sinh(~&t)]-~'~exp[(a+ ia2)t/2], (2.26) 

where a= d l  +2 ia2 / a .  
For g (t) = 1 the expressions given for M + ( t) transform 

into the expression which we obtained in Ref. 5 

Following the Anderson-Weiss approach, we take g(t) 
in the form (2.10), and we determine the parameters a 2 ,  
a3 ,  and a from the moments. On the basis of expressions 
(2.16), (2.19), and (2.22) we have 

U ~ = M : ' ~ ,  a : = ~ ~ - M g ' ~ / 2 ,  

We found the moments appearing in (2.28) in Ref. 5 in the 
approximation of lattices of large dimensionality in the ab- 
sence of an exchange interaction [in Ref. 5 the term 75cs in 
expression (16) for MtD should be corrected to 78csI: 

FIG. 1. 'lime dependence of the absolute value of  the FID in the rotating 
frame (2.16) with g(t)= d(t)  and g,(t) = d2(r): solid lines--a2=0.95, 
a: = 0.55; dashed lines--a2 = 0, a:= 1. The numbers on the curves are the 
values of a l M z .  The time t is given in units of M; '". 

The isotropic exchange interaction (2.5) does not alter M2 
and M3, but it increases the fourth moment by MT. In the 
same approximation for M y  we find 

Equations (2.28)-(2.30) completely specify the parameters 
needed. In particular, when there is no exchange interaction 
and the fluctuations of the precession frequency are caused 
by the interaction between the transverse components of the 
spins in effective Hamiltonian (2.2), we have 

The solution of Eq. (2.24) and the integrals in (2.19) and 
in (2.23) were found numerically for various values of a. 
The results of the calculations are shown in Figs. 1 and 2. 
The parameter chosen to characterize the nonexponential de- 
cays obtained was Tze, which can be determined from the 
condition 

For comparison, Fig. 2 shows the dependence of Tze on a, 
which was found using Eqs. (2.19) and (2.26). According to 
the calculations, the value of T2, corresponding to 
a= 0. 12M2 is attained for a= a. = 0.1 Mil2. The decays cal- 
culated for these values of the parameters nearly coincided; 
therefore, when we take into account the mobility of the 
atoms in the next section, we shall use the simple expression 
(2.26) instead of the numerical solution of Eq. (2.24). 

One of the fundamental differences between the FID in 
the case of a three-spin interaction and the FID in the case of 
a two-spin interaction is the presence of an imaginary part, 
which attests to the time variation of the phase of the mag- 
netization vector in the doubly rotating frame. We discussed 
these features in detail in Ref. 5. Now, in our analysis of the 
narrowing of an NMR line in the rotating frame we are in- 
terested primarily in the behavior of the absolute value of the 
FID. 
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FIG. 2. Dependence of the transverse relaxation time T2c on the correlation 
frequency v, of the fluctuating local field for I M  + ( t )  1 with g( t )  = g( i )  and 
g, ( t )=g2(r)  for v , = ( ~ / 2 ) ' / ~ a  ( I )  and with g( t )=+( t )  and 
g3( t )=  +2(t)  for v ,=u' /~  (2 and 3)  ( I and 2--u2=0.95, a:=0.55; 3- 
az=O, a:= 1). The time T,, and the frequency v ,  are given in units of 
M X ' ~ ~ .  

Figure 1 shows the difference between the absolute 
value of an FID and the classical result from the Anderson- 
Weiss formula. In the total absence of field fluctuations, Eq. 
(2.27) coincides with a Gaussian function at short times. At 
later times the decay is observed to slow due to the replace- 
ment of the exponential function by a power function. At 
sufficiently late times the field fluctuations caused by the 
interaction between the transverse components of the spins 
in (2.2) slow both decays and convert them into exponential 
decays, as was observed in experimental FID's in the rotat- 
ing As is seen in Fig. 1, when a increases, expo- 
nential decay begins at shorter times. 

The exponential form of FID's in the rotating frame fol- 
lows from the equations obtained above when t2w* 1. First 
of all, for V3(t) from (2.19) we have the familiar result 

=exp(- t ~ i ( d a ) ' / ~ ) .  (2.33) 

This result is obtained for g( t)= 4( t )  given by (2.10). For 
g(t) = +(t) given by (2.25), a result coinciding with (2.33) is 
obtained when a= ( 2 ~ 1 ~ )  'I2. In this limit the cumulant se- 
ries (2.23) for V2(t) can be brought into the following form 
(see Appendix B): 

m 

~ , ( t )  = t 2 (.rrla)("- ')I2(- i ~ ~ ) " / 2 n ~ / ~ .  (2.34) 
n=2 

The first term coincides with the single cumulant in 
Anderson-Weiss formula (2.19) or (2.33) taken with 
a2=a3 .  The analogous series for g( t)= $(t) sums to 

With the relationship between a and 6 chosen, all the 
curves in Fig. 2 converge as v , + m .  

Thus, when there is a strong exchange interaction in sys- 
tems with a three-spin effective interaction, we obtain expo- 
nential FID's corresponding to a Lorentzian line shape. How- 
ever, the presence of the higher terms of the cumulant series 
results in a deviation from the Anderson-Weiss formula: a 
frequency shift appears, and the relationship between the 
width of the spectrum and the exchange integral changes. 

Besides the change in the form of the equations in the 
transition from systems with a two-spin interaction to sys- 
tems with a three-spin interaction, there is a twofold increase 
in the relative rate of variation of the precession frequency. 
This is seen from the replacement of g(t) with g2(t) which 
occurred in the precession frequency correlation function. 
This relation is obtained in an especially simple form for 
u2(t) on the basis of (2.7) and (2.8). 

The doubling of the rate occurred as a result of the fact that 
in the case of a two-spin interaction the precession frequency 
is linear in the spin variables, while in the case of a three- 
spin interaction it is quadratic. The increase which occurred 
in the rate of variation of the precession frequency has a 
significant effect on the spin dynamics of systems with a 
three-spin interaction, but it is still insufficient, if we look at 
the analogy to the dynamics of spins in a liquid discussed in 
Ref. 6. In the opinion of the authors of this analogy, it can be 
substantiated by the large number of nearest neighbors Z. 
The microscopic model theory devised above makes it pos- 
sible to elucidate the role of the large number of neighbors in 
the dynamics. When Z increases both the mean square of the 
precession frequency M2 oc z2 (2.29) and the higher mo- 
ments increase, but, according to our calculations, they in- 
crease in such a manner that the ratio M ~ ~ ( M ~ ) ~ ' ~  ceases to 
depend on Z for sufficiently large Z. Thus, the number of 
neighbors Z appears in the scaling factor for the frequency 
and the time, while the line shape or the FID ceases to de- 
pend on Z at 2% 1 and is determined by the form of the 
Hamiltonian. The disparate conclusion in Ref. 6 was drawn 
after the characteristic time of the variation of the precession 
frequency was compared, not with that frequency itself, but 
with the contribution to it from the interaction with one of 
the neighbors, which is Z times smaller. 

Closing this section, we note that the averaging per- 
formed above [see (2.22)-(2.24)] of an exponential function 
of the quadratic Gaussian noise with a correlation function of 
general form is of value in itself and may be useful in study- 
ing other phenomena'7 described by such noise in physics, 
chemistry, biology, etc. 

3. MOTIONAL NARROWING 

Let us now consider the influence of atomic and molecu- 
lar motions in a solid on FID's in the rotating frame. To 
perform the averaging in (2.6) we must concretize the mo- 
tion model and assign the characteristics of the random pro- 
cess. The atoms in a crystal can occupy only a definite set of 
sites, between which there are rare transitions, the lifetime in 
each site exceeding the transition time. Therefore, we assume 
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that changes in the position of atoms and the precession fre- 
quency occur abruptly and are described, as usual, by a Mar- 
kovian random process. We also assume that the probability 
of the new value which a random quantity takes after a ran- 
dom jump does not depend on the previous value and is 
determined only by the set of possible sites in the lattice. 
Such an approximation is often used in theor~r,6, '~-~~ since it 
makes it possible to easily obtain results which are in rela- 
tively good agreement with experiment. 

We shall analyze three typical motion models. 
1. Independent atomic motions with a dipolar coupling 

constant correlation function: 

where 117, is the mean jumping frequency of an atom. The 
diffusion of atoms may be included in this category. 

2. Simultaneously activated atomic motions, under 
which all the atoms in a certain region simultaneously 
change their positions: 

This occurs for the atoms in a single molecule when it un- 
dergoes rotation, as well as for the atoms in several mol- 
ecules when they rotate simultaneously.22 When a molecule 
rotates around a single axis, the dipolar interaction can be 
averaged only partially, i.e., a part b i j ,  which is invariant to 
motion, can be isolated in the dipolar coupling constant. The 
coupling constant correlation function under such motion is 
written in the form 

3. Independent rotation of different mo~ecules.~' In this 
case the coupling constant correlation function has the form 
(3.2) for atoms belonging to the same molecule and the form 
(3.1) for the atoms of other molecules. 

We begin the calculation of the FID (2.6) from the sec- 
ond motion model, assuming that the value of the precession 
frequency changes abruptly at arbitrary moments in time and 
does not vary between jumps. The probability density of the 
frequency values after a jump coincides with that in a rigid 
lattice. The averaging procedure for such a motion model has 
been described in many publications;6~18-20 therefore we 
present the result at once in the form of an integral equation 
for the function sought 

where M;(r) is the FID in the rigid-lattice limit, which we 
take in the form of the product of (2.19) and (2.26) when 
g(t) = $(t) and a= ( T O ,  taking into account the field fluctua- 
tions caused by the interaction between the transverse com- 
ponents of the spins in the effective Hamiltonian. 

It should be noted that in complicated crystals, for ex- 
ample, in benzene, the spins can occupy lattice sites with 
inequivalent environments, which differ with respect to the 
value of the lattice sums and, consequently, with respect to 
the value of M2 and other parameters in the equations ob- 

tained above. In this case, in the integrand in (3.4) we should 
sum the Mt j ( t )  for different sites after multiplying them by 
phase factors which take into account the frequency shift at 
each particular site: 

where M2dj=9Bi/4 is the second moment of the NMR line 
in the laboratory reference frame at the site of the jth spin. In 
the two-spin system studied in Ref. 9 M?,(t)= 1, and only 
the relaxation mechanism associated with variation of the 
frequency shift remains. Conversely, it is not the main 
mechanism in a dense multispin system with a large number 
of neighbors. For example, for the intramolecular interaction 
in benzene, which makes the main contribution to the spread 
of values, we have23 

(here (. ..), denotes the mean with respect to the orientations 
of the field Ho in the polycrystal). When the intermolecular 
interaction is taken into account, this ratio decreases further. 
Therefore, in this paper we shall not take into account 
MZd, and in the equations we shall use (MZd),, which can 
be measured experimentally, instead of MZd. For example, 
in solid benzene24 

where Mzh, is the intramolecular contribution to MZd, and 
M~~ is the second moment averaged over the fast rotational 
acts of the molecules. 

Now we turn to the first motion model. The jumps of 
atoms which create a local field at the subject spin and the 
jumps of the subject spin itself should be distinguished. Un- 
der the condition of a large number of neighbors, the jumps 
of the former spins cause virtually continuous variation of 
the field, and they will be taken into account in expressions 
(2.19) and (2.26) by means of the Gaussian field correlation 
function (2.25): 

while in the case of jumps of the selected spin, the environ- 
ment and, consequently, the entire local field as a whole 
changes. Here the value of the precession frequency is prac- 
tically independent of the former value. Therefore, the varia- 
tion of the precession frequency in response to such jumps 
satisfies the conditions of the second model, and its consid- 
eration is described by Eq. (3.34), in which, according to 
(3.6), a= a,+ 117, should be taken in expressions (2.19) and 
(2.26) for M: ( t) . 

Finally, if the third model of molecular rotation does not 
contain the part of the dipolar interaction which is invariant 
to the motion, this model can also be described by Eq. (3.4) 
when the Gaussian field correlation function is taken in the 
form 
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FIG. 3. Dependence of the transverse relaxation time TZr on the mean 
frequency 11rc of atomic or molecular motions (the numbers on the curves 
correspond to the numbers of the motion models in the text). The values of 
T,, and rc are given in units of Mi I". 

where the constants p, and pi  are determined by the fractions 
of the inter- and intramolecular interactions in the mean 
square of the local field: 

pi' M~int lM~d P e =  1 -Pi. 

In particular, after substitution of the values from (3.5) for 
benzene, we find p, = 0.7 and pi = 0.3. The function V2(t) in 
~ t ( t )  is now given numerically according to Eqs. (2.22)- 
(2.24). 

The FID's in the rotating frame were calculated for the 
three motion models, and TZe, as specified by condition 
(2.32), was calculated from them. The results obtained are 
presented in Fig. 3. The three motion models give different 
dependences of T2, on 1/rC. The curve is steeper in the case 
of independent motion than in the case of correlated motion. 
This is reasonable, since in the former case variation of the 
frequency is caused by the movement of any of the atoms 
coupled by the three-spin interaction. When there is intense 
motion, different asymptotic dependences are obtained in the 
three cases. They are: 

TY:-MZ~~(P?+P~P,+P~/~)-  

When the influence of motion on the effective three-spin 
Hamiltonian was described above, we approached it as a real 
interaction, which exists at any frequency of motion. How- 
ever, this Hamiltonian is formed from a time-dependent di- 
polar interaction having rapid oscillations with time caused 
by the strong rf field. The effective Hamiltonian is observed 
in high-order perturbation theory after averaging with respect 
to these oscillations for the purpose of describing the slow 
relaxation processes. The a n a l y ~ i s ~ - ' ~ ~ ~ ~  of such averaging in 
the presence of an additional stochastic time dependence of 
the Hamiltonian of the dipolar interaction showed that the 
separation of the effective Hamiltonian is substantiated until 
r,u,@ 1. At high frequencies of motion, relaxation occurs 

directly under the action of the dipolar interaction and is 
described well by the familiar formulas for the spin-lattice 
relaxation rate of the magnetization in a rotating f r a ~ n e ' . ~ ' ~ ~ ~  

where 

 AM^^= M ~ ~ -  MZd is the part of the second moment aver- 
aged over the motion, and the coefficient c is specified by the 
motion model: c = 0 for model 1, c = 1 for model 2, and, 
finally, c= 0.6 for model 3 in the case of b e n z e ~ ~ e . ~ ' . ~ ~  

In the slow-motion region both relaxation mechanisms 
should be taken into account s i m u l t a n e ~ u s l ~ . ~ - ' ~ ~ ~ ~  There- 
fore, to describe real FID's, the expression for M+(t) ob- 
tained as a result of the solution of Eq. (3.4) should be mul- 
tiplied by exp(- t/TZp). 

In addition, the equations must be modified for types of 
motion which dipolar interactions do not average completely. 
Consideration of the invariant part bij is, in principle, impor- 
tant in the rapid-motion region, in which the relaxation 
mechanisms described above become ineffective. In this re- 
gion the Hamiltonian of the dipolar interaction becomes 
temperature-independent with the constant bij . For example, 
in the case of benzene, the dipolar interaction between the 
spins of the atoms is transformed into the dipolar interaction 
between the total spins of the molecules as a result of the 
rapid rotation of the molecules. Therefore, the FID in the 
rotating frame is described by the equations for a rigid lat- 
tice, in which the constants are modified as a result of the 
replacement of bij by bij . 

In the slow-motional region Eq. (3.4) is replaced by a 
considerably more complicated expression when the invari- 
ant part of the dipolar interaction is rigorously taken into 
account. Since the invariant part is usually small in magni- 
tude in many-particle systems [see, for example (331, it 
would not be useful, in our opinion, to concern ourselves 
with this complication. Therefore, we shall utilize the simple 
interpolation formula 

in which the contributions to the relaxation M+,(t) and 
M + A ( ~ )  from the invariant and variable parts of the effective 
interaction are completely separated. 

We performed a specific calculation for solid benzene, 
for which the temperature dependence of the transverse re- 
laxation time in the rotating frame has been measured." We 
calculated M+,(t) from Eqs. (2.16), (2.19), and (2.26) and 
found M+A(t) from Eq. (3.4). We calculated the constants - - 
a2 ,  a 3 ,  and iio in the first case and a 2 ~ ,  a 3 ~ ,  and a o ~  in 
the second case from Eqs. (2.28) using the corresponding 
values of the moments 

and 

The numerical values were obtained here after plugging in 
(3.5) and me= 100 kHz for the experimental conditions in 
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FIG. 4. Plots of the temperature dependence of 11T2, in solid benzene for 
two motion models: solid line-model 2; dashed lines-model 3; points- 
experimental data from Ref. 11, which were measured according to (3.11). 

Ref. 11. The spin relaxation rate 1/T2, was calculated from 
Eq. (3.8) with AMzd=8.1 0e2  from Eq. (3.5) T2,. Finally, 
the dependence of rC on the temperature T was assigned by 
the Arrhenius equation 

with parameters determined experimentally from the spin- 
lattice relaxation times in the rotating frame2' and in the 
laboratory frame (TI) (Ref. 22). The numerical values of the 
parameters depend on the motion model chosen: 
r0=7.82X 10-l5 s and E=4.36 kcallmole for model 3 (Ref. 
21); r0=8.7x 10-l5 s and E =  17.7 Wmole for model 2 
(Ref. 22). The transverse relaxation times T2, specified by 
condition (2.32) were found for these motion models and 
parameters from FID's in a rotating frame of the form (3.10), 
which were obtained in the manner described above. 

The characteristic of the experimental FID's in the rotat- 
ing frame ( 11Tzp) was determined in Ref. 11 according to a 
different rule: the initial portions of the decays were approxi- 
mated by a Gaussian dependence with the half-width l/Gp, 
and the portions at later times were approximated by an ex- 
ponential (Lorentzian) dependence with the half-width 
1/TiP. These values coincided to within the the experimental 
error. More specifically, this value, which was found at dif- 
ferent temperatures, was presented in the figure in Ref. 1 1. 
For a Gaussian function the time appearing in the half-width 
and the time determined from the decay of its Fourier trans- 
form by a factor of e are related by the expression 

The plots of the experimental and theoretical depen- 
dence of l o g ( ~ i )  on the temperature shown in Fig. 4 have 
the same form. At low temperatures, for which slow motions 
appear, a decrease in the relaxation rate caused by the effec- 
tive three-spin interaction (narrowing of the NMR line in the 
rotating frame) is observed. As the temperature rises, the 
contribution of the ordinary spin-lattice relaxation in the ro- 

tating frame ( 1/T2,) increases. At the minimum these contri- 
butions are comparable. When the frequency of motion in- 
creases further, the contribution of 1/T2, becomes dominant, 
and, as was postulated, it reaches its maximum value when 
rcm,= 1. Finally, at high temperatures this mechanism gives 
way to relaxation under the effect of the temperature- 
independent effective interaction created by the rf field from 
the part of the dipolar interaction which is invariant under 
rotation of the molecules. 

The quantitative disparity between theory and experi- 
ment is apparently a consequence of the use of the second 
moment (3.5) of the polycrystal in the theoretical expressions 
instead of the averaging of the FID's themselves over the 
orientations. The smoothing of the observed dependence in 
comparison with the calculated dependence, which is espe- 
cially noticeable in the vicinity of the minimum, can be at- 
tributed to such averaging. The other approximations made 
during the derivation of the equations, are also expressed, but 
to a lesser degree. Finally, the nonuniformity of the rf field 
should be manifested even in slow decays in the region of 
the high-temperature plateau, since the decay rate corre- 
sponding to the value of 0.15% given in Ref. 11 coincides in 
order of magnitude with the observed acceleration of the 
decays. 

The theoretical curves presented in Fig. 4 demonstrate 
the sensitivity of T2, to the motion model. A choice in favor 
of the model of correlated molecular motions (model 2) was 
made in Ref. 22 for solid benzene on the basis of measure- 
ments of TI for deuterated samples. The curve in Fig. 4 
corresponding to this model is also closer to the experimental 
curve. Nevertheless, we must proceed from a comparison of 
the transverse relaxation times to a comparison of the FID's 
in the rotating frame themselves to draw an unequivocal con- 
clusion. 

Thus, the proposed theory accounts for the differences in 
the influence of the motion of atoms and molecules on the 
dynamics of systems with a two-spin dipolar interaction and 
a three-spin effective interaction. It makes it possible to de- 
scribe the slow-motional narrowing of NMR lines in the ro- 
tating frame. The theoretically predicted sensitivity of the 
temperature changes in FID's in the rotating frame to the 
motion model should serve as a basis for devising a new 
highly sensitive method for investigating them. 

We thank A. E. Mefed for some useful discussions and 
A. V. Ponomarenko for assisting in this study. 
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APPENDIX A 

Let us study the statistical properties of the contribution 
w3(t) to the precession frequency (2.27) in the approxima- 
tion under consideration. We start with the correlation func- 
tion g3(t) (2.15). In order for the lattice sum not to contain 
loops of interactions, the site labels of the spins next to the 
selected spin must coincide: i = k. The other two labels may 
coincide or not coincide. We analyze these cases. 

1. j= 1.  After elimination of the loops we have 
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since a loop of interactions unavoidably forms when cou- 
pling appears between the evolution operators exp(i%t) of 
spins i and j. This property can be utilized to separate other 
products of similar form into pairs. Owing to the identical 
nature of the spins in a crystal, we have 

The function g(t) in the approximation under consideration 
is the local field correlation function (2.8). In fact, although 

4 
(h(t)h)=g(t)+- bOjbOk(Sf(t)S:), 

B j f k  

the lattice sum in the second term contains a loop of inter- 
actions and should be omitted. Substituting (Al) and (A2) 
into (2.15), we find (in the case of j= I )  

g3(tl -t2)=g2(tl -t2). (A3) 

2. j # 1. Terms which satisfy the condition of the ab- 
sence of interaction loops are possible in this case, if the 
coupling between spins j and 1 is realized strictly through 
spin i. These terms appear at large values of t l  - t2 and cause 
g3(t1-t2) to differ somewhat from g2(tl-t2). 

We now consider the mean of the product IIpo3(tp). If 
we couple the outer spins of some factors in the product and 
the inner spins of others, loops of interactions form. There- 
fore, the different 03(tp) must be coupled entirely to one 
another by both of their spins. Consequently, when there is 
an even number of factors, we have 

where the sum is taken over all the possible interactions and 
the product is taken over the n pairs formed. When there is 
an odd number of factors, the mean is equal to zero. The 
property (A4) indicates that 03(t)  describes a Gaussian ran- 
dom process in the approximation under consideration. 

APPENDIX B 

Let us average the exponential function V2(t) of the 
quadratic Gaussian noise. To determine the combination fac- 
tors in the nth term of the series (2.12) for Vz(t), we note 
that all n  factors are identical, since the integration in each of 
them is carried out over the entire interval (0,t) indepen- 
dently of the others. When we average a diffrerence appears 
in the way (order) the 02(tp) from different factors combine. 

We consider two methods: 
1) Loops of n  variables. Since a loop does not have a 

beginning or an end and since all the factors are identical, the 
first factor can be selected as the starting point for construct- 
ing the loop, and the remaining n - 1 variables can be rear- 
ranged by varying their sequence in (n - 1 ) ! 12 different 
ways. 

2) A total of n variables are distributed among k loops: 
n, + n 2 +  ... +nk=n.  The n factors in (2.12) can be distrib- 
uted among these loops in n!/n l!n2! ... n k !  ways. Then a 
combination factor is written for each individual loop ac- 

cording to rule 1). If some of the loops are identical, substi- 
tution of the factors in one of them into another identical 
loop does not give a new combination; therefore, the result- 
ant product of combination factors should be divided by 
m ! m2!. .ml!, where mi is the number of identical loops of 
the jth kind. 

The combination factor obtained according to rules 1) 
and 2) should first be divided, according to (2.12), by n!. 
Second, it should be multiplied by 2" because there are two 
ways to place the two Gaussian random variables in w2(t) in 
a loop. The latter factor has already been taken into account 
in (2.21) by replacing (a2/2)" by (a2)". As a result, before 
the product of k contributions of the form (2.21) for the 
loops 

we obtain the following combination factor 

Determining the first members of the series in (2.12) for 
V2(t) according to the rules described, we can easily see that 
if this series is differentiated with respect to time, we obtain 
the original series multiplied by a sum of loops with a dif- 
ferent number of time variables, one of which is fixed at the 
time t: 

where the cumulant K,(t) equals 

-t)dtldt2...dt,-l . (B3) 

Integrating Eq. (B2), we obtain expression (2.22), where 

The simple structure of the series (B4) makes it possible 
to reduce the calculation of its sum to the solution of the 
integral equation (2.24) for R(t,t l) ,  which is the sum of an 
auxiliary series of broken loops. The nth term in the latter is 
obtained from (B3) after removing the integration with re- 
spect to ?,- ] = t '  and the factor g(t,-, - f). If the integrand 
in the nth-order term is multiplied by g(t l  - tIr) and inte- 
grated with respect to t r  , we obtain an (n + 1)th-order term 
(after a trivial replacement of variables). Just this property of 
the auxiliary series is expressed by Eq. (2.24). 

Finally, we obtain the series (2.34) from the series (B4). 
To this end, for sufficiently long times (t2u%- 1) we trans- 
form expression (2.21) into 

which was derived with consideration of the fact that the 
product of correlation functions differs appreciably from 
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zero only in a small part of the integration region in the 
vicinity of the diagonal t = t2= .  .. = t ,  and does not depend 
on the position on this diagonal. The convolution in (B5) is 
easily calculated after obtaining the Fourier transform. 
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