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The dynamic susceptibility of a banded antiferromagnet with a spin density wave is calculated 
above the Nkel point. Spin-fluctuation theory is used, which assumes the presence of 
orientational short-range order of the spin density with amplitude close to its maximum value, 
and the variations of the single-electron spectrum and spin density amplitude due to 
thermodynamic magnetic disorder are found. The properties of the low-frequency transverse 
excitations of the spin density are analyzed: for pulses SSS,, the excitation has the form of a 
magnon with weak decay; for S<Sc, the excitation has a purely diffusive character. The 
vector S is reckoned from the wave vector of the antiferromagnetic structure, and the quantity 
a,' is proportional to the correlation length of the short-range magnetic order. The 
applicability of the results of this study to an analysis of the magnetic properties of a reconstructed 
(111)-(2X 1) diamond or silicon surface is discussed. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

In contemporary theories of banded magnetism it is usu- 
ally assumed that the breakdown of long-range magnetic or- 
der in crystals with increase of temperature is chiefly due to 
the collective excitations-fluctuations of the spin density.' 
They determine the phase transition temperature T,, the 
changes in the magnetic structure parameters below T,, and 
also the radius of short-range order and its temperature re- 
gion above T,. There is no universal method for calculating 
the influence of spin fluctuations on the properties of banded 
magnets, which underlies the variety of approaches to the 
construction of their thermodynamics. 

One of the most physically intuitive of such approaches 
is the method2 which has acquired the name "local band 
theory" and is used for "strong" (saturated) banded ferro- 
magnets with spin density amplitude near ma~imurn.~ In this 
theory the magnetic moment of a unit cell of the crystal is 
formed at temperatures significantly greater than the tem- 
perature at which long-range order arises. Amplitude spin 
density excitations have frequencies on the order of the 
Stoner exchange splitting and do not determine the phase 
transition temperature. The main role in the formation of 
ferromagnetic order according to Refs. 2 is played by the 
transverse long-wave spin density fluctuations with low fre- 
quencies (of the order of the spin-wave frequencies). Thus, 
above the transition point the exchange (Stoner) splitting of 
the subbands is preserved, along with the short-range (but 
not long-range) ferromagnetic order. It is clear that the 
method of Refs. 2 and 3 somewhat overestimate the role of 
transverse fluctuations in a three-dimensional system in com- 
parison with the longitudinal; however, in systems with 
lower dimension the applicability of this method is much 
better justified. In Ref. 4 we employed "local band theory" 
to study the thermodynamics of banded antiferromagnets for 
which a spin density wave (SDW) has doubled (Ndel) struc- 
ture in the ground state. Let us briefly review the main fea- 
tures of the development of Ref. 4. 

In the vicinity of the Niel point TN a thermally excited 
state of an antiferromagnet is formed by electronic Bloch 
states with energies lying in a band -TN near the Fermi level 
E F ,  where TN4A (A is the amplitude of the spin density 
wave). This assumption substantially narrows the configura- 
tion field of actual spin fluctuations: the wave packets are 
made up from the Bloch functions with wave vectors k near 
?GI2 (G is the inverse lattice vector of the crystal). Conse- 
quently, the most probable fluctuations are large-scale trans- 
verse fluctuations of the magnetization at the wave vector q 
near the antiferromagnetic structure vector Q=G/2, i.e., 
transverse spin density waves. Above the Ndel point, thanks 
to the presence of short-range order, the idea of banded crys- 
tal structure remains meaningful. This structure is similar, 
but not identical, to the structure connected with pure period 
doubling in the ground state. The quasimomentum k and the 
spin a of the quasiparticle are "almost good" quantum num- 
bers at least for lk-G/211>1, where 1 is the characteristic 
scale of the SDW fluctuations (1--03 as T--+TN). An energy 
gap of almost the same magnitude, 28, as in the ground state 
is preserved in the density of states. 

In Ref. 4 we also emphasized the fundamental role of 
thermodynamic SDW fluctuations for the very existence of 
long-range order in banded antiferromagnets with lower di- 
mension, in particular, quasi-two-dimensional. In such sys- 
tems the temperature interval of the phase of the short-range 
order is substantially extended (in relation to the isotropic 
three-dimensional situation) toward lower temperatures, and 
the Nbel temperature is lowered, vanishing (in the absence of 
magnetic anisotropy) in the strictly two-dimensional case. 
Thus, one can assume that low-dimensional banded antifer- 
romagnets exist with anomalously low Nkel temperatures, 
and also those in which there is no mean magnetization of 
the sublattices at all for T>O. In our opinion, such objects 
include with a high probability atomically pure (1 11)-(2X 1) 
surfaces of diamond-like  conductor^.^ This question will be 
discussed in more detail in the Conclusion of this paper. 

In this paper we will extend the study of banded antifer- 
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romagnets with spin density waves in the region of orienta- 
tional short-range order begun in Ref. 4. Two problems 
will be solved: 1) renormalization of the SDW amplitude 
due to thermodynamic spin fluctuations, 2) calculation of the 
transverse susceptibility and collective excitations- 
paramagnons-in the absence of long-range order. We will 
use the results of these calculations to explain some features 
of the band structure and the magnetic properties of the 
semiconducting (1 11)-(2X 1) faces of Si (or C) according to 
the m-bonded chain model.6 

2. TRANSVERSE SDW FLUCTUATIONS AND THE LOCAL 
BAND METHOD 

Before going on to what is new in this paper, let us note 
briefly a number of well known techniques of the spin- 
fluctuation theory of banded used in Ref. 4 to 
model antiferromagnets with spin density waves. We con- 
sider the single-band Hubbard model with Harniltonian 

where all of the notation is standard. 
Introducing the unit vector e, prescribing the local orien- 

tation of the quantization axis at the ith node, we rewrite the 
term Hint in the equivalent form 

where 

are the charge and spin densities, respectively. Representa- 
tion (2) allows us, by means of the Hubbard-Stratonovich 
transformation, formally to reduce the initial many-particle 
problem (1) to a single-particle problem involving the mo- 
tion of an electron in the arbitrarily fluctuating (in space and 
in time) scalar xi(r) and vector yi(r)=ei(r). y,(t) fields, con- 
jugate to the charge and spin densities, respectively. In the 
"static" approximation, i.e., neglecting the dependence of 
the fields xi and yi on 7, the partition function corresponding 
to Hamiltonian (1) has the form 

(3) 
where 

1 exp ik(ri- r,) 
g. .  =- C 

IJn N k ~ O , + , ! & ~ - E ~  

is the Green's function of the noninteracting electrons with 
dispersion 

1 
ek=- C ti, exp[- 

N i,, 

k is the quasi-momentum, ri is the position vector of the ith 
node, wn= mT(2n + 1) is the frequency, p,, is the chemical 
potential, 

is a random potential, a is the Pauli matrix, and Zo is the 
partition function of the noninteracting electrons. 

In expression (3) and in what follows, the symbol Tr (the 
trace) denotes the sum of the diagonal matrix elements over 
spin index a, node index i,  and the frequency variable n. 

The saddle-point approximation in the variable xi (i.e., 
neglecting fluctuations of the charge density) gives the fol- 
lowing renormalization of the chemical potential: 

where i is the crossover point. 
Let us now turn our attention specifically to the problem 

of an antiferromagnet with spin density waves, whereby we 
will consider only the situation in which the spin density 
waves in the ground state have doubled the Niel structure. 
We take the "nesting" condition for the electron spectrum 

to be fulfilled, where Q=G/2. We distinguish two magnetic 
sublattices; for one of these we choose the local quantization 
axis ei to be aligned with the direction of local magnetization 
Si ,  and for the other we take the vectors ei and S, to be 
antiparallel, i.e., 

Next we normalize the vector field yi in energy units 

In the mean-field approximation it is possible to find the 
SDW amplitude A,. For a linearly polarized spin density 
wave the quantity Ai=A is given by the well-known self- 
consistency equation 

Equation (6) has a nontrivial solution in the temperature 
region T< $. In weak magnets for Ul t41  ( t  is of the order 
of the width of the allowed band) the temperature fi is 
related to Ult by a formula of the BCS form, and for Ul t %  1 
("strong" magnets) the formal solution of Eq. (6) gives 
fi- U. For T+f i  it is possible to obtain from Eq. (6) the 
standard expression for the SDW amplitude A(UIt,T,p), 
which depends weakly on temperature. 

A calculation of the renormalization of the SDW ampli- 
tude due to quantum fluctuations was carried out in Ref. 7 in 
the non-self-consistent random-phase approximation (RPA) 
for TGG. It was shown that these fluctuations give a 
smaller value of A than that given by Eq. (6), and the more 
strongly, the larger is the ratio Ult. The authors of Ref. 8 
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proposed a self-consistent approach for taking account of 
quantum spin fluctuations which preserves the invariance of 
the system with respect to rotations in spin space. In the 
approach of Ref. 8 the parameter A acquires a dependence on 
the frequency w, the SDW amplitude is governed by the 
high-frequency limit of A(w), and the gap in the spectrum of 
single-particle excitations is governed by its low-frequency 
limit. Below we will consider the effect of quantum fluctua- 
tions on the magnitude of A, restricting ourselves, for sim- 
plicity, to the static approximation. Classical thermodynamic 
fluctuations of the spin density, leading to a renormalization 
of the SDW amplitude, will be taken into consideration 
within the framework of the "local band" method, which is 
worth going into in more detail. 

According to current ideas in the band theory of magne- 
tism based on the spin-fluctuation approach, the temperature 
Z$ is not the actual temperature at which antiferromagnetic 
long-range order is established (the Ndel temperature). 
Rather, the quantity $ is some nominal upper bound on the 
temperature, below which are formed long-wave SDW fluc- 
tuations whose amplitude weakly depends on T. Long-range 
order (i.e., the Ndel temperature TN and the appearance of a 
mean magnetization of the sublattices) is described not by 
Eq. (6), but by other relations which can be obtained by 
spin-fluctuation approaches for T ~ G .  Below we will be 
guided by the simply and physically intuitive approach of 
local band theory? in which the formation and breakdown of 
long-range order are associated mainly with the transverse 
long-wave thermodynamic fluctuations of the spin density 
waves. We assume that for TN< T 9  short-range order is 
present in the system, and the main contribution to the par- 
tition function comes from the SDW configurations {Ai) of 
Eq. (5)  for which Ai=eiA, and the vector ei changes its di- 
rection slightly between neighboring nodes i and j of the 
lattice: lei-ej191. We will introduce a local coordinate sys- 
tem, defined by the angles {Oi  ,ai}, which define the direc- 
tion of the local quantization axis ei relative to the laboratory 
quantization axis, and the angle bi , which describes the ro- 
tation of the spin density vector about the ei axis. 

In the local system of coordinates the Hamiltonian (1) is 
written as2 

where 

and analogously for the angles ai and bi . In formulas (7)- 
(9) it is understood that the operators ci and c: act in the 
local coordinate system, and the Hamiltonians Ho and Hint 
have the same form as in the original representation (I). The 
matrix elements (10)-(12) as written take account of the 
condition lei-ej191 for nearest neighbors. In the local coor- 
dinate system the free energy of the system 

is easily represented in additive form 

where the functional Fo[A],  which can be reconstructed by 
integrating the self-consistency equation (6) over A, is the 
energy of a homogeneous spin density wave and is indepen- 
dent of the direction e i .  The term FsF [A,ei] is an additional 
exchange energy of the antiferromagnet, associated with 
thermodynamic orientational disorder. 

For the case of large-scale configurations {ei) the density 
of the spin-fluctuation part of the functional F can be repre- 
sented as an expansion in powers of the difference angles 
Oij  , @ i j ,  and bij . We obtained an explicit expression for the 
functional FSF [a i j  ,gi j ]  to second order in H, and H2 in our 
previous paper.4 As was discussed in detail in Refs. 2, the 
structure of the term gij (11) is such that it leads to contri- 
butions to the energy FSF which are fourth-order and higher 
in aij.  In the long-wave limit the first nonvanishing terms of 
the expansion of the energy FSF are second-order in aij and 
Oij and are proportional to a$ - a,, . In accordance with 
formula (10) this quantity is equal to 

and the spin-fluctuation contribution to the free energy of the 
magnet acquires the form of an effective Heisenberg Hamil- 
tonian for the classical spins S= 1: 

An expression for the exchange integral Jij in terms of 
the microscopic parameters of an antiferromagnet with spin 
density waves was also obtained in Ref. 4. Thus, the calcu- 
lation of the partition function (3) reduces to an integration 
over the orientations of the random vector e={ei), lei= 1: 

where the energy FsF is given in the form (15). 
To find any physical characteristic of a banded antiferro- 

magnet in the region of short-range order, it is necessary to 
average over the equilibrium ensemble of SDW fluctuations, 
restricted in our approach by the set of configurations lei). If 
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the quantity A[{ei)] corresponds to a specific configuration 
{ei)  taken from this set, then the thermodynamic average ( A )  
is calculated as a functional integral 

We will perform the calculation of ( A )  in the Gaussian 
approximation for the distribution of orientation vectors ei , 
whose effective Hamiltonian is of the quadratic form (15). In 
this approximation all even spin correlators decouple into 
products of pairwise correlators (e, ... ej)-+(eiej) ...( ernej), and 
all odd, into products of pairwise correlators and mean val- 
ues (e,). In what follows we will restrict the discussion to the 
paramagnetic phase, for which (ei)=O holds and all odd cor- 
relators vanish. 

To calculate any average ( A ) ,  it is thus necessary to 
determine the amplitude A and the pairwise correlator 
fi j=(eiej) ,  and it is necessary, strictly speaking, to have a 
system of self-consistency equations for these quantities. 
Many qualitative results, however, can be obtained on the 
basis of general considerations about the shape of the spatial 
and temperature dependence of f i j .  Thus, it is natural to 
assume that in the region of short-range order for 
TN< T< $ the Fourier component fq has a sharp maximum 
at small values of the wave vector q 4 a - ' ,  which corre- 
sponds to a maximum of the spin density correlator 
(SqS-,) at values of q near the antiferrornagnetism vector 
Q=G/2.  The spin correlation radius I(T) and the shape of 
the temperature dependence of fq(T) can be estimated, as in 
Ref. 4, on the basis of well-known results for the classical 
Heisenberg Hamiltonian. 

3. SINGLE-PARTICLE EXCITATIONS AND 
RENORMALIZATION OF THE SDW AMPLITUDE 

Scattering of band electrons by a typical SDW fluctua- 
tion {e,) above the Ndel point is characterized by the single- 
particle temporal Green's function Gijuu~({ei) , t ) ,  the equa- 
tion for which we write in symbolic form as 

Orientational disorder enters into Eq. (18) through the 
Hamiltonians H I  (8) and H z  (9). The quasiparticle Green's 
function in the exchange field of the spin density wave in the 
ground (Ndel) state has the form 

where o is the frequency and Sk,p = 1 for k = p  and 
Sk,p = 0 for k#p. 

The procedure outlined above, of configurational inte- 
gration makes it possible to express the {ei) ensemble- 
averaged propagator (Gk,pu,,l ( {e , }  ,o)) in terms of the cor- 
relation function fq : 

The eigenenergy part X is equal to 

Since the structure factor of the spin correlations f q  is 
assumed to be nonzero in the small interval of quasimomenta 
near q=O, the slowly varying (in comparison to fq) factors 
standing under the summation signs on the right-hand side of 
Eq. (21) can be expanded in series about the point q=O. 
Retaining the lowest-order terms of this expansion in q ,  we 
obtain an expression for the averaged Green's function: 

The poles of the function (22) determine the spectrum of 1 d2ek 
single-electron excitations in the phase with antiferromag- v k = - -  C - l n 2 ,  

8 a dk, 
netic order: 

+ F ~ ( v : +  4ekvk)  + ( E ~ V ~ +  v i 1 2 ) ~ ] " ~ ,  (23) 
qa are the components of the vector q ,  a= 1 ,  ..., d, where d is 

where the dimension of the system. It is natural to treat the quantity 
I ,  as the correlation length of magnetic short-range order in 
the a-th direction. 

(24) 
Near the point where long-range order arises (where 

(k , la ) - '61)  the correlation length la  grows significantly, 
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and to the first nonvanishing terms in y, we obtain 

Relation (26) allows us to elucidate the physical mean- 
ing of the doubling of the number of dispersion branches 
w k - +  wk+ in comparison with the case of long-range antifer- 
romagnetic order, when f,=m and %= t E k .  It is not hard to 
convince oneself that the energy parameter Fk (24) associ- 
ated with the Hamiltonian H, given by Eq. (8) corresponds 
to scattering of a quasiparticle by a spin fluctuation with spin 
flip; respectively, the parameter y, (25) associated with the 
Hamiltonian H2 of Eq. (9) corresponds to scattering without 
spin flip. Thus, in the phase with short-range order electron 
motion with the "right" or "wrong" spin direction is pos- 
sible in each of the two antiferromagnetic sublattices if they 
are oriented slightly differently. 

The doubling of the number of dispersion branches was 
noted in Ref. 4. The authors of Ref. 4 calculated the renor- 
malization of the density of single-electron states due to scat- 
tering of carriers by fluctuations of the direction of the SDW 
vector specifically for the case of a two-dimensional system 
(a square lattice) and showed that narrowing of the antifer- 
romagnetic gap occurs. 

Let us examine the influence of spin fluctuations on the 
SDW amplitude. Since the order parameter A(T) due to the 
quasiparticle statistics is varies negligibly in the investigated 
temperature range TN<TQG,  we will use the self- 
consistency condition in which the Fermi function is re- 
placed by the step 

The amplitude A(T)  acquires a temperature dependence 
only because of the orientational disorder with correlator 
fq(T) .  We substitute the averaged Green's function (22) in 
Eq. (27) and close the integration contour in the complex 
variable w in the upper half-plane. As a result, we obtain to 
second order in the inverse correlation length the following 
equation for the mean amplitude of the spin density: 

In the absence of disorder 0) this equation re- 
duces to the Hartree-Fock equation (6) for p=T=O. As can 
be seen from Eq. (28), in the implemented approximation the 
SDW amplitude changes only as a result of scattering pro- 
cesses without spin flip. The temperature dependence of 
A(T) is governed by the corresponding behavior of the cor- 
relation length Z,(T). 

To carry out specific calculations, we assign the follow- 
ing form to the dispersion law of the free electrons c k ,  which 
satisfies a "nesting" condition: 

ek= - 2 t x  cos k,a. 
a 

According to the exchange approximation for the inter- 
electron interaction, which we have used here, the character- 

istic scales of the orientational correlations of the spin den- 
sity in any of the directions a coincide, i.e., / , = I .  We 
therefore have 

(a) ' ,  .;=$ 
vk'-iS- i 

where naturally we assume that I l a S l .  
In the mean field model of banded antiferromagnetism in 

the absence of impurity scattering the SDW amplitude A=Ao 
coincides with the half-width of the dielectric gap in the NCel 
phase E,=2Ao. In the region of short-range order such a 
coincidence does not take place, and it follows from relations 
(26) and (30) that near the Niel point ( T Z  T N )  the width of 
the forbidden band for single-particle excitations is equal to 

Note that the narrowing of E, is due exclusively to fluc- 
tuational scattering with spin flip. 

We substitute the quantity y, from formula (30) into Eq. 
(28) and estimate the magnitude of the change of the spin 
density at a node due to partial orientational disorder. For 
example, if we have tl U 4 , then 

In the weak interaction limit (UltQl) the influence of 
transverse SDW fluctuations is manifested in the renormal- 
ization of the effective potential U: 

This result coincides qualitatively with the renormaliza- 
tion of the potential U due to quantum fluctuations of the 
spin density, obtained in Ref. 8. 

4. TRANSVERSE DYNAMIC SUSCEPTIBILITY 

Capellmann and vieira9 developed a general theory of 
dynamic susceptibility of banded ferromagnets with strong 
short-range order above the Curie point. They proposed a 
calculation scheme (the so-called "random phase approxima- 
tion with exchange"), within which they drew some qualita- 
tive conclusions about the nature of the response. We pro- 
pose a method for calculating the dynamic susceptibility 
which is somewhat different from theirs? based on the spin- 
fluctuation and on our previous work? to calcu- 
late the two-particle Green's function. In this approach it is 
possible to describe explicitly the low-frequency spin dy- 
namics of banded antiferromagnets with spin density waves 
above the Niel temperature, as is required for the problem at 
hand. 

According to Refs. 2, in the "local band" method one 
introduces a spin density correlator for each individual fluc- 
tuation {ei) 
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FIG. 1. 

The parentheses on the right-hand side of Eq. (34) denote 
averaging over quantum states for fixed set of vectors {ei) 
giving the configuration of the spin density wave; the symbol 
T stands for time-ordering in t .  The complete response to an 
external variable magnetic field (the magnetic susceptibility 
at the frequency IR) is defined as the average over the SDW 
configurations [in the sense of (16)]: 

Let us dwell in detail on the question of the calculation 
of the averages (34) and (35). 

The two-particle Green's function of the system with 
fluctuating spin density in the graphical representation can be 
depicted as an infinite series of "ladder" diagrams taking 
account of scattering by the randomly oriented moments at 
its nodes. By way of illustration, Figure 1 shows one of the 
simplest diagrams: the solid line denotes the unperturbed 
function Go given by (19), the dashed line denotes the Cou- 
lomb repulsion of particles with opposites spins U, the cross 
represents the matrix element a i j  for processes with spin flip 
H ,  (8), and the arrows 1 and t correspond to the projections 
of the electron spin. Let us turn our attention to the altema- 
tion in the arrangement of terms a i j  and a$ and the spin 
indices. In the language of diagrams the averaging procedure 
(35) can be thought of as taking into account all possible 
variants of the pairwise joining of crosses by wavy lines. The 
graphical element consisting of a pair of crosses joined by a 
wavy line corresponds to the spin correlator f i j .  Figure 2 
displays some typical diagrams which contribute to the av- 
eraged two-particle Green's function to first order in U and 
to fourth order in the disorder ai j  . Below we will consider 
only diagrams of type (a), assuming that diagrams (b), (c), 
and (d) have already been taken into account in the renor- 
malization of the interaction U. In passing, it may be noted 

that we have intentionally omitted processes without spin flip 
[corresponding to H 2  of (9)] since their direct average (laijI2) 
in the single-particle channel is not needed in any of the 
additional explanations that are to follow. 

Thus, the calculation of the susceptibility of a magnet in 
the phase with strong thermal short-range order reduces to a 
modified random phase approximation with "dressed" qua- 
siparticles (i.e., dressed by the disorder), in other words, to 
the sum of the infinite sequence of "ladder" diagrams shown 
in Fig. 3, where the double line represents the single-particle 
Green's function averaged over the space of orientational 
fluctuations. The expression for the latter is well known and 
is given by formulas (20)-(26). 

Let us translate the graphical expressions into the lan- 
guage of analytical relations. The first diagram in the series 
(Fig. 3, not explicitly containing the interaction U or the 
analogous elementary electron-hole loop in the system of 
free electrons) corresponds to the following function of the 
two quasimomenta: 

x ( ~ l r ~ + ~ ( o - n ) ) .  (36) 

Thus, like the function (G) in (22), the expression for 
the response xf - contains both a diagonal and a nondiagonal 
(in the quasimomenta) contribution, each of which depends 
on one quasimomentum: 

x:;l(w= ~q,,.x;-(q,n)+ ~q,q.+Qx;-(q,IR). (37) 

Summing the geometric progression in Fig. 3 (in fact, 
solving the Dyson equation), we obtain the total response 
function in general form: 

FIG. 3. 
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where 

The structure of the denominator of the transverse dy- 
namic susceptibility (38), (39), with the equation of state 
(28) taken into account, determines the spectrum of the natu- 
ral oscillations of the spin density of a banded antiferromag- 
net in the phase with short-range order. Let us proceed to 
some concrete calculations. 

First we will calculate the susceptibility X,,,(Q) (36)- 
(37), for which we substitute function (22) in expression 
(36), sum over the quasimomentum k' and integrate over the 
frequency o. We restrict ourselves to lower-order terms in 
the orientational fluctuations, i.e., terms of order ( ~ 1 1 ) ~ .  
Omitting the long chain of involved algebraic transforma- 
tions, especially for the case of the electron spectrum (29), 
we obtain formulas (Al) and (A2) in Appendix A, also cum- 
bersome, for the diagonal and nondiagonal components of 
the function Xq,,,(f2). These formulas coincide in the limit 
( a / ~ ) ~ - t 0  with the expressions obtained in Ref. 7 for the 
ground state of an antiferromagnet with spin density waves. 

In order to determine the spectrum of the low-frequency 
long-wave excitations, we expand the functions (Al) and 
(A2) entering into the expression for the total susceptibility 
(38), (39) in the frequency 0 (IIRl4A) and the quasimomen- 
tum 6=q-Q (8a < 1 ,t 6 a 4  A) and drop the corrections gen- 
erated by the disorder -(all). a2"' (rn>O).  However, in this 
case we must keep the last term in the expression for 
x:-(q,O) (Al), which is proportional to 

The summand in Eq. (40) possesses a singularity, the 
nature of which depends on the dimensionality and shape of 
the electron spectrum of the system. As we shall see below, it 
is precisely the function @(&a) that determines the analyti- 
cal properties of the response Xq,,,(0). In contrast to the 
diagonal component of the (null) response, the nondiagonal 
component i$-(q,O) of (A2) does not contain any term like 
the summand on the right-hand side of Eq. (40). 

In the indicated region of frequencies and quasimo- 
menta, with allowance for the equation for the mean ampli- 
tude of the spin density waves (28), we obtain the dynamic 
susceptibility 

where we have introduced the notation 

Note that the parameters cp, , p, and 9 and the coefficient 
of f12 in Eq. (42) are positive definite, while the function 
O(S,Cl) is, generally speaking, complex. 

The poles of the response (41) determine the paramag- 
non spectrum fl(S). Its main features can be understood from 
the general form of the denominator Det(S,fl) of (42). Col- 
lective excitations of the system with wave vectors Sthat are 
so large that the magnitude of the fluctuation term in 
relation (42) is negligibly small in comparison with .I.(S) are 
of a general spin-wave nature f l=v 6. In the opposite limit of 
strong magnetic disorder the diffusion mode is excited: as 
&0, the susceptibility (41) has a purely imaginary pole. 
Thus, in an antiferromagnet with delocalized spin density in 
the phase with short-range order there exists a singular wave 
vector a,,, upon passage through which the nature of the 
propagation of the magnetic excitations changes over from 
wavelike (oscillatory) to relaxational. Analogous behavior of 
the paramagnon branch of the spin oscillations was predicted 
by Capellmann and vieirag for a banded ferromagnet. 

Let us analyze in detail the dependence a(@. As the 
parameter A in expression (41) we use its mean-field value 
A,,, at which the equality 1 =Uq, reduces to an identity. The 
equation Det(S,O)=O, generally speaking, can be solved 
only numerically. Nevertheless, a number of important re- 
sults can be obtained in the one-dimensional case without 
resorting to numerical calculations. For d =  1 the dispersion 
relation can be expressed exactly in terms of complete ellip- 
tical integrals [for details, see Appendix B, formulas (B3)- 
(BS>l: 
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The main complication in solving Eq. (46) is the integral 
term, which arises as a result of the fluctuational disorder: 
the quantity 6 enters into the Schrode integral (B2) as a 
parameter. Employing the estimates made in Appendix B, we 
have shown the dependence n(s) in the situations that are 
the most important from a physical point of view. 

Suppose (61G 1. Then relation (B4) is valid, and Eq. (46) 
reduces to a quadratic equation in a ,  analogous to the equa- 
tion for small oscillations of a pendulum with damping. The 
solution of this equation has the form 

1 A-1  inb  A+3 
A-1  

This solution describes the dynamics of the paramag- 
nons in the vicinity of the crossover point a,,. The value of 
a,, is found by setting to zero the expression standing under 
the radical in Eq. (47): 

( 1 6 c , ) - 2 = 4 ~ ( \ I ~ -  l ) ,  

The limits of variation of a,, (48) and of the damping 
rate of the excitation at the critical point lncA = Ifl+ 6,A with 
variation of k are for: 

U<t 

for U S  t 

For comparatively small wave vectors 6 <ac,, Eq. (46) 
has only purely imaginary solutions, Re fl=0. And, in the 
interval S,, >6>(d l ) - '  a pair of relaxational modes a, is 
present, and below the resonance point 6 =(d l ) - '  (the point 
at which the spatial scales of the spin fluctuations and the 
external magnetic field coincide) only one of them, In+, is 
preserved. As S approaches the resonant point (d l ) - '  from 
above, the In_ mode vanishes as 

In the limit of strong disorder, when ( 1 ~ ) ~ + 1  holds, the 
frequency a+ approaches the limiting value 

For wave vectors 6 >ac, superposed on short-range an- 
tiferromagnetic ordering, a paramagnon is excited with char- 
acteristic lifetime r- IflI,(-', where 

In this case the real part of the frequency vanishes like 
the square root: 

where we have flo=2t for U%t, and flo=2t2/A in the op- 
posite case UB t. 

The parameter 1 6 is, in essence, the ratio of the dimen- 
sion of a typical magnetically ordered domain to the dimen- 
sion of the region from which the response is (collected) 
("gathered"). On a scale less than the radius of the orienta- 
tional correlations, the magnetic disorder is assumed to be 
weak: (1 6) -2%1. This case can be described analytically for 
the two limiting cases of the parameter k by making use of 
the estimates derived in Appendix B. 

In the case of a weak Coulomb interaction U 4 r  (or 
kl%l),  we will use the approximation (B7)-(B8) for the in- 
tegral (B5) and the standard expansions for K(k) and ~ ( k ) . "  
Substituting them in Eq. (46) and keeping only the Iowest- 
order terms in k', we obtain Eq. (B9). Expanding Eq. (B9) in 
the small parameter (1 near the point 6 = 1 and discard- 
ing terms of order (k'll and higher, we obtain this simple 
dependence: 

Formula (54) describes, on the one hand, the small shift 
of the peak of the magnetic susceptibility (41) in the disor- 
dered phase relative to its spin-wave position (0=2t6a)  in 
the ground state and, on the other, the weak fluctuational 
broadening of this peak. These conclusions, of course, are 
also valid in the case U S t  (or kGl). 

The dependence of the frequency of the spin wave on the 
momentum 

was obtained from Eq. (B8) by expanding near the unper- 
turbed value f l = t 2 6 a l ~  (the value unperturbed by the disor- 
der). 

It would be interesting to draw a parallel between the 
picture of the dispersion of SDW paramagnons presented in 
Fig. 4 over the entire range of 61 and the picture of the 
natural oscillations of a classical oscillator with damping. In 
the latter case there also exist two-dimensional (depending 
on the magnitude of the damping coefficient T) temporal 
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FIG. 4. 

regimes of small oscillations u(t) (Ref. 11): either 
u(t) =A exp(iR,,-fi,,)t for relatively small T), or 
u(t) =A+ exp(- R+ t )  + A -  exp(-R-t) (for large T), where 
the coefficients A +,- are determined by the initial conditions. 
It is possible, in principle, to reconstruct the effective La- 
grangian a d A I d t ,  dA/dx,] of the low-frequency 
transversely-polarized spin-density oscillations for an anti- 
ferromagnet with spin density waves from (42). 

In the one-dimensional case, in the low-frequency region 
1fiIG1 this Lagrangian 23' is similar to the Lagrangian of a 
pendulum with damping. The term (a /~ )~@(d ,R)  in expres- 
sion (42) is responsible for dissipation processes when spin 
excitations propagate in a medium with short-range antifer- 
romagnetic order. The quantity @(d,R) was obtained by 
means of an appropriate microscopic consideration. The cor- 
relation length 1 in our approach is a phenomenological pa- 
rameter. We use the relation 

which can be obtained for T 6  J and d = 1 from the classical 
Hamiltonian (16) by the renormalization group method. Em- 
ploying results obtained earlier: we adduce estimates for the 
exchange integral 

for tGU, and 

for t 9  U. Taking (56)-(58) into consideration, it is possible 
to estimate the temperature dependence of the spectral char- 
acteristics of the paramagnons. 

If we substitute relations (56)-(58) in (32) and (33), it is 
not hard to show that the contribution of the transverse fluc- 
tuations to the renormalization of the SDW amplitude sig- 
nificantly exceeds the corresponding contribution arising 
from the temperature smearing of the Fermi distribution 
function for TGA. 

5. CONCLUSION 

Having developed a general formalism in terms of the 
"local band" concept for describing spin density excitations 
in the disordered phase of a banded antiferromagnet, we have 
investigated the paramagnon spectrum in the greatest detail 
in the one-din~ensional SDW model. The choice of such a 

system is not arbitrary, since the results obtained with it can 
be used to interpret the magnetic properties of an atomically 
pure (11 1 ) - ( 2 ~  1) surface of semiconductors with diamond 
structure. We may point out, for example, that experimental 
studies of Auger electron spectroscopy of a (1 11)-(2X 1) sur- 
face of diamond (Ref. 12) indicate the presence of antiferro- 
magnetic correlations of the spins at neighboring sites. 

A free (111) face of a homeopolar crystal is subject to 
intrinsic atomic reconstruction (1 X 1)-+(2X I). For example, 
this phenomenon is observed at room temperature on a 
freshly vacuum-cleaved silicon surface5 or on a diamond sur- 
face heated above 900 "C (the hydrogen desorption tempera- 
ture). As a result, according to pandey,6 the surface acquires 
a new relief in the form of alternating (with period twice its 
starting value in the (1X 1) phase) parallel zigzag-shaped 
chains, at whose nodes the T-orbitals of the broken bonds, 
oriented along the normal to the (111) plane, are localized. 
The overlap of the valence orbitals leads to the formation of 
a half-filled metallic T-band of surface states with strong 
dispersion t-1 eV in the longitudinal direction (along the 
chain) and with weak dispersion t <0.1 eV in the transverse 
direction. This band structure is inherent to the ideal geom- 
etry of one of Pandey's chains. In reality, the chain is dimer- 
ized, because its neighboring sites are located in the different 
chemical environment of the lower-lying layers. 

On the other hand, it is well known that a low- 
dimensional metal with a half-filled band is unstable with 
respect to the appearance at temperatures T<f i=2 t  
exp(-Ult) of an antiferromagnetic phase with spin density 
waves even in the presence of a weak inter-electron interac- 
tion Ul t 6 1. Without going into the history of the question of 
banded antiferromagnetism on a (1 11) face of a semiconduc- 
tor, we only briefly note that the most realistic situation for a 
(111)-(2X 1) Si (C) surface is one in which the spin super- 
structure Ai=A exp iQxi arises against a background of 
charge (chemical) corrugation n, = n cosQx,. Thus, Lannoo 
and ~ l l a n , ' ~  using mean field theory (taking it, by the way, 
beyond its limits of applicability) showed that the ground 
state of a T-chain is antiferromagnetic. For a given ampli- 
tude of charge corrugation V- n the antiferromagnetic mean 
value A - - ~ ( c & c Z , ~ c ~ ~ )  is realized if the interaction constant 
U exceeds a certain threshold value Uo(V). The quantity Uo 
tends toward zero as V4O. In the "local band" picture 
which we have adopted, G-A(T=O) serves as an estimate 
for the point of formation of spontaneous spin polarization at 
the site Si, . The estimate derived in Ref. 14 for the model of 
a ( 1  11) - (2~  1) Si surface with parameters U/2t=2 and Vl2t 
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=0.2 gives Si,=0.37, i.e., here we are dealing with a magnet 
close to saturation. 

From photoelectron spectroscopic dataI5 the Coulomb 
repulsion energy of the electrons in the orbital of a broken 
valence bond on a (1 11) Si face is of the order of U- 1 eV. In 
the parameter region Ul2t- 1 the main contribution to the 
free energy of the magnet comes from spin density fluctua- 
tions. Moreover, the role of fluctuations is amplified in sys- 
tems with diminished dimensionality. In our previous paper4 
we showed that the orientational disorder in a banded anti- 
ferromagnet with a quasi-two-dimensional electron spectrum 
steeply decreased the true Niel point to values T ~ ~ G .  
Therefore, for a (1 11)-(2X 1) Si (C) surface, whose valence 
states are weakly coupled with the exchange states (and 
moreover, ts t , ) ,  the problem of identifying the properties 
of the phase with short-range magnetic ordering is com- 
pletely well posed. For a qualitative consideration of this 
problem it is reasonable to use the Hubbard model for a 
one-dimensional chain without charge doubling (V/U-+O) 
when modeling the electron structure of the surface band. 
The results obtained above can be useful on the experimental 
plane. 

Lannoo and ~ l l a n ' ~  indicated the existence of four sur- 
face branches of the electron spectrum (of which the two 
lower are filled) when charge and spin doubling coexist in 
the T-chain: 

This result does not agree with the experimental results 
of Uhlberg et a1.16 (photoelectron spectroscopy with angular 
resolution), which gave only one filled surface band for the 
(111) face of silicon. This discrepancy can be due to low 
experimental resolution in comparison with the "fine" struc- 
ture of the surface states near the boundaries of the bands. 
~ e c a l l ~  that in the short-range order regime the pseudogap 
(3 1) is preserved, but the singularities in the spectra near the 
boundaries are smeared out due to orientational disorder. For 
a (111)-(2~ 1) Si (C) surface, fluctuational smearing has the 
estimate tTIJ-0.1 eV, which is comparable to the splitting 
(59). 

To analyze spin correlations on a (1 11) - (2~ 1) surface of 
C or Si, it would be conducive to cany out an inelastic neu- 
tron scattering study. The analysis which we have given of 
low-energy spin dynamics (see Fig. 4) allows us to predict 
the basic outlines of the corresponding spectral characteris- 
tics. For a fixed energy of the particles incident on the atomi- 
cally pure face (at grazing angles), three different tempera- 
ture regions should be observed. At low temperatures T< T,, 
the peak of the neutron energy losses should be found at the 
frequency of the spin waves. As temperature increases, this 
peak should broaden and shift toward the "red" end of the 
spectrum. In the interval T,,<T< TI (T,, is given by formula 
(48), TI is found from the equality \/Z Sl(T) = 1) an inhomo- 
geneously broadened central peak should be observed, and 
for T>Tl there should be a simple, broad, diffuse peak. 

This work was partially supported by the Russian Fed- 
eration Research Fund, Grant 94-02-03506 (No. 566). 

APPENDIX 1 

The diagonal component Xl-(q,12) of the susceptibility 
x:;(a) has the form 

The nondiagonal component X; - (q , a )  satisfies the 
condition 

x & - ( s , a ) = x & - ( s *  ~ , a )  

and is equal to 

where we have used the notation 
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Two other estimates are related to the modulus of the 
Schrode integral (A5).  Thus, in the limit kl-+ 0 we have APPENDIX 2 

In the one-dimensional case the quantities (40), (43)- 
(45) entering into the dispersion equation can be expressed 
exactly in terms of total elliptic integrals: 

kK(k)  kE(k)  
' f 1 = Y 5 7  A2v3==, 

where 

where K ( k )  and E(k)  are total elliptic integrals of the first 
and second kind with modulus k = 2 tl  [(2t12 + A2] l t 2 ,  k t  
= is the complementary modulus;" 

where The corresponding dispersion equation takes the form 

is the total elliptic integral of the third kind." 
We obtain such a form of the fluctuational term 0 ( 6 , 0 )  

if after the usual transformation in Eq. (40) from a sum over 
quasimomenta k to an integral over energy Ek we introduce 
the new integration variable 

In the second limit, when k-+ 0 ,  we can neglect the vari- 
able x 2 + ( l  + under one of the radicals in the integral 
(B5). The latter integral is then rather easily evaluated by 
quadratures, and Eq. (46) reduces to 

and we also define a dimensionless frequency 
f i  = O k [ 2 t  s a ]  - I .  Substituting (A3) and (A4) into Eq. (42), 
we obtain Eq. (46). 

The integral (A3) is understood to be improper. It is 
uniquely determined by the following auxiliary condition: 
the real and imaginary parts of the frequency should have 
opposite signs, i.e., sgn(Re R.Im O ) = - 1 .  We stress that in 
the given problem the condition l ~ e  fi l<1-k1 is fulfilled; 
therefore, the function O(8,O) (A4) and (A5) will always be 
complex. 

We have made special use of the form (A4) for repre- 
senting the function O(S,O) in terms of an elliptic integral. 
Its explicit form (A5) allows one rather simply to obtain 
estimates for O(S,fl) in limiting cases. Thus, for example, 
for small values of the variable 161<1 we have 
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