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The interaction between an aerodynamic vortex and an electromagnetic vortex is investigated. As 
a consequence of the vortical motion of the gas and the interaction of the electromagnetic 
field with the gas particles, a waveguide is formed in the center of the aerodynamic vortex. It is 
shown that the dimensions of the aero-electrodynamic vortex depend on the structure of 
the electromagnetic field. (g 1995 American Institute of Physics. 

In the present article I consider a vortical formation con- 
sisting of an aerodynamic vortex and an electromagnetic vor- 
tex in interaction with each other. The intensity of the aero- 
dynamic vortex is so great that a highly rarefied region is 
formed in its center. Most of the energy of the electromag- 
netic vortex is concentrated in this region. Thus, in the 
present article I consider the case in which the confinement 
of the surrounding gas is due basically to the vortical motion 
of the particles, while the interaction of the high-frequency 
field with the medium leads to ionization of the gas and 
screening of the field. Note that under these conditions, the 
high-frequency field loses much less energy per unit time 
than in the case of self-localization (or self-focusing) of the 
electromagnetic field, in which expulsion of the plasma from 
the waveguide region is due to interaction of the electrons 
with the spatially inhomogeneous high-frequency electric 
field of the wave (see, e.g., Refs. 1-4). Note that the spatial 
dimensions of the described ring vortex depend on the struc- 
ture of the electromagnetic field. This makes it possible to 
obtain an intense aerodynamic vortex with a prescribed size 
of the vortex ring. 

Consider the case in which a wave propagates in the 
toroidal waveguide which is formed inside the ring vortex 
along a helical line. This means that the wave vector has 
components along the major and minor circumferences of 
the toms. Assuming that the radius of the vortex ring (the 
major radius of the torus) is significantly greater than the 
half-width (minor radius of the torus), to investigate the 
structure of the electromagnetic field of the vortex we will 
use a local cylindrical coordinate system. This being the 
case, we represent the electric field of the wave in the form 

Note that the quantities k, and K must make E(r,O,z,t) a 
single-valued function of position: 

under consideration that the radial component of the electric 
field is significantly smaller than E, and E o .  This implies 
that K''~+I. 

Note that a momentum flux due to the spatial inhomo- 
geneity of the electromagnetic field issues from the localiza- 
tion region of the field. The magnitude of this flux is deter- 
mined by the Maxwell stress tensor (see, e.g., Ref. 5). When 
the momentum flux of the electromagnetic field is balanced 
by the pressure of the surrounding plasma, the maximum 
value of the density of the localized electromagnetic field is 
proportional to the pressure of the gas at infinity.6 In Ref. 4 I 
considered an electromagnetic vortex under conditions in 
which there is partial charge separation: uncompensated 
positive charge in the inner region of the electromagnetic 
vortex, and excess negative charge in the outer region. In this 
case the momentum flux due to the inhomogeneity of the 
electric field is balanced not only by the thermal pressure of 
the plasma, but also by Coulomb attraction between the un- 
compensated charges in the inner and outer regions of the 
electromagnetic vortex. For a large enough number of un- 
compensated charges, the energy of the localized field is pro- 
portional to the square of the number of uncompensated 
charges. It is important to mention that the presence of un- 
compensated electrons does not lead to additional dissipation 
of energy of the high-frequency field in the plasma, since 
these electrons penetrate deeper into the waveguide region 
than the particles of the quasi-neutral plasma, and are almost 
completely isolated from the other components of the 
plasma. 

The structure of the vortex can be examined on the basis 
of the stationary equations of electrodynamics and the equa- 
tion of charge balance for the ionized gas, neglecting dissi- 
pation of energy in the high-frequency field and energy 
losses of the vortex itself due to the viscosity of the gas: 

where Ro is the radius of the vortex ring. We are interested 1 d d q  
only in those solutions of the electrodynamic equations in ; 5(r;i;) =4"e(ne-ni), (3) 
which the amplitude of the electric field E(r) tends to zero in 
the inner region of the electromagnetic vortex as r t O ,  and d d e2 d ~ ~ ( r )  

T,-n,-en,-cp+n,-5 -- 
in the outer region as r t w .  We will assume in the case dr d r  4mw dr - 0 ,  (4) 
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where cp is the potential of the constant electric field that 
arises due to charge separation in the plasma and due to the 
presence in the volume of uncompensated charges, and v is 
the velocity of vortical motion of the gas. 

In the region where the plasma is highly rarefied and its 
influence on the spatial distribution of the electromagnetic 
field can be neglected, we have 

The amplitude of the electric field reaches its maximum 
value at the point corresponding to the first maximum of the 
Bessel function, 

We assume that the field amplitude has only one extremum 
and that K'I~S 1. Then, we have for the effective width of the 
region where the electromagnetic field is concentrated 

Note that under the present conditions, the characteristic size 
of a spatial inhomogeneity in the field amplitude is much 
smaller than r o ,  but significantly larger than the wavelength: 
r0SArSX. It then follows from the equation div E=O that 

where ke= KlrO. 
In the case under consideration, the spatial distribution 

of the density of the quasi-neutral plasma in the vicinity of 
the waveguide region is determined mainly by the vortical 
motion of the gas. Neglecting the last term on the right-hand 
side of Eq. (4), which characterizes the pressure of the high- 
frequency field, and allowing for the quasi-neutrality of the 
plasma (n,-n,), we have from Eqs. (4) and (5) (see, e.g., 
Ref. 7 )  

dn, ~ ~ n ~ u ~  
(Te+Ti ) -+  -----=o. dr  r 

Hence, in the isothermal case, for the typical size of a spatial 
inhomogeneity of the plasma density, we obtain 

where v i  is the thermal velocity of the ion. We assume that 
near the waveguide region, the vortical velocity of the gas is 
large enough that SrGro. In this case, in the skin-layer re- 
gion, the high-frequency field supports ionization processes 
in the gas. Farther from the waveguide region, the plasma 
density decreases as a result of recombination and diffusion 
of the plasma into the surrounding neutral gas. 

There is a condition under which the pressure of the 
electromagnetic field due to its spatial inhomogeneity has an 

insignificant effect on the spatial distribution of the plasma 
density. When there are no uncompensated charges in either 
the inner or outer region of the electromagnetic vortex, or 
their number is so small that the pressure of the electromag- 
netic field is basically balanced by the thermal pressure of 
the plasma, we have 

where Eo=E(ro) is the maximum value of the electric field 
amplitude, and n: and T,* are the density and temperature of 
the plasma near the waveguide region, where the high- 
frequency field is screened by the plasma. 

Condition (12) constrains the energy of the electromag- 
netic field. We are also interested in the case in which the 
electromagnetic energy is high enough to support the plasma 
as long as a hydrodynamic vortex exists whose decay is due 
to the viscosity of the gas. In this regard, note that the vortex 
can contain much more electromagnetic energy than the lim- 
iting value in relation (12) when a positively charged dielec- 
tric is confined within the inner region of the electromagnetic 
field and there are uncompensated electrons in the outer re- 
gion. The pressure of the high-frequency field is then largely 
balanced by the Coulomb attraction of the electrons to the 
dielectric. Equations (2)-(4) allow us to determine the elec- 
tric field amplitude in this case. First we multiply Eq. (2)  by 
dEldr and then integrate over r from ro to m. Invoking the 
Poisson equation (3) and the equation of charge balance to 
the electrons (4) ,  we obtain 

where N is the number of uncompensated electrons per unit 
length in the z direction. In this case the magnitude of the 
uncompensated charge and, consequently, the energy density 
of the electromagnetic field are limited by the breakdown 
threshold of the dielectric. 

In the case under consideration, the spatial distribution 
of the density of uncompensated electrons and of the electric 
field amplitude in the waveguide region have qualitatively 
the same form as in the case investigated in detail in Ref. 4, 
where it was assumed that the quasi-neutral plasma sur- 
rounding the electromagnetic vortex has a high electron tem- 
perature and is confined by the pressure of the high- 
frequency field, and that the wave vector is directed along 
the minor circumference of the torus (k,=O). 

So far, we have discussed the equilibrium conditions for 
fields and particles in a two-dimensional cylindrical plasma. 
Now we take into account the curvature of the electric and 
magnetic field lines associated with the fact that the wave- 
guide formed in the ring vortex is toroidal. Employing the 
Maxwell stress tensor of the electromagnetic field, we obtain 
the following formula for the force acting along the major 
radius of the torus per unit length of the waveguide: 
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where the integral is taken over the entire transverse cross 
section of the wave guide and R is the distance from the axis 
of the torus to the given point. Under the conditions under 
consideration, the major radius of the torus is significantly 
greater than the minor radius, Ro%r0, so we can set R = Ro 
in the integrand in Eq. (14). Noting that Ar%h and employ- 
ing relation (9) ,  with the help of formula (14) we obtain 

where the bar above E~ denotes averaging over r in the 
region Ar. 

From (15), it follows that the vortex is in the equilibrium 
state (Ek=O) when 

We now show that (16) characterizes stable equilibrium 
with respect to the radius Ro of the ring vortex. Note that any 
change in Ro should leave the aerodynamic energy of the 
vortex 

unchanged, where p is the density of the gas and the integral 
is taken over the entire volume occupied by the vortex. 

For simplicity, we assume that the density of the gas has 
a sharp boundary, i.e., we assume that it falls with decreasing 
r only near the waveguide region. Assuming that 
Ro%ro%Ar, we then obtain the following estimate: 

R 0 
W =  2 n 2 R o p , ~ r o  r v 2 ( r ) d r =  const. (18) 

Formula ( 1  1) gives v ( r o a  r:l2 for the vortical velocity of the 
gas near the waveguide region. Noting that v ( r ) a l l r ,  we 
obtain v 2 ~ r ~ l r 2 .  With the help of (18), we find that 

R 0 
~ ~ r : l n -  = const. 

'-0 

Hence, for ln(Rolro)%l we have 

Now observe that a change in the parameters of the tor- 
oidal waveguide should leave the number of waves of the 
electromagnetic field unchanged along the major and minor 
circumferences of the torus, i.e., ke-- 1 lro and kz- l / R o .  
This being the case, with the help of relation (19) we obtain 

Employing (20) together with (15) near the equilibrium 
point, which is determined by condition (16), we find that 

Thus we have shown that the equilibrium is stable: any 
change in the radius of the ring vortex results in a force 
returning the system to the equilibrium state. 

Finally, note that an aero-electrodynamic vortex can 
arise in the interaction of high-power electromagnetic radia- 
tion with a target or, in the case of a pulsed electric discharge 
in a gas, if lasing takes place simultaneously with the forma- 
tion of the vortex flux of the gas. 
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