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Stimulated Mandel'shtam-Brillouin scattering of a powerful pump wave (yo> K V ~ ,  where yo is 
the instability growth rate, K is the wave vector of the low-frequency perturbation, and v, 
is the ion-sound velocity) is studied under conditions in which dissipation and extraction of the 
energy of the modified low-frequency wave from the interaction region have no time to 
take effect. Expressions are derived for the amplitudes of the waves in the linear scattering stage, 
both in the presence of an initial frequency offset A o  between the high-frequency waves 
and in the absence of such an offset. It is shown that the solution at Aw=O is self-similar for times 
shorter than ~ I K v , ,  before the wave properties of internal motion in in density perturbations 
of the medium come into play, and the rate at which instability develops is at its highest. 
Experimental data are interpreted on the basis of the theoretical ideas developed. O 1995 
American Institute of Physics. 

The development of more and more powerful sources of 
electromagnetic radiation of different frequency ranges im- 
poses new demands on the theory of interaction of such ra- 
diation with matter. One of the most important effects ac- 
companying the propagation of a powerful wave in a 
medium is stimulated scattering and, in particular, stimulated 
Mandel'shtam-Brillouin scattering (SMBS). The effects are 
widely discussed in the literature devoted to high- 
temperature laser plasma, in which various high-intensity ra- 
diations often affect one another, producing a complex scat- 
tering On the other hand, presently available high- 
power sources of microwave radiation-free-electron 
lasers--make it possible to cleanly initiate the process fairly 
in a large-scale laboratory plasma of a given con~entrat ion.~~~ 

The modified decay of a high-frequency wave into a 
similar wave and sound in infinite plasma has been thor- 
oughly ~tudied.~ In a layer, such a backscattering process has 
been studied mainly numerically.738 Below we examine it in 
an approximation with a given field of the pump wave, and 
make some estimates for the nonlinear stage. 

We begin with the following system of equations for the 
complex-valued amplitude of a quasimonochromatic electric 
field of high-frequency electromagnetic waves, 
E(t,x)exp-'%', and the perturbation of the concentration n of 
a homogeneous plasma (both quantities are assumed to vary 
slowly with time): 

with wo the pumping frequency, E =  1 -(No+n)INcr the 
plasma's dielectric constant, No and Ncr= moi/4.rre2 the un- 
perturbed and critical concentrations, and m and M the elec- 
tron and ion masses. The right-hand side of the equation for 
n describes the effect of the averaged ponderomotive force 
of high-frequency radiation pressure, and dissipation is 
ignored.') 

Substituting into Eqs. (1) the solution for E in the form 
of the sum of the impinging wave Eo,k, and the reflected 
wave E l  ,kl and the solution for the perturbation n in spatial 
synchronism with these waves, 

(k,,, , and K are the corresponding wave vectors), we arrive 
at the following equations for the amplitudes E l  and 6, as- 
suming that these quantities change little on the scale 
2rrlko: 

where 

are the coefficients of nonlinear interaction, o,= KV,, and 
Eo=const. In the first equation in (3) we have ignored the 
term with aEl  ldt, since we assumed that the time that it 
takes the scattered fast wave to travel through the layer is 
much shorter than the characteristic time that it takes for an 
instability to develop. 

The boundary and initial conditions imposed on the sys- 
tem of equations (3) are assumed to be 

(A o = oo - w, is the initial frequency offset between the in- 
teracting high-frequency waves), bearing in mind that in our 
case (high fields), in contrast to ordinary SMBS, instability 
can also develop from initial fields unshifted in frequency in 
relation to the pump field, and in particular , when this field 
is partially reflected in a linear way from regions beyond the 
layer (e.g., a region with critical concentration, the chamber 
walls, e t ~ . ) . ~ )  
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The system of second-order partial differential equations 
(3) can be analyzed by a method similar to the one used in 
analyzing a similar (first-order) system for ordinary 
SMBS,'O*"-US~~~ the Laplace transform, for example. But 
we start with a simpler case where we neglect the term 
w56 (short times) in (3) and put Ao=O in (4). The equations 
then resemble those describing time-dependent stimulated 
temperature scattering (and SMBS, apart from the factor i 
preceding the coefficient a), the only difference being that 
the new equations contain a higher-order derivative of Z. 
Hence, in r(3) we might expect self-similar solutions analo- 
gous to the existing solutions of the processes cited above 
(see, e.g., Ref. l~!).~) Indeed, it can easily be verified that in 
this case the self-similar substitution b=iilt2 and 5=xt2 
transforms (3), in accordance with (4), to the following equa- 
tion: 

where A =   PIE^^^. All necessary initial conditions for this 
equation can be obtained from (5) and from the fact that 
E (5= 0) = $ [see (4)], which in fact is the only condition 
needed in what follows. As in Ref. 12, we seek an asymp- 
totics solution of Eq. (5) in the form 

where p ( 0  is a weakly varying factor, and q is a constant. 
Substituting (6) into Eq. (5) and keeping only the first de- 
rivative d p l d t ,  we arrive by successive approximation at the 
following: 

Here the constant a can obviously be determined only from 
the exact solution, which for this type of equations can be 
found by expanding E l  in the neighborhood of the regular 
singular point (for Eq. (5), .fl = 0)  (see Ref. 14): 

The coefficients a, can be determined successively via re- 
cursion relations ( a o  is determined by the initial value of 
iT) obtained by substituting this series into Eq. (5). As a 
result we get 

which after matching (8) with (6) for large 5 yields 

Now we examine a more general case, the complete sys- 
tem of equations (3), but with A o =  0 in (4). Normalizing the 
terms in the second equation in (3) to W: and then applying 
the Laplace transformation to the functions of the new time 
variable ?= wst, from the resulting system of equations com- 
bined with (4) we determine the image function F of the 
amplitude of the scattered wave, which we write here as 

We express the exponential function by a Taylor series in 
powers of z=p-2 in the neighborhood of the point z= 0. As 
a result, Eq. (10) acquires the following form 

Now we can use the expansion theorem15 to go from F(p,x) 
to the original function E l  ( r , ~ ) .  

Clearly, if we allow only for the first terms within the square 
brackets, the series (12) degenerates into (8). This require- 
ment in fact means that we are considering times for which 
o , t 5  1. Inclusion of the other terms in (12) leads to a slow- 
ing down in instability development, just as the term o:Z in 
the equation for the density in (3) in the infinite-plasma 
model reduces the growth rate of the modified decay.6 More- 
over, note that this analogy makes it possible to simplify Eq. 
(12), for instance, in the case discussed below of powerful 
short radiation pulses in which os t  > 1 is still not too large. 
Indeed, if in this case we write the solution in the form (6),  
we arrive at the following equation for the slowly varying 
pre-exponential factor p( t ,x)  (which is no more self- 
similar): 
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This equation has a solution in the form 
p(t,x)=p1(t,x)p2(t,x), where p l = p ( O  of Eq. (7) is the 
solution of Eq. (13) as w,-40, and p2 can be found by the 
following procedure. According to Eq. (6), the "instanta- 
neous" increment of the given instability is 

We now express in terms of this increment the slowing down 
of the process, assuming the process to have the same form 
as in the time-dependent problem (infinite plasma): 

o;t2 
Xexp --a [ ( i q ~ x t ~ ) ~ "  1 ' 

where a is a constant, and we have assumed that 

Clearly, the product plp2 at u= 4 satisfies Eq. (13) if (16) 
holds. However, the same product approximately satisfies 
Eq. (13) for other fairly arbitrary constants a in front of the 
expression in the square brackets in (15). Comparison with 
the exact solution (the present case with (12)) makes it pos- 
sible to select the appropriate constant. As a result we get 

where we have set q=6.75 (see Eq. (7)). This function 
serves as a good approximation of the series (12) for times 
obeying condition (16). Note that the slowness of variation 
of the function p(t,x) needed for the approximation (17) to 
be correct is consistent with (16), as can easily be seen from 
(16). 

Finally, we examine the situation where Ao#O in (4). 
The approach is the same as in the previous case. The image 
function F differs from (10) in its pre-exponential factor, 
which is actually the image of the boundary condition (4) 
(x = 0). The modification is 

(note that here we have also gone to the new time variable 
t-=w,t). Expanding the first factor in (18) powers of 

(iA o l p  w,)" in the neighborhood of p = a, and multiplying 
the latter with the series ( l l ) ,  we also arrive at a series rep- 
resentation of F (p ,x) 

where 

with the coefficients Bh given in (ll) ,  and the square brack- 
ets in the upper summation limit denoting the integral part of 
the number within the brackets. 

From (19), by the expansion theorem yields 

This expression, like (12), can be simplified in the limit simi- 
lar to (16). Here the equation similar to (13) has the form4) 
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Aot  
9 1  

( q ~ x t * ) " ~  

and (16) holds, the equation has the approximate solution 

where plpz is the solution of Eq. (13) found earlier, and 

[cf. (15) and (17)l. The factor 2.5 here has also been found 
through comparison with the exact solution (20). Thus, the 
expression for the field E,(r,x) is represented in this case by 
the right-hand side of (17) multiplied by p3exp(iAor). 

Thus, as Eq. (23) shows, in contrast to processes of 
modified decay in infinite media, where energy is pumped 
"up" and "down" the spectrum more or less symmetrically, 
with "upward" pumping (modulation instability), perhaps 
prevailing, the situation here is quite different: there is strong 
"downward" scattering (Ao>O). To estimate the linewidth 
of this scattering, we can use the same formula as in ordinary 
decay processes (see Eq. (14)): 

Irl-IAwliml, or ' J ~ - I A w ~ ~ ~ ~ ,  

which follows from Eq. (17) and (23). The exact solution 
(20) shows that the line is somewhat narrower in the anti- 
Stokes direction and somewhat wider in the Stokes direction, 
as stated earlier. 

Stimulated Mandel'shtarn-Brillouin backscattering of 
powerful short pulses has been studied quite thoroughly in 
experiments in the microwave The source of intense 
radiation, a relativistic carcinotron, generated single pulses 
whose length was 7-0.4 ps ,  and power I. was several tens 
of megawatts; the wavelength was 3.2 cm. The width of the 
spectrum being investigated was varied in steps , a -2  MHz, 
4 MHz, or 15 MHz, depending on the which of three oscil- 
lator designs was chosen. A quasioptical line with a transmis- 
sion factor of approximately 50% was used to focus the mi- 
crowave radiation inside a large vacuum chamber 360 cm 
long and 62 cm in diameter containing a previously prepared 
nonisothermal helium plasma (T,-20 eV and T i S l  eV) 
with maximum concentration No-6 X 10" cmU3- N , , / ~ .  
The beam's cross-sectional distribution was Gaussian. Inside 
the active scattering zone (in the beam caustic), roughly 23 
cm in diameter and about 100 cm long, the oscillator electron 
velocity (v- - 2 X 10' cm sC1) was of the order of the 
thermal velocity, and hence the frequently employed weak- 
coupling approximation (yo< w,) is certain to be violated.') 

The experimentally observed temporal variation of the 
reflection coefficient ( I 0 -  20 MW and the spectrum band- 
width 6f-4 MHz), the dependence of the peak value of the 
reflection coefficient on the incident power for various spec- 

FIG. 1.  T i e  dependence of the reflection coefficient for an incident 
20-MW beam of microwave radiation. 

tral characteristics of the radiation from the microwave 
source, and the angular scattering diagram are shown in Figs. 
1-3 

Figure 1 depicts the time dependence of the reflection 
coefficient for a 20-MW beam (nonlinear mode) normalized 
to the reflection coefficient corresponding to the low-power 
case, RNL(t)IRL (R L-32%). In the first 100 ns, the SMBS 
process is masked by spurious reflections from absorbers of 
microwave radiation and the structural elements of the 
vacuum chamber, since the initial level of the Stokes wave 
(reflection almost strictly backwards) constitutes only a small 
fraction (- of the overall reflection, which has a fairly 
isotropic angular spectrum. A nonlinear reflection emerges, 
tth- 0.1 p s ,  the instantaneous increment, which according to 
(14) (the linear stage in stimulated scattering) is defined as 
ReT-2X lo7 s-' (o,th-0.63 and Eo-7 kV cm-'), is 
close to the value observed in experiments, -(2-3) 
X lo7 s-'. By this time, as Eq. (17) implies, the gain in the 
intensity of the scattered Stokes wave reaches 

FIG. 2. Reflection coefficient as a function of the power of a microwave 
radiation beam with a frequency spectrum of the following width 6f: 2 MHz 
(curve I ) ,  4 MHz (curve 2). and 15 M H z  (curve 3). 
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J, rel. units 

FIG. 3. The scattering diagram for the reflected radiation at high 
1,-20 MW (0) and low I,= 10 kW (A, the linear case) power (R, is the 
radius of the chamber). 

which corresponds to the threshold of SMBS observation. 
It was found that reducing the power of the incident 

beam reduces the reflection coefficient RNL (see Fig. 2). Here 
the onset time of nonlinear scattering was found to be shifted 
closer to the end of the microwave pulse. At Z o = I o  th the 
reflection coefficient RNL at t- 7 be the spurious linear re- 
flection coefficient RL, and it becomes impossible to detect 
SMBX. Clearly, in this case the increase in intensity of the 
Stokes wave up to the observation threshold of stimulated 
scattering must correspond to the condition (24), on the basis 
of which an estimate of the threshold power can be made. 

In the experiment with Sf-4 MHz, we see that the 
threshold power was Zo th-9 MW. To estimate it we must 
turn to Eq. (20) or Eq. (23), each of which takes into account 
the initial frequency offset between the interacting waves, 
since at large times t- T they become significant. Indeed, the 
"average" distance between the modes of the amplitude 
spectra of the pump wave and the wave reflected from the 
chamber walls, which is actually the "average" distance be- 
tween the modes of the pump wave itself, is Ao- 2&f, 
and 2 7~8 f - r- 10. AS a result, the simplified expression (23) 
[together with (17)] yields an underestimated value of 
(E (L) 1 2, since the condition (22) does not hold. However, a 
calculation using the exact solution (20) yields agreement 
with the threshold value SFth introduced earlier. 

At the same time, for beams with a lower Sf 
(-2 MHz; curve 1 in Fig. 2) the results of calculations by 
(17) and (20) at t- T are still comparable and yield a value 
10 th-5 MW, and also agree with the experimental data.@ 
But if the pump wave spectrum is broad (curve 3 in Fig. 2), 
the wave's modes interact differently with the waves of the 
wideband reflected signal produced in this case, with only 
those modes effectively scattered that wind up within the 
linewidth specified above. 

To understand the nonlinear stage in stimulated scatter- 
ing, which follows the linear stage (Fig. I), the following 
factors must be taken into account. Power measurements of 

the incident and reflected waves were done outside the cham- 
ber, roughly one meter from the active zone. The measured 
radial distribution of intensity in the reflected beam, J l ( r ) ,  
depicted in Fig. 3 proved to be about a factor 1.5 wider than 
that of the incident beam, Jo(r). At the same time, owing to 
the exponential nature of the scattering process (6), the ef- 
fective diameter of the gain region is smaller than the active 
zone width by a factor of approximately two, as probe mea- 
surements have Note in this connection that the 
quantity directly measured in the plasma was the decrease, 
along the radius r measured from the chamber's axis, of the 
amplitude of the low-frequency wave 2 i  (the concentration 
perturbations). However, and this can easily be understood, 
the amplitude of the Stokes wave behaves in a similar way. 
The quantity i was found to decrease e-fold over a distance 
of approximately 7 cm from the axis, and the scale of de- 
crease, liI2, is obviously even smaller, roughly 5 cm (for 
comparison, from estimates based on (17) and assuming that 
~-exp(-?l(12)~), we obtaint 9.5 cm and 7 cm, respec- 
tively). 

Thus, the scattered beam, following its path in the 
plasma after amplification and then leaving the plasma, ex- 
periences significant diffractive and refractive scattering. As 
a result the quantity I E 1 2, depicted in Fig. 1 ?) proves to be 
smaller than its value at the exit from the active zone by a 
factor of at least three to four (the energy flux in the Stokes 
wave is conserved), and the SMBS instability saturation ob- 
served in the experiments is probably related primarily to the 
depletion of the pump wave ("corrosion" of the central part 
of the beam), and to the nonmonochromatic nature (Sf) of 
the radiation and the frequency shift due to the term ot i i  in 
Eqs. (3). To estimate the first factor (the others have already 
been mentioned) we can use Eq. (17), with I E,I t replaced by 
J ; J I E ~ ~ ~ -  I E ~ ( ~ ' , L ) [ ~  dt' (here the radicand is a constant 
of the motion in x for the system of equations (3) augmented 
by a similar equation for the pump wave).') 

In all probability, there should be no low-frequency non- 
lineariteis for the short pulses considered here. Indeed, the 
experimentally observed relative perturbations of the plasma 
concentration, which in fact correspond to the Mach numbers 
A in them, amount to nlNo50.05. Hence the characteristic 
times of triggering such mechanisms (low-frequency hydro- 
dynamic instability) are T ~ - ( A O ~ ) - ' *  1 ps. 

On the other hand, in the transition from (1) to (3) we 
also neglected the spatial derivatives in the equation for n 
related to nonlinearity. This is likely to be permissible at 
least up to times 

where the estimate has been based on the ordinary SMBS, in 
which for LC, we have taken the smallest nonlinear spatial 
scale possible in the problem. We also believe that at ex- 
tremely high power, the role of the well-known double 
SMBS effect17 diminishes because in scattering from a re- 
gion of critical concentration, the wave winds up in reso- 
nance with the pump wave, a situation considered earlier in 
this paper. 
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')clearly, this one-dimensional model does not incorporate low-frequency 
ion-acoustic nonlinearities (see, e.g., Ref. 9) and, hence, can be used to 
describe the SMBS of powerful and fairly short pulses (see, e.g., the cor- 
responding estimate at the end of the paper). 

' h s e  conditions correspond to a situation in which there is a high- 
frequency wave at the entrance to the layer (x=O) propagating in the 
direction opposite to the pump wave; the amplitude of this high-frequency 
wave is much greater than the level of spontaneous scattering on thermal 
fluctuations of the medium's density. The condition imposed on i; in (4) 
follows from the continuity equation for ions, which in turn leads to the 
equation for n in (I) (n=ni--n,), with allowance for the fact that 
vi(Oj)=O, where vi is the hydrodynamic ion velocity. The boundary 
value i(1.L) can be neglected at least up to times t4Llvs ,  when even if 
the growth rate (see below) drops to values characterizing the transition of 
the process into ordinary SMBS, the transfer of the energy of the acoustic 
energy wave has still no effect on the solution over almost the entire layer, 
except a small region near the layer's right boundary (x=L, where the 
pump wave enters the medium), where the solution is modified by the 
value k(t,L). This is the well-known condition for time-dependent SMBS. 

3 ) ~ o t e  that Kim et al.I3 pointed out the similarity, in the given approxima- 
tion and in the nonlinear scattering stage, both of the solutions for the 
processes of stimulated temperature scattering and modified decay in an 
infinite plasma and of the methods by which these solutions were obtained. 

4tThis equation can easily be obtained from Eqs. (3) with the factors 
exp( - iAot) on the right-hand sides (this actually means that the offset 
factor has been shifted from the boundary condition (4) to the equations). 
Obviously, to match the solution of (21) and (6) with (20) the first must be 
multiplied by exp(iAot). This difference emerges automatically in the 
given transition and is described in (21) by the term 2iAot in the first set 
of parentheses. 

' '~ote  that on the basis of the analysis done by Mounaix et a1.I6 it is natural 
to expect that the initial equations (1) can be applied to a broader range of 
fields than those for which vTlv;,< 1. 

 ere we have allowed for the fact that in addition to the increase in the 
intensity of the Stokes wave in the boundary value problem considered 
throughout this paper, the intensity increases somewhat initially in the 
infinite plasma model with growth rate yo (y0e6X lo7 s-' for 
1,-20 MW). This continues up to times t,2E(L/c)00 lk lc  (allowing for 
retardation of the fast wave in the plasma). Hence 33h is several times the 
value given by (24). At the same time, we note that we cannot constrain 
t, and estimate it on the basis of the yo-+r(t,x) transformation, where 

r(1.x) is the growth rate calculated by (6). since the asymptotics of (8) 
does not yet apply at such short times. 

7)actually, the reflection coefficient is defined as the ratio of the squares of 
the absolute values of the fields (reflected and incident) at the beams' axis. 

 ere it must be borne in mind that as the power of the wave travelling 
through the plasma decreases, so does the power of the wave reflected 
from the back wall of the chamber, i.e.. the quantity LTvirtually decreases. 
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