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The problem of steady two-dimensional supersonic flow about slender pointed bodies is studied 
in dispersive hydrodynamics. The equivalence of this problem to the Gurevich-Pitaevskil 
evolutionary problem of dissipationless shock waves in Korteweg-de Vries hydrodynamics is 
shown. The Whitham technique is used to derive a number of exact solutions describing 
different cases of flow around objects in dispersive hydrodynamics. O 1995 American Institute 
of Physics. 

1. INTRODUCTION 

The theory of supersonic flow around objects is one of 
the classical problems of The nonlinear 
system of Euler equations describing two-dimensional time- 
independent supersonic flows in ideal hydrodynamics is hy- 
perbolic. When supersonic flow occurs around objects it is 
accompanied by wave-breaking singularities. In ordinary dis- 
sipative hydrodynamics this gives rise to a shock wave, con- 
sisting of a strong discontinuity on which the flow changes 
its characteristics discontinuously (Fig. 1). The flow ahead of 
the shock wave is unperturbed. Behind the shock wave the 
flow is described as before by the Euler equations, but now 
the gas density is higher than in the incident flow, and it has 
a higher temperature. Heating takes place due to the dissipa- 
tion of some fraction of the energy of the flow into the shock 
wave. 

In dispersive hydrodynamics, where dissipation is com- 
pletely absent, the ffow behind the point where singularities 
develop has a fundamentally different character. A broad re- 
gion develops here, filled with small-scale oscillations; this is 
a dissipationless shock wave?-l2 The distribution of the os- 
cillations has a substantial effect on the flow pattern, so that 
in addition to the average properties of the flow in dispersive 
hydrodynamics it is necessary to also determine the structure 
of these oscillations. 

We propose to study the supersonic flow around objects 
in dispersive hydrodynamics in a series of papers. The solu- 
tion of such problems is not only important for a number of 
problems in the dynamics of low-density plasmas (e.g., in 
the flow of the solar wind around the magnetospheres of the 
earth and planets), wave hydrodynamics on water, etc., but is 
also of independent theoretical interest. 

The principal difference between the present work and a 
large number of treatments devoted to both numerical and 
analytical studies of plasma flowing around objects is the 
purely dissipationless nonlinear self-consistent formulation 
of the problem, which does not require the imposition of any 

supplementary conditions (such as the Rankine-Hugoniot 
adiabat) on a shock wave. 

In the present work we treat the problem of supersonic 
flow around slender pointed bodies, when the general equa- 
tion of two-dimensional time-independent dispersive hydro- 
dynamics can be reduced to the Korteweg-de Vries (KdV) 
equation.13 Since the perturbations introduced into the flow 
by the slender body are small and do not significantly change 
the average properties of the flow, we can devote most of our 
attention to the structure of the waves that are excited. As an 
e l e m e n t .  example we consider the system of equations de- 
scribing two-dimensional time-independent flow in a highly 
nonisothermal (T i4T , )  plasma: nonlinear dispersive ion- 
acoustic waves. In Sec. 4 a formal derivation of the KdV 
equation is given for the problem of ion-acoustic flow around 
a slender body, and it is shown that the two-dimensional 
time-independent problem of flow around an object corre- 
sponds to a one-dimensional Gurevich-PitaevskiK evolution- 
ary problem for the dispersive analog of a shock wave.' The 
initial data for the KdV equation are obtained by differenti- 
ating the function specifying the shape of the object around 
which the flow takes place. 

To date the Gurevich-Pitaevskii problem has been effec- 
tively integrated for a broad class of initial In the 
Gurevich-Pitaevskii formulation the dissipationless shock 
wave region is described by a modulated quasisteady solu- 
tion of the KdV equation in which the modulation param- 
eters satisfy the averaged Whitham equationsI4 with special 
boundary conditions resulting from matching the average 
flow in the wave zone with the external continuous flow at 
the boundaries of the dissipationless shock wave. The 
Whitham modulation system for the KdV equation consists 
of three equations and has a diagonal (Riemann) form. The 
Gurevich-Pitaevskii problem simplifies considerably in a 
number of cases of flow around objects when it is possible to 
fix one of the Riemann invariants and treat the so-called 
quasisimple dissipationless shock wave. The modulation sys- 
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2. GENERAL QUALITATIVE PICTURE OF FLOW AROUND 
OBJECTS IN DISPERSIVE HYDRODYNAMICS 

FIG. 1.  Flow around a wedge in dissipative hydrodynamics. 

tem describing the quasisimple dissipationless shock wave 
consists of two equations and can be integrated by the 
hodograph method. This problem was solved by Gurevich 
et al." using a generalized form of the hodograph transfor- 
mation (the ~sarev'' method) and the "scalar potential" 
technique, which reduces the complicated system of 
hodograph equations to the well-known Euler-Poisson equa- 
tion. In Sec. 5 the procedure for integrating the Gurevich- 
Pitaevskii problem is briefly summarized for arbitrary mono- 
tonic initial data. 

The behavior associated with the problem of flow around 
an object is revealed when the (x , t )  formulas are recalcu- 
lated and interpreted in terms of two-dimensional steady 
flows. A number of specific examples of flow around mono- 
tonic shapes are studied in Sec. 6. The self-similar problem 
of flow around a wedge and the problem of flow around 
bodies whose shape is given by the power-law function 
y = axq are treated. For 1 < q< 2  the solution of the modula- 
tion equations possesses a generalized self-similarity. The 
associated explicit formulas for the solution and the dissipa- 
tionless shock wave boundaries are given. For q s 2  the so- 
lution cannot be described using the KdV equation, since at 
the point where breaking occurs the perturbation amplitude 
formally becomes infinitely large. But for q 3  2 this happens 
only in a small neighborhood of the second boundary of the 
body, so this problem can be treated using the KdV equation 
and is of considerable interest, because in this case the dis- 
sipationless shock wave associated with the flow separates 
from the object. An important difference between this and 
the analogous effect in dissipative hydrodynamics (Ref. 1 ,  
Sec. 115) is the absence of a weak discontinuity propagating 
from the object to the point where the shock wave forms. In 
the case q >  2 (close to the boundary) it becomes necessary 
to integrate the complete modulation system consisting of 
three equations. 

The problems of flow around an object that give rise to a 
two-sheet hodograph transformation (flow around an infinite 
wing, flow around bounded objects, etc.) require further in- 
vestigation. 

In dispersive hydrodynamics there is a characteristic 
spatial scale, the dispersion parameter D. We will treat only 
hydrodynamic flows, i.e., flows whose characteristic scales 
satisfy 1%D. 

Note that the analogous spatial scale in ordinary dissipa- 
tive hydrodynamics is D , . ~ c , l v  (here c,  is the speed of 
sound and v  is the kinematic viscosity), and there the condi- 
tion 1% D is assumed to hold. 

Nonlinear time-dependent one-dimensional flows in dis- 
persive hydrodynamics have been treated 
previously.5~6~8-'2~16 From these results we can deduce the 
following properties of dispersive hydrodynamics: 

1. Before the development of singularities, hydrody- 
namic flows in both dispersive hydrodynamics and ordinary 
hydrodynamics can be described by the Euler equations. Sin- 
gularities develop at a point where a simple Riemann wave 
breaks, or in the more general case at points where charac- 
teristics intersect. 

2. Beyond a point where wave breaking occurs in dis- 
persive hydrodynamics, small-scale waves develop. A region 
which spreads as a function of time can be distinguished 
where oscillations have a nonlinear character and their am- 
plitude a  does not decrease with time t. We call this region a 
dissipationless shock wave. 

3. The oscillations in a dissipationless shock wave have 
a completely determined structure. For media with negative 
dispersion they begin with a chain of solitons whose ampli- 
tude gradually decreases, and they go over to a sinusoidal 
wave. The dissipationless shock wave has a head soliton at 
its leading edge, while on its trailing edge the oscillation 
amplitude goes to zero. In media with positive dispersion the 
order of motion is reversed: the sinusoidal oscillations are in 
front and the solitons behind. 

4. In the case of negative dispersion the oscillations be- 
come weaker behind the dissipationless shock wave algebra- 
ically as a function of time: amt", a= - 112, - 113. They 
vanish asymptotically in the limit t+w.  Thus, behind the 
trailing edge of a dissipationless shock wave a region can be 
distinguished which contains no oscillations and is described 
by the Euler equations. In front of the dissipationless shock 
wave the flow is unperturbed and continuous as before. The 
Euler equations therefore fail to hold only in the dissipation- 
less shock wave region. 

5. The change in the average quantities (density and 
flow velocity) associated with passage through the dissipa- 
tionless shock wave region, if the latter is formed as a result 
of the breaking of a simple Riemann wave, is described by 
equations derived by Gurevich and ~eshcherk in .~  Thus, in 
dispersive hydrodynamics, as in ordinary hydrodynamics, a 
transition is possible through the shock-wave region; the 
Rankine-Hugoniot relations are replaced by the Gurevich- 
Meshcherkin relations. 

6. In a number of cases an important phenomenon oc- 
curs in which the leading soliton breaks if its amplitude at- 
tains a certain value.6 After breaking occurs the flow be- 
comes multistreaming, and consequently is no longer 
described by the equations of dispersive hydrodynamics. The 
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shock wave then changes in structure. As the amplitude dis- 
continuity increases it is gradually smeared out, and the flow 
assumes a multistreaming kinetic character.I7 

Taking this behavior into account, we can propose the 
following qualitative picture of two-dimensional flow around 
objects in dispersive hydrodynamics. Figure 2 shows the 
flow around the leading part of the object. Taking the flow 
velocity (in the x direction) to be relatively large, 
u,= uo%c,, in the first approximation we can disregard the 
variation of u,. Then the perturbations propagate in the y 
direction and are advected in the x direction with constant 
velocity uo: the propagation in x acts in a manner like a 
sweep in the time t = d u o .  This allows one in part to transfer 
the well-known time-dependent solutions (Refs. 5, 6, 8-12, 
16) to the theory of two-dimensional flow around an object. 
The qualitative picture of flow around a wedge thus con- 
structed is shown in Fig. 2a. Here the region of the dissipa- 
tionless shock wave is indicated by hatching; s is its leading 
edge, where the solitons are traveling (for negative disper- 
sion); and o is the trailing edge. The amplitude of the oscil- 
lations in the dissipationless shock wave is constant along 
the lines ylx=const, while the oscillation amplitude drops 
off as one goes from the leading edge toward the trailing 
edge. Between the trailing edge and the surface of the object 
there are also oscillations, but their amplitude decreases 
monotonically with x as x-"~ .  The velocity of the incident 
flow undergoes a rotation inside the dissipationless shock 
wave; in the region behind the dissipationless shock wave it 
is directed parallel to the surface of the object. The picture of 
the deflected flow can be seen to resemble that in ordinary 
hydrodynamics (Fig. l), but only in dispersive hydrodynam- 
ics is there a continuous rotation of the velocity within the 
dissipationless shock wave (Fig. 2a), rather than a sharp dis- 
continuity. The average gas density increases in passing 
through the dissipationless shock wave; beyond the dissipa- 
tionless shock wave in flowing around the wedge it is a 
constant, n = n2 (Fig. 2a), as in ordinary hydrodynamics, but 
the value n2 is different. 

Figure 2b shows flow around a body with a sharp for- 
ward portion. Under some conditions the dissipationless 
shock wave can begin at a point outside the body, as in 
ordinary hydrodynamics, and not on its surface. A dissipa- 
tionless bow shock wave develops in flow around a blunt 
body. In this case the flow is two-valued immediately behind 
the front dissipationless shock wave. We can assume that the 

FIG. 2. Flow around bodies in dispersive hy- 
drodynamics: a) flow around a straight wedge; 
b) separation of  the dissipationless shock 
wave from the boundary of the object; c) flow 
around a blunt body. 

entire region from the leading edge of the dissipationless 
bow shock wave to the surface of the body is filled with 
oscillations (Fig. 2c). In the transition to the supersonic lat- 
eral region a shock-wave structure develops similar to that 
shown in Fig. 2a; the oscillation amplitude in the Euler zone 
between the surface of the object and the trailing edge of the 
lateral wave gradually decays. 

In the region in back of the object a rarefaction wave 
develops, causing a gradual drop in density. The average 
density and velocity profile here is described by Eulerian 
dynamics, since qualitatively it should be completely similar 
to that observed in ordinary hydrodynamics. In particular, a 
second shock wave should develop as a result of the flows 
converging on the axis behind the body (Fig. 3). In disper- 
sive hydrodynamics this is a dissipationless shock wave, i.e., 
it has an oscillatory structure and expands as a function of 
distance from the body. Thus, two dissipationless shock 
waves propagate outward behind the body in either direction. 
Note that for large x the structure of the nose and tail dissi- 
pationless shock waves differ fundamentally. The nose dissi- 
pationless shock wave decays into a large number of nonin- 
teracting constant-amplitude solitons, the distance between 
which increases with distance in the x direction (a soliton 
~ave ) .~*" . ' ~  This differs substantially from the asymptotic 
behavior of a shock wave in ordinary hydrodynamics. The 
trailing dissipationless shock wave is converted asymptoti- 
cally into a linear wave packet whose amplitude decreases as 
mx- 112 (Ref. 18). 

FIG. 3. Flow around a finite body. 
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The qualitative picture presented here will be confirmed 
in the following section of this paper, where we present cor- 
responding exact solutions of the equations of dispersive hy- 
drody namics. 

3. STARTING EQUATIONS; DISPERSION RELATIONS 

To be specific let us consider a system describing non- 
linear flows in an unrnagnetized two-temperature (T14Te) 
plasma:6.16 

Here n and u=(u ,v ,w) are the ion density and velocity, 4 is 
the electric potential, and ~ = ( ~ ~ / 4 . r r e ~ n ~ ) " ~  is the Debye 
radius, which determines the scale of the dispersive effects; 
the dependent variables are nondimensionalized by scaling 
them with their characteristic values: nlno+n, u,lc,+u, 
uyIcSpv,  uZ/c,+w, e+lTe-+$. Here no is the ion density 
at infinity, ~ , = ( T , I M ~ ) ~ ' ~  is the sound speed, Mo is the ion 
mass, and we have taken 4/(,,,)=,=0. For now it is conve- 
nient to leave the independent variables dimensional. 

Equations (1) possess properties which are general for 
different dispersive hydrodynamic systems. In particular, 
when the dispersive scaling D goes to zero dispersive hydro- 
dynamics goes over to ideal Eulerian hydrodynamics with 
some adiabatic equation state P a n Y  [for case (1) this is ideal 
isothermal hydrodynamics with y= 11. 

For two-dimensional steady flows in the (x,y) plane, 
Eqs. (1) assume the form 

The linear equations in the system (2) are characterized by a 
"dispersion relation" relating the components k, and k, of 
the wave vector. If we linearize Eqs. (2) about uniform flow 
with n = 1, @=O, v = 0,  u = M (where M is the Mach num- 
ber), we find the dispersion relation for two-dimensional 
steady ion-acoustic flows: 

where 

For nonnegative right-hand side Eq. (3) determines the 
region where the linear modulations are hyperbolic: 

For supersonic flows the first inequality of Eq. (5) is satisfied 
automatically. In this case for long waves such that 

we have in place of (3) in the upper half-plane 

The form of the dispersion relations (7) indicates that under 
weakly nonlinear conditions the long waves (6) in Eqs. (2) 
are described by the KdV equation. 

4. FLOW AROUND SLENDER BODIES: FORMULATION OF 
THE PROBLEM 

For the problem of an ideal flow around a body the 
boundary conditions are obtained by setting the normal com- 
ponent of the velocity equal to zero on the surface of the 
object, which is at rest in the coordinate frame being used, 
together with the requirement that the flow be uniform at 
infinity. Let us consider the analogous problem for the dis- 
persive hydrodynamic system (2). We assume that the body 
has a shape of a "sharp" cylinder with a generator parallel to 
the z axis, specified in the upper half-plane by the function 

Here b and 1 are the effective thickness and length, respec- 
tively of the object. Let the uniform flow be incident on the 
object on the left with velocity Me, ; here M > 1. We restrict 
ourselves to the case of zero angle of attack. By virtue of the 
supersonic nature of the flow the motions in the upper and 
lower half-planes are independent (Fig. 2), so in what fol- 
lows we will treat only the flow with y2O. The flow in the 
lower half-plane can be treated completely analogously. 

The "impenetrability" condition takes the form 

( u grad = 0. (9) 

Let the object be slender, so that 

s = b l l 4 1 ,  F(xl l)=O(l) .  (10) 

The introduction of the characteristic length 1 implies that an 
additional dimensionless parameter 

appears in the problem, which detennines the typical value 
of the component K, of the scaled wave vector (4). 

Assuming that the perturbations introduced into the flow 
by the slender body are weak, we represent the dependent 
variables in Eq. (2) as an expansion in the small parameter S 
about uniform supersonic flow with M - 1 4 1 : 

The requirement that the flow be uniform at infinity imposes 
the conditions 

ni+O, ui+O, vi+O, 0 for X+W, 

Consistent with the expansions (12) and the nature of the 
nonlinearity in Eqs. (2), the transformation of the indepen- 
dent variable consisting of dilation and rotation takes the 
form 
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Substituting Eqs. (12) and (14) into the original system (2) 
under the condition 

we obtain the KdV equation for the lowest-order corrections 
in the expansion (1 2): ') 

The inequality (15) implies that perturbations introduced 
into the flow by the slender pointed body and described by 
the KdV equation have long wavelengths and satisfy condi- 
tion (6). The line (=0, i.e., y = x l ( ~ 2 -  1)lt2, is the Mach 
line (the characteristic of the linearized equations of ideal 
hydrodynamics). 

The corrections n l ,  v , 4, are related to u as follows: 

The KdV equation for steady weakly nonlinear flows in 
a dispersive medium was derived by ~ a r p m a n ' ~  in a less 
formal manner from the so-called Boussinesq system. This 
approach has certain advantages: e.g., it enables one to cal- 
culate the coefficient associated with the nonlinear term in 
the KdV equation in general form (i.e., to express this coef- 
ficient in terms of the adiabatic index y of the corresponding 
ideal hydrodynamics. The term in question takes the form 

Now let us consider the boundary condition (9). Using 
Eqs. (12) and (17) we find that to first order in S it takes the 
form 

i.e., information about the shape of the body is "advected" 
along the x axis. Condition (19) ensures an accuracy O(6) in 
this solution and thus corresponds to the accuracy of the 
KdV approximation [provided, of course, that 
F1(xI1)=O(l)]. 

Since perturbations cannot propagate upstream in a su- 
personic flow, we have 

ul=O for x<O. (20) 

Using the more general form of the nonlinear term (18) we 
perform some "cosmetic" changes of variables in (16): 

which yield the standard form of the KdV equation, 

The boundary conditions (19) and (20) are transformed into 
initial data for Eq. (22) of the form 

ro(X)=F1(-X) for XSO, 

for X>O. (23) 

The behavior of the solution of Eq. (22) with the initial 
conditions (23) having unit scale depends strongly on the 
magnitude of the effective dispersion parameter E given by 
(21) and (15). For E- 1 the initial localized perturbation de- 
cays into a finite number of solitons and an oscillatory wave 
"tail." The case 

which is more realistic and has more content from the hy- 
drodynamic standpoint, has initial data which "contain" a 
very large number of solitons in a finite interval. The evolu- 
tion of such a perturbation gives rise to a dissipationless 
shock wave. There are several approaches to solving such 
problems. One of these is associated with the study of the 
exact multisoliton solution of the KdV equation in the limit 
E+O and was developed in a series of papers.19 The other is 
based on the application of the Whitham methodI4 and is the 
one used in the present work. 

5. QUASISIMPLE DISSIPATIONLESS SHOCK WAVES IN 
FLOWS AROUND OBJECTS 

In Secs. 1 and 2 we showed that if the higher-order cor- 
rections to the time-independent two-dimensional equations 
of ideal hydrodynamics are dispersive rather than dissipative, 
then in flow past a sharp body with F1(0)>O instead of a 
sharp jump in the density a dissipationless shock wave de- 
velops, i.e., a stationary wedge-shaped region filled with 
small-scale nonlinear oscillations. In terms of the evolution- 
ary problem (22), (23) the formation of the dissipationless 
shock wave is associated with the tendency of the initial 
profile to break if it has a decaying section near zero. This 
breaking is prevented by dispersive effects, which is what 
gives rise to the oscillations. The Whitham methodI4 has 
been found to be extremely effective in describing dissipa- 
tionless shock waves (see for example ~eview" and the ref- 
erences given there); the corresponding problem for the KdV 
equation was first considered by Gurevich and ~itaevskii.' 

In the GP treatment the (x,t) plane is broken up into 
three regions (Fig. 2a). In the external regions the flow is 
described by the solution of the Hopf equation for 
v=r(X,T): 

with the initial data (23), while in the interior region it is a 
dissipationless shock wave, a quasisteady modulated solution 
of the KdV equation in the form of a traveling conoidal 
wave, 
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where e n ( y  ,m) is a Jacobi elliptic function and the modula- 
tion parameters a, m, U, and d are expressed in terms of 
three functions r l ( X , T ) S r 2 ( X , T ) S r 3 ( X , T ) :  

x-(nvr >< b 

A '7 
I I  I11 

C FIG. 4. Dissipationless shock wave in dis- 
III  r persive hydrodynamics: a) X-  T plane in 

X -' I ,+ C 
the Gurevich-Pitaevskii problem; b) be- 
havior of the Riemann invariants in a dis- 
sipationless shock wave; c) oscillatory 

The desired functions r,(X,T) are Riemann invariants of 
the Whitham modulation system:1475 

X 

where there is no summation over repeated indices, and the 
characteristic velocities vi(r) can be represented in the 
form9-" 

Vi(r)= U-diU(di ln L)-', (29) 

structure of the dissipationless shock 
5 wave. 

where 

Here K(m) is the complete elliptic integral of the first kind. 
The Gurevich-Pitaevskii boundary conditions which ensure 
continuity of the average flow at the boundaries x'(T) of 
the dissipationless shock wave (in accordance with the defi- 
nition) take the form (Fig. 2b) 

The system (28) is hyperbolic and at each point has three 
characteristic directions dXildT=Vi(r) (i= 1 ,  2, 3). The 
matching of (31) with the exterior solution (25) is shown in 
Fig. 4b. The problem of integrating Eqs. (28) with the 
boundary condition (31) is nonlinear and its boundary is not 
known; nonetheless, as will be shown below, it can be com- 
pletely linearized by going to the hodograph space in which 
the boundary conditions go over to very simple linear con- 
ditions on the coordinate axes. This is a consequence of the 
Riemann form of Eq. (28) and the special "natural" bound- 
ary conditions (3 1). 

If breaking takes place on the boundary with the uniform 
regime, i.e., at the point X=O, then the solution of the 
Whitham equation with the condition (3 I) ,  (23) constitutes a 
so-called quasisimple wave8"' with r ,  = O  and variable r2 ,  

r3. The modulation system for these variables can be inte- 
grated using the ordinary hodograph transformation;' here 
we introduce a convenient modem version of it, based on the 
generalized hodograph method1577 and the "scalar potential" 
technique?-l2 

Thus, Eqs. (28) become a system of two equations in the 
variables r2 and r3. Accordingly, the boundary conditions 
(3 1) simplify: 

We will look for solutions ri(X,T) implicitly: 

where Wi(r) are new unknown functions satisfying the 
systemI5 by substituting (32) in initial system (25): 

From (33) and (29) it follows that we can introduce for Wi 
the scalar (potential) representation 

Wi(r2 ,r3)= f -difl:di In LIP'. (34) 

Then (33) goes over to the well-known scalar Euler-Poisson 
equation for the potential f ,  

2(r3 - r2)d;d= d3 f - d2f. (35) 

The boundary condition for (35) takes the form 

-112\:z-'12W(z)dz. f(O,r3)= - r3  2 (36) 

Here W(r) is the function which is the inverse of the initial 
distribution ro(X). Furthermore, for monotonic initial data 
the function f must be bounded at r2= 1 3  (for further details 
see Refs. 9-11). 

The solution of Eqs. (35) and (36) is (11) 

where the function &r) is related to the initial data by the 
Abel transformation 

This solution can also be represented as a single integral: 
substituting (38) in (37) and interchanging the orders of in- 
tegration we find 
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where 

To determine the boundaries x'(T) of the dissipation- 
less shock wave we must consider the solution of (32) for 
r2 = r3 (the leading or " +" edge) and r2 = 0 (the trailing or 
"-" edge). Then the boundaries are defined as multiple 
characteristics (envelopes) of the modulation system for this 
solution, i.e,. 

d~ ' -- 
dT 

- v*, 

where 

Here r; are r3 invarient values on boundaries of the non- 
dissipative shock wave. 

For the trailing edge we can easily find the parametric 
form8 

For the leading edge we have 

Note that the determination of the boundaries x*(T) in 
the problem of flow around an object is of particular interest, 
since the curves y'(x) which are found using (42), (43), and 
(21) are the geometric boundaries of a stationary dissipation- 
less shock wave in the (x,y) plane. 

The oscillatory structure of the dissipationless shock 
wave (Fig. 4c) is described by Eqs. (26) and (27), where we 
must substitute the functions r,(X,T) that have been found. 
The resulting solution is sinusoidal and has a vanishingly 
small amplitude close to the boundary y - ( x )  and takes the 
form of individual solitons near the boundary y '(x) directed 
toward the incident flow. The average variations of the hy- 
drodynamic variables in the dissipationless shock wave are 
found from the relations 

where 

+j= 2(r3- r l )p(m)+r l  +r2- r3 .  (45) 

Here we have written p(m)= E(m)lK(m), where E(m) is 
the complete elliptic integral of the second kind. 

6. EXAMPLES 

In the vicinity of the point x=  0 ,  where the shape of the 
body is given by the function y(x)axq, Eqs. (37)-(43) can 
be evaluated in terms of quadratures. It turns out that the 
cases q = 1, 1 <q < 2, q = 2, and q > 2 are qualitatively dif- 
ferent. Let us consider them in succession. 

1. q= 1. Flow around an lnflnltely sharp wedge (Fig. 2a). 

For a wedge with opening angle a about the x axis the 
small nonlinearity parameter defined in Sec. 4 satisfies +a, 
i.e., the condition for the applicability of the KdV approxi- 
mation is aG 1. It can readily be shown that the correspond- 
ing initial data for the evolution problem (22), (23) assume 
the form of a unit step: 

1 1, xso 
"(x.o)= o, X>o. 

The problem of the decay in the initial discontinuity (46) in 
KdV hydrodynamics was solved by Gurevich and 
~itaevskii.' The solution of the modulation equations (28), 
(29) for the functions ri(X,T) in the cnoidal wave (26) is 
self-similar: 

or explicitly (for more details see Refs. 5 and 17) 

l + m  2 m(1-m) X 
-- - - 

3 3 p(rn)-( l --m)-T'  (48) 

The equations of the boundaries which follow from (48) for 
m=O and m = l  take the form 

X-(T)= - T, x+(T)= 5 T. (49) 

Using (21) to transform to the variables x, y we find the 
boundary equations in the physical plane: 

Correspondingly the angular width of the centered self- 
similar steady dissipationless shock wave is 

proportional to the opening angle of the deflecting wedge. 
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FIG. 5. Flow around a concave wedge defined by y = vx2, 1 <q<2: a) 
qualitative flow pattern: the broken trace is the Mach line; b) initial data in 
the Gurevich-PitaevskiX problem. 

2. Flow around an infinite concave wedge. 

Assume 

y(x)= vxq, where l < q < 2 .  (52) 

From (52) it follows that yf(0)=O, y"(0) = -r'(O) 
= m, and breaking occurs in the flow at the coordinate origin 
(Fig. 5). The initial data for the breaking problem corre- 
sponding to (52) take the form 

Since breaking occurs at the boundary with the uniform re- 
gion, the solution of the modulation system is a quasisimple 
wave, described in Sec. 5. The solution of the Euler-Poisson 
equations (37)-(39) corresponding to the initial data (53) can 
be expressed in terms of the Gauss hypergeometric 
function22 (see also Ref. 9): 

For integer 1 l(q - 1 ) = N the hypergeometric series termi- 
nates and the solution assumes a symmetric polynomial 
form: 

where 

The boundaries of the dissipationless shock wave (42), (43), 
like the solution (54), can be evaluated in terms of quadra- 
tures: 

where 

The equation for the boundaries in the physical plane is 

It is not difficult to see that at some point the trailing edge of 
the dissipationless shock wave must intersect the body (see 
Fig. 5a), which is physically meaningless, since the solution 
then extends into the region occupied by the body. In one- 
dimensional time-independent dispersive hydrodynamics, as 
is well known: such complications do not arise: the dissipa- 
tionless shock wave expands monotonically and exists for all 
T>O. It is easy to resolve the contradiction if we recall that 
in the present slender-body approximation the shape about 
which the flow moves is advected along the x axis [cf. Eq. 
(19)] and cannot intersect the monotonically increasing func- 
tion yF(x). It is clear, however, that the KdV description 
actually ceases to be satisfactory much earlier (the condition 
8 4 1  is violated). The accuracy of the resulting solution de- 
creases monotonically as it moves along the x axis to the 
right, and at each point it is determined by the slope of the 
curve y(x). We note in passing that in consequence of the 
supersonic nature of the flow Eqs. (54)-(58) have a finite 
"region of influence": if a real body is prescribed by the 
equation 

then for (x,y) bounded by the characteristic of the modula- 
tion equations leaving the body at the point (l,vlq) these 
expressions continue to be valid. 

It is not hard to see that the desired solution (32), (34) 
for the functions r2,,(X,T) given by the potentials (54), (55) 
is a generalized self-similar f ~ r m ~ . ~ . ' ~ :  

3. Flow around a rectangular profile (Fig. 6). 

Now consider the case q = 2 ,  or more precisely, let the 
function y ( x )  grow near the origin quadratically and then 
more slowly, so that it behaves as vxq, where 1 <q<2.  The 
meaning of the latter restriction will become clear shortly. 

For y = vx2 we have 
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FIG. 7. Breaking of the profile ~,,(X)Z(-X)~- ' having a section with q>2 
FIG. 6. Flow around a body with a quadratic (q=2) profile: a) separation of near X= O. 
the dissipationless shock wave from the boundary of the object; b) evolution 
of the initial data up to the instant when breaking occurs. 

In terms of the time-dependent problem (60) this means that 
breaking occurs at the point xo= 0 ,  not immediately but at 
some point in time (Fig. 6b) 

Substituting Xo,  To in (21) we find the coordinates of the 
corresponding point in the ( x , y )  plane. This point is the peak 
of the dissipationless shock wave, which of course lies on the 
Mach line: 

Thus, when flow takes place around a body with a qua- 
dratic profile a dissipationless shock wave separates from the 
boundary of the object and begins in the flow itself (Fig. 6a). 
In this case the solution is identical with that described in the 
previous section to within the substitutions Z = X ,  
~ = T - T ~ ,  ~ ( r ) = ~ ( r ) - r w l ( 0 )  (respectively, i = x - x o ,  
r'=r -yo) .  

The phenomenon of the separation of the shock wave 
from the boundary of the body is also well known in ordi- 
nary hydrodynamics (Ref. 1, Sec. 115). In this case the sepa- 
ration is accompanied by the appearance of two weak dis- 
continuities. One of these passes through the peak of the 
shock wave and coincides with the corresponding character- 
istic proceeding toward the object. Its occurrence is associ- 
ated with a discontinuity in the entropy in the passage 
through the shock wave. The second discontinuity is a weak 
tangential discontinuity and coincides with the current line 
passing through the vertex of the shock wave. The weak 
tangential discontinuity arises because the flow ceases to be 
irrotational at the point where the shock wave forms. The 
flow in the region adjacent to the body and bounded by these 
discontinuities is no longer a simple wave. 

The steady dissipationless shock wave that occurs in dis- 
persive hydrodynamics does not prevent the flow from re- 
maining irrotational and isentropic, so its formation is not 
accompanied by the occurrence of the discontinuities men- 
tioned above, and the flow outside the dissipationless shock 
wave is a simple wave everywhere. 

If the profile of the body is quadratic over an extended 
region, not only in a small neighborhood of the origin, then 
the conditions for the applicability of the KdV approximation 
may fail near the breaking point, since the amplitude of the 

initial perturbation satisfies r o ( X ) a  - x  (Fig. 6b) and is de- 
termined by the length of the region in which quadratic be- 
havior persists. Thus, if we have y-x2 for all x then the 
initial data at the breaking point formally diverge, which 
contradicts the assumptions made in deriving the boundary 
condition (19). 

A similar effect also occurs for q > 2  (Fig. 7). But if for 
some xo the behavior of the function y  ( x )  changes so that it 
grows more slowly than x2, then the treatment of this prob- 
lem yields a dissipationless shock wave in which all three 
Riemann invariants change, and the corresponding solution 
of the modulation equations is no longer a quasisimple wave. 
The generalized hodograph method nevertheless permits the 
full modulation system (28) to be integrated with the bound- 
ary conditions (31) (see Ref. 10). 

In the initial profile ro (X)  this point xo corresponds to 
( X o ,  v o )  at which rh(X) is a minimum i.e. yW(xo) =O. 
Breaking occurs at the time T* = - W r  ( v o )  at the point 
X* = Xo - ?7,)W1 ( qO) .  Then the solution takes the form 

where 
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"A more general transformation of the independent variables leading to the 
KdV equation takes the form (= P(x- J ~ I I ) ,  T= 6"' '(y~~), 
p s O ;  where instead of (15) we have /32S2p-ls 1. However, specifying 
the characteristic scale 1 parallel to the x axis in the boundary conditions 
implies p = 0 .  
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