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Recombination mechanisms in an ultracold hydrogen (e-p+ or e'p-) or electron-positron 
plasma (T,s 100 K, N,- lo8 ~ m - ~ )  produced in experiments with magnetic traps are considered. 
The recombination time in this case is determined by the deexcitation of an atom in 
collisions with electrons, not by initial capture into the bound state. In a sufficiently strong 
magnetic field the recombination time increases as the square of the field strength, which is 
explained by the magnetization of the electrons, as a result of which their motion across 
the magnetic field is inhibited. It is shown that the external electric field does not affect the 
recombination time. The possibility of experimentally verifying these effects is 
discussed. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The elementary atomic processes in an ultracold plasma 
have attracted considerable attention in connection with the 
possibility which has recently arisen of experimentally pro- 
ducing cold antihydrogen atoms and confining them in Pen- 
ning magnetic traps.' This opens up prospects for an addi- 
tional way of verifying the invariance of the electromagnetic 
interaction with respect to charge conjugation, and also for 
verifying the equivalence principle for antimatter. 

Low temperatures allow one to compare the spectra of 
hydrogen and antihydrogen atoms with high precision 
(-10'~-10'~),2 i.e., to test charge symmetry. Measurement 
of the hyperfine splitting of the hydrogen ground state per- 
mits the proton magnetic moment to be determined with a 
precision of If measurements can be made with the 
same precision for antihydrogen, then the magnetic moment 
of the antiproton will be found with an error five orders of 
magnitude smaller than in accelerator experiments. 

Experiments in the spirit of the Eotos experiment leave 
practically no doubt about the validity of the weak equiva- 
lence principle for matter; however, no tests have been car- 
ried out thus far for antimatter. Recently theories have been 
proposed according to which particles and antiparticles un- 
dergo different accelerations in a gravitational field. 
Charged-particle experiments cannot achieve the necessary 
precision, since the slightest parasitic electromagnetic fields 
strongly distort the trajectories of such particles. The experi- 
ment with antihydrogen is free of these difficulties. An even 
more precise test of the equivalence principle results from 
comparing the gravitational red shift for hydrogen and anti- 
hydrogen. Such tests can of course be carried out with pos- 
itronium or muonium, but they are of somewhat less value 
since these systems consist exclusively of leptons. 

Antihydrogen atoms have been produced374 by stopping 
previously slowed antiprotons in a positron cloud confined in 
a magnetic trap, with subsequent recombination. Antiprotons 
with an energy of 5.9 MeV from the accelerator at CERN are 

slowed down in matte13 to an energy of 3 keV, trapped in a 
hybrid Penning magnetic trap, and thermalized in a cloud of 
cold positrons to an energy of 1 meV. The antiproton con- 
finement time at this energy is several months.' A Penning 
trap consists of a region filled with magnetic field and a 
superposed electrostatic quadruple potential. The trapped 
particles gyrate on cyclotron orbits, oscillate in the direction 
of the magnetic field, and slowly drift in the crossed mag- 
netic and electric fields (for more detail see Ref. 1). The 
antihydrogen atoms resulting from recombination of e+  and 
p -  are confined in the same trap due to the magnetic mo- 
ment of the atom. As an atom moves its spin rotates adia- 
batically in the direction of the magnetic field, so the poten- 
tial energy of the atom is equal to - pBH if the positron spin 
is parallel to the field and pBH if it is antiparallel. [Because 
of the slow variation in the direction of the magnetic field in 
the trap the spin wave function of the electron in an atom at 
any time is an eigenfunction of the Hamiltonian 2pBaH(t) 
to a good approximation.] The magnetic field in the center of 
the Penning trap has a minimum, so atoms with antiparallel 
spin are confined in the trap while those with parallel spin 
are expelled. For the trapped fields H-5T that can be 
achieved in the laboratory the atoms are confined with a 
temperature T 5 5  K. For recombination studies at the 
present time a device is used consisting of two coaxial Pen- 
ning traps which separately confine antiprotons and 
positrons.6 Variation of the potential in the antiproton part 
creates conditions which enable the antiprotons to get over 
the potential barrier by means of collisions and reach the 
positron part of the device with a small kinetic energy, 
whereupon recombination occurs. 

To determine the optimum positron densities in the trap 
one needs to know the recombination time. Recombination, 
in turn, proceeds differently for different gas temperatures, as 
will be shown below. 

In order to use more familiar language, in what follows 
we will talk about an ordinary hydrogen (ePpf)  plasma. 
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The theory is readily generalized to the case of a nucleus 
with charge state greater than unity. 

In the second section we treat the collisional stage in an 
ultracold plasma with no external fields. It is shown that in 
addition to inelastic collisions, collisions in which the angu- 
lar momentum changes with no accompanying change in the 
energy of the atom are important (the so-called Stark mixing; 
see Appendix). We calculate the recombination time. In the 
third section recombination in a strong magnetic field is stud- 
ied, and in the fourth section the effect of an electric field is 
taken into account. 

In the calculations we use atomic units ( h  = me= e = 1). 

2. RECOMBINATIONS IN THE ABSENCE OF EXTERNAL 
FIELDS 

This section is devoted to recombination kinetics in a 
plasma with parameters typical of a magnetic trap (Ne= lo8 
~ m - ~ ,  T =  4K, Np= lo4- 10' cm-3).3*5 

Recombination takes place in two stages. First the elec- 
tron is captured in a highly excited orbit with binding energy 
on the order of the temperature according to the Thomson 
scheme: 

p+e+e+Hnol+e,  (1) 

into states with principal quantum numbers n - no and orbital 
quantum numbers 1-no. The magnitude of the initial quan- 
tum number no can readily be estimated from the relation- 
ships 

where v = &% is the electron thermal velocity. 
Since we have n + 1 and 1 * 1 , in order to describe the 

recombination process and the subsequent "motion" of the 
electron through energy levels (with n% 1) a purely classical 
treatment is applicable. An estimate of the time for this cap- 
ture is obtained from the following well-known simple 
argument? In order that one of the two colliding electrons be 
left in a bound state, it is necessary that the collision take 
place at a distance RT from the proton no greater than 

The reciprocal of the capture time 1 1 ~ ~  is the product of the 
probability w for one of the electrons to be within a sphere of 
radius RT about the proton, 

times the frequency with which an electron passes through 
the Thomson sphere: 

At low temperatures the capture time is short. Thus, for the 
conditions specified above it is equal to lop6 s. 

After the initial capture the bound electron begins to 
move down through the energy levels as a result of collisions 

with electrons and radiative transitions, i.e., through a mul- 
tistage deexcitation process. In the upper levels ( 1 0 s  n < no) 
collisional deexcitation dominates over radiative (see below), 
while for n<50 radiative relaxation dominates. There is 
some risk') that if an electron gets into circular (i.e., with 
1 = n - 1) excited orbits it will remain there for an extended 
time, since the radiative lifetime of circular orbits is8 

which is large in comparison with the time for the np+ 1s 
transition:' 

and according to the selection rules only a transition in 
which the principal quantum number decreases by unity is 
possible from a circular orbit into a lower-lying circular or- 
bit, In,l=n- l )+ ln l=n -  1,11 = n l -  1)). The physical 
reason for the long radiative lifetime of an electron in circu- 
lar orbits is that the acceleration experienced by an electron 
in such orbits is small. 

It turns out, however, that there exists an exceptionally 
fast mechanism (Stark mixing in angular momentum) which 
eliminates this delay. As shown in the Appendix, the electric 
field of electrons passing at large distances from an atom 
induces precession of the orbit of the atomic electron due to 
collisions between the atom and the electrons. Then the 
atomic distribution function f(1) over orbital angular mo- 
mentum 1: 

becomes equal to the statistical weight after a typical time: 

Then states with different values of 1 and m and fixed n 
become equally probable. The time T,, is the shortest time in 
the problem, and for the specified values of density and tem- 
perature is equal to 1.5 - 1 0 - ~ n - ~  s. 

The angular relaxation time (6) is shorter than the life- 
time (3) of a circular orbital if n a  9 holds and shorter than 
the lifetime of the np  state if n>  13. Consequently, the ra- 
diative deexcitation rate from levels with n 2  13 is equal to 
the probability of being in the state np [for the distribution 
function (5) this is 3/n2], by inverse time (4): 

Thus, for values of n that are not too small a very fast 
mechanism operates that produces equilibrium inside a 
single energy level and does not allow long-lived states with 
circular orbits to survive. 

Let us calculate the rate at which the atomic electron 
moves down through the levels as a result of collisions. For 
sufficiently large principal quantum numbers n > 50 inelastic 
processes dominate radiative processes. This means that the 
limiting (slowest) stage of recombination is the motion of the 
electron through levels with nS=- 1 ,  i.e., to determine the typi- 
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cal recombination time a classical treatment is completely 
applicable (the range of applicability of the results is speci- 
fied in detail in the Appendix). 

The classical equations of motion turn out to be too com- 
plicated for analytical solution, except for the important case 
of distant collisions with impact parameters p- po = nl v T ,  

for which the energy of the atom is an adiabatic invariant and 
is therefore conserved. 

For p<po the electron can fall to the atom (in the Ap- 
pendix such collisions are called hard). This gives rise to 
effective exchange of energy between electrons, after which 
the outgoing electron carries away an energy on the order of 
the binding energy in the original atom. 

The expression for the motion of the atom through the 
energy scale that results from these inelastic collisions takes 
the form 

where the subscript i labels the intervals into which the scale 
is broken by changes AE in the atomic energy, and the sum 
is over these intervals with a weight equal to the frequency 
vi of the corresponding inelastic collisions. For hard colli- 
sions (distant collisions contribute almost nothing to E) we 
have 

and the frequency is 
2 v- rrpONeu T .  

Hence 

. CN, 
E=--  

v T 

where C is a coefficient of order unity and v = (8Tlrr)li2. 
To find C numerically we solve the system of equations 

of motion: 

Here r and R, respectively, are the radius vectors of the 
atomic and incident electron, and the proton is assumed to be 
at rest at the origin. The velocities of the electrons incident 
on the atom were chosen randomly according to a Maxwell 
distribution, and the atom was "prepared" in a state with a 
specified energy but with random values of 1 and m, in view 
of the high rate of Stark mixing mentioned above. 

Figure 1 shows the collision frequency vi (in arbitrary 
units) as a function of the energy AEi transferred to the atom 
in a collision with an electron. The initial atomic energy in 
the figure corresponds to n = 50 and is equal to -0.0002 a.u. 
The sharp peak associated with zero energy transfer results 
from distant collisions and does not contribute to the sum 
(8). On the left can be seen "hard" collisions, for which the 
energy transfer is on the order of the initial atomic energy. 

FIG. 1.  Collision frequency as a function of energy transfer. 

The numerical calculation yielded C-0.2. For the param- 
eters given above the rate of collisional relaxation (9) is 
equal to 24 a.u. per second. 

Thus, recombination in an ultracold plasma takes place 
in the following way. First the electron is captured rapidly 
(after a typical time s) into a bound state by the Thom- 
son mechanism. Then deexcitation begins through inelastic 
processes with a rate 

where the angular momentum distribution is close to the 
equilibrium distribution (5). 

In lower levels (ns 10) the deexcitation mechanism 
changes: there it occurs as a result of radiative processes 
taking place over the time (7). Thus, the total deexcitation 
time is given by 

and under the experimental conditions is equal to s. 
From this it can be seen that in an ultracold plasma the lim- 
iting (slowest) stage of recombination is deexcitation, not the 
initial capture into a bound state as in an ordinary plasma. 

3. RECOMBINATION IN EXTERNAL FIELDS 

Now we show that the strong magnetic field in the trap 
qualitatively changes the picture of recombination. 

Consider the typical case in a magnetic trap, when the 
magnetic field is large and the electron Larmor radius r,, is 
small in comparison with the characteristic size RT of the 
problem: 

or T & ~ o H ~ / ~ ,  where T is in kelvin and H in tesla. In a 
typical trap with H =  5 T this condition therefore takes the 
form T 4  200 K. In this magnetic field at a temperature T =  4 
K the Thomson radius is RT- 10' a.u. and the Larmor radius 
is r,,-200 a.u. 

We write down equations of motion for a proton and 
electron in a uniform external magnetic field: 
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where M is the proton mass in atomic units, re and r, are the 
radius vectors of the electron and proton, respectively, and 
we have written r=re-r, . We introduce the new variable 

the coordinate of the atomic center of mass. We rewrite the 
system of equations (13): 

The first equation can be integrated directly: 

where V is a constant vector. We substitute this solution into 
the second equation and obtain an equation for the relative 
motion: 

For the atom in a bound state (r)=O holds (the angle brackets 
denote a time average), so we have v=(R). From this the 
physical meaning of the vector V is clear: it is the velocity 
with which the atom moves and is constant in a magnetic 
field, since the atom is neutral. We go over to a coordinate 
frame moving with the velocity V. Then in addition to the 
magnetic field in this frame there will be a transverse electric 
field 

1 
E= - [VH], 

C 

which explains the meaning of the term with V in Eq. (14). 
This electric field will alter the motion of the electron in the 
atom, but if it is small compared with the characteristic pro- 
ton field - n - 4  (which means that the velocity V of the atom 
is small), then the atom will remain bound. It is obvious that 
V-ui holds (here vi  is the ion thermal velocity), from which 
it follows that under the conditions specified the motion of 
the atom can be disregarded for n< 150, which we will as- 
sume in what follows. In this connection we note that the 
electric field actually has no effect on the recombination time 
(see the next section). Thus, in what follows we take V=O. 

In the approximation of an infinitely massive proton we 
have from (14) 

Thus far we have made no use of the fact that the Larmor 
radius (12) is relatively small. If H is large, then the motion 
across the field is a drift and is associated with the velocity 

where E is the electric field strength. The motion in the di- 
rection z of the magnetic field is given by the equation 

which follows from (16). This allows us to consider the sys- 
tem of equations in the drift approximation, which is much 
simpler than (16): 

Thus, the electron moves along the magnetic field line 
(to which it is "frozen") in an effective potential well pro- 
duced by the attraction of the proton. In addition, it performs 
a slower drift motion rotating about the proton. The trans- 
verse separation between the particles does not change, and 
in the absence of collisions deexcitation occurs only as a 
result of radiation, i.e., it takes place exceedingly slowly. As 
it approaches the proton the electron orbit becomes highly 
elongated in the longitudinal direction and the radiative life- 
time decreases, since the electron is subjected to greater ac- 
celeration. 

As in the absence of a field, recombination occurs in two 
stages. First an electron from the plasma is captured into a 
weakly bound state in the Coulomb potential well on a field 
line in a process completely analogous to Thomson capture. 
The capture time r .  is given by the Thomson formula, in 
which the magnetic field only changes the numerical 
coefficient:' 

Then the extended stage of collisional motion across H 
starts. We note that Glinsky and 0 ' ~ e i l ~  did not take this 
stage into account, although in our case it is the limiting 
factor. As a result of collisions with plasma particles the 
atomic electron undergoes random walk in the plane perpen- 
dicular to the magnetic field with a step size - r ~ ~ .  The 
expression for the transverse diffusion coefficient D, was 
derived by ~ e l ~ a e v "  in the general case for electron-ion 
collisions. The collision frequency of a relaxing bound elec- 
tron with protons is always smaller than the electron-electron 
collision frequency due to the large difference in the thermal 
velocities of protons and electrons. This means that the dif- 
fusion coefficient of interest to us for the bound electron is 
mainly determined by collisions with plasma electrons. Be- 
cause of the Coulomb repulsion two charged particles of the 
same sign cannot approach one another closer than the 
Thomson radius. Hence we conclude that electron collisions 
will be mostly distant. At such separations the particle mo- 
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tion is given by drifts. Moreover, as will be seen below, the 
main contribution to the diffusion coefficient comes from 
collisions with impact parameters much larger than the 
Thomson radius. 

The electron collision time T depends on the relative 
particle velocity v parallel to the magnetic field, while the 
drift velocity is given by the well-known formula 

where p is the transverse separation and z is the longitudinal 
separation between the particles. Assuming in advance that 
the impact parameters are large, we set z-v,t, where v, is 
the relative electron velocity in the z direction. The drift 
displacement of a particle over the time of such a collision is 
given by the expression 

00 

S ~ l  = 1- -vDdt, 

from which we find 

where here and below the subscript "z" in v, is omitted. The 
coefficient D, is by definition equal to'''" 

1 
D l = ,  ( ~ d v e c ) ,  

where v,, is the collision frequency and the additional factor 
112 results from the two-dimensionality of the transverse mo- 
tion. We rewrite the last expression, substituting into it an 
estimate for Sp, and averaging over the electron Maxwell- 
ian: 

The lower limit in the integration over velocities is deter- 
mined by the smallest velocity for which approach to a dis- 
tance p is possible. Integrating once by parts we find a loga- 
rithmically divergent integral: 

Choosing as the minimum and maximum distances, respec- 
tively, the Thomson radius and the mean interparticle sepa- 
ration, we can evaluate the diffusion coefficient with loga- 
rithmic accuracy: 

where A = ~ ~ ( T I N ) ' ~ )  is the Coulomb logarithm. The mobil- 
ity b,  is obtained from the Einstein relation: 

We enclose the atom with a cylindrical surface C with 
directrix parallel to the magnetic field. Plasma electrons 
move toward the atom from all directions. The current is 
determined by the mobility and is equal to 

The number of particles per unit time intersecting the surface 
is given by 

since the magnetic field is perpendicular to the element of 
the surface chosen. Using Gauss's theorem to transform the 
integral, we arrive at the final expression for the deexcitation 
time: 

1 
-= 4aNebl , 
7~01 

i.e., the time T~~~ for the collisional stage with mobility (18) 
is equal to 

For the values of the plasma temperature and density and 
field strength given at the beginning of this paper we find 

It is clear that T ~ ~ ~ S - T ~ .  Thus, collisional excitation, i.e., in- 
frequent jumps of an electron from one magnetic field line to 
another approaching the proton, is the limiting stage and 
hence the recombination time is determined by the time (19) 
of the collisional stage. 

4. EFFECT OF AN ELECTRIC FIELD ON THE 
RECOMBINATION PROCESS 

Magnetic traps can have an electric field E- 100 Vlcm, 
consisting of a combination of the external field and the elec- 
tric field resulting from redistribution of charge in the 
plasma. 

In such a plasma the projection of the electric field on 
the direction of the magnetic field is obviously close to zero, 
since the electrons move without restriction in this direction, 
so that this component of the field damps out over distances 
on the order of the Debye radius r,.  At the same time the 
magnetic field in the trap is quite large, so the electrons are 
"magnetized," i.e., their motion across the magnetic field is 
inhibited. This means that the component of the electric field 
perpendicular to the magnetic field is not screened out. In the 
present work we consider the case of a dense plasma with 
dimension 1 sufficiently large that l+rD holds. This means 
that it is necessary to treat the problem of recombination in 
strong crossed magnetic H and electric E  fields. 

In crossed fields the magnetized plasma drifts as a whole 
with velocity V , = C [ E H ~ H ~ ,  where E  is the electric field in 
the plasma. This description of the motion of the plasma 
particles refers only to scales much larger than the average 
distance n-'I3 between plasma particles. For recombination 
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FIG. 2. Electron trajectories in the field of a proton (point 0) and external 
crossed electric and magnetic fields (the latter is directed perpendicular to 
the plane of the figure toward the reader and is not shown): 1-3) trajectories 
in the zero-mobility approximation; 4) the trajectory that produces recom- 
bination. 

the much smaller separations between electron and proton 
are important. At these distances the electric field of the other 
plasma particles can be disregarded in comparison with the 
field E and the field rlr3 of the proton. For the recombination 
process the relative electron-proton motion at distances 
r<n-1'3 is important. The relative motion and the motion of 
the center of mass of this pair of particles are separated in 
analogy with the previous section. In the drift approximation 
(r,G r,- n 2, the equation of the relative electron-proton 
motion takes the form [cf. Eq. (17)] 

where ~ , = r / r ~ + E .  The last term in (20) describes the colli- 
sional drift across the magnetic field. The second equation in 
(17), which describes the electron motion parallel to the 
magnetic field, remains unchanged. The term with b, in (20) 
is small and can be dropped in lowest order. Thus for t+ -a 
the electron describes only a drift motion with velocity 
VD=C[EH]~H~. Figuratively speaking, the electric field E 
induces a "drift wind" in the electron component, which 
blows on the proton. 

We shift the proton to the origin, and orient the z axis 
parallel to H and the y axis parallel to E. Then the velocity 
v~ is in the x direction. Let us consider first the simplest 
case, in which the motion is confined to the y = 0 plane (Fig. 
2). In the zero-mobility approximation (b, = 0, shown by the 
dots in Fig. 2) there can be no recombination (the energy of 
the system is greater than zero and in the absence of friction 
is conserved), and within the region bounded by trajectory 2 
(the separatrix) there are no trajectories arriving from infin- 
ity. The size ro  of this "forbidden" zone is determined by 
equating the external field to the Coulomb field of the pro- 
ton: 

i.e., ro  - I / $? .  
An electron can only penetrate into the forbidden region 

as a result of collisions with other electrons of the plasma. 
One of these "trapped" trajectories is shown by the heavy 
trace 4 in Fig. 2. Since the mobility is small, trajectories like 
these that penetrate into the forbidden region are concen- 
trated first near the critical trajectory 2. Hence it would seem 
that the capture cross sections a, should be small, since at 
first glance all trapped trajectories should be localized within 
a thin tube surrounding the critical trajectory. However, nu- 
merical calculations reveal that recombination in crossed 
fields is not that simple. It was found that the main contribu- 
tion to the capture cross section comes from trajectories ly- 
ing outside the y = 0 plane, at a considerable distance (- ro) 
from the critical trajectory. As they move along these trajec- 
tories, electrons oscillate about the y = O  plane and at the 
same time drift in the x direction. As a result of these oscil- 
lations the trajectories, as it were, "embroider" the forbidden 
region; because of friction they are effectively slowed down 
and trapped. The capture cross section a, was determined by 
the Monte Carlo method. The results of the calculation can 
be approximated by the expression 

where the factor k is essentially constant; it changes from 0.6 
to 0.9 as the fields E and H vary over a wide range, E< 300 
Vlcm and H = 1 - 10 T. The capture time r, is determined 
from the expression 

and for typical trap parameters is equal to 10-~-10-~ s. 
Capture into the forbidden region is the first and fastest 

stage of recombination in crossed fields, analogous to the 
Thomson stage for E = 0. Then begins the longest (limiting) 
stage of recombination, the collisional drift of electrons to- 
ward the proton across the magnetic field lines. This process 
in no way differs from that treated in the previous section, 
since in the region r G r o  the external electric field can be 
disregarded in comparison with the proton field. Conse- 
quently, the duration of this stage, and hence of the whole 
recombination process in crossed fields, is determined by the 
previous expression (19). Hence we conclude that even 
though the external electric field has a significant effect on 
the electron motion, it does not change the recombination 
time. 

5. CONCLUSION 

Thus, in this work we have developed a theory for re- 
combination in an ultracold plasma in sufficient detail to 
optimize experiments (see Introduction). The recombination 
process in an ultracold plasma has a number of interesting 
features which distinguish it from recombination in an ordi- 
nary plasma. In the absence of external fields the limiting 
stage is that of collisional deexcitation rather than Thomson 
capture of an electron into the bound state. The magnetic 
tield introduces an interesting effect. If the electron Larmor 
radius is less than the Thomson radius, then collisional de- 
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excitation is inhibited. As a result, the plasma recombination 
time increases in proportion to the square of the magnetic 
field and even in fields 5-10 T of laboratory scale can 
amount to times of order seconds, which may find practical 
application. Note, e.g., that the magnetic field can inhibit 
annihilation in an ultracold electron-positron plasma. An- 
other conclusion derived in this work is that an electric field 
of reasonable magnitude does not change the recombination 
time. 

To verify these effects we can propose two kinds of ex- 
periments. In the first case two y waves are detected, result- 
ing from annihilation of positrons stopped in an electron 
plasma. Annihilation "on the wing" is highly improbable. It 
occurs primarily in the 1s state, so the y-ray counting rate 
will decrease inversely with the square of the magnetic field 
strength. We can also detect radiated photons from the 
2p+ 1 transition in an experiment with a hydrogen plasma. 
For this an electron cloud must be created in the magnetic 
trap and a small number of protons must be "planted" into 
the electrostatic potential well it creates. 

We thank G. V. Shlyapnikov, S. I. Kryuchkov, E. L. 
Surkov, G. Gabriels, and I. Walraven for bringing this prob- 
lem to our attention and for useful discussions. 

In this case the motion of the atomic electron is classical, and 
the incident particle moves in the field of a point dipole (with 
dipole moment n2 in atomic units), since the impact param- 
eter p is much larger than the atomic dimension rorb. Spe- 
cifically, the typical value of p can be obtained most simply 
from the estimate 

Then by virtue of (21), 

The angular relative motion can be treated classically, be- 
cause the corresponding angular momentum pv is large in 
accordance with (21) and (22): 

The de Broglie wavelength X = 1 lv of the incident particle is 
also small: 

APPENDIX 
STARK MIXING RATE 

As mentioned Sec. 2, for n S  1 the electron motion in the 
atom is classical. In the classical problem of the collision of 
three particles the recombining [e + p  + e--+ (pe), + el elec- 
tron "gets on" the classical bound orbit, which is a Kepler 
ellipse. For this orbit the time-averaged dipole moment of a 
hydrogen atom is nonzero, so the interaction of an electron 
with such an atom is long-range (charge-dipole), which in- 
troduces a number of interesting features into the process of 
an electron-atom collision. In particular, it will be shown 
below that the motion of all particles in this case is com- 
pletely classical, which allows the problem to be solved in its 
entirety. 

To avoid misunderstandings, we add that the most ad- 
equate quantum description of electron capture into an ellip- 
tical orbit is the transition from the continuous spectrum to a 
state of the parabolic basis, for which, as is well known,12 the 
average dipole moment of the atom is nonzero. Below we 
will use the simpler classical description. 

A review of work close to this topic is given in Ref. 13. 
The techniques used below to solve the classical equations of 
motion date back to Refs. 14 and 15, and in all probability go 
back to the work of Laplace on perturbations of planetary 
orbits. Stark transitions were probably first treated by Bethe 
and ~ e 0 n . l ~  In Ref. 17 it was shown that the quantum- 
mechanical calculation used in Ref. 16, based on the Born 
approximation, is inappropriate for this problem, and a more 
rigorous calculation of the cross sections for the Stark tran- 
sitions was carried out. Below we will present a rigorous 
calculation, free of the restrictions assumed in Ref. 17. 

Consider collisions between cold electrons and a Ryd- 
berg atom. From the very start we will restrict our treatment 
to the range of greatest interest: 

i.e., the radial relative motion is also classical. The motion of 
the atomic electron is fast in comparison with the relative 
motion of the incident electron. Specifically, the rotation pe- 
riod of the atomic electron is rorb-n3, and the collision time 
is T ~ ~ ~ - ~ / v  = n/v2. Hence the relative motion (i.e., the mo- 
tion of the particle passing by) is slow: 

in consequence of (21). This also implies that for distant 
collisions the probabilities of inelastic transitions are small, 
since the corresponding Massey parameters is large: 

We displace the proton to the origin of the coordinate 
system. Let r and R be the radius vectors of the atomic and 
incident electrons, respectively. The equations of motion take 
the form 

where R=RIR and i=r l r .  
We write the atomic angular momentum as I=[rr] and 

the Runge-Lenz vector as A=i'+[lr]. Differentiating 1 and 
using Eqs. (23) we find 
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where 

1 1 
j ,= -  (B+A), j -- (B-A). 

2 2-2 In one period rOrb the angular momentum changes by 

From Eqs. (31) it follows that 

Here we have used the slowness of the relative motion. The 
integral over the radius vector is expressed in terms of the 
Runge-Lenz vector through the well-known relation:13 

This means that the vectors jl and j2 rotate with angular 
velocities 0 and - a ,  respectively. In the important special 
case R=const, for which it follows that n=const, the orbit 
varies periodically and shifts its orientation with period 1 3 

(r) = - p d t r =  - n2A. 
To& 0 2 

Using (25) we readily find from (24) 

If R changes, then this precession is no longer periodic and 
the orbital angular momentum changes over a collision time. 
This is the physical essence of Stark mixing. 

We can reduce the order of Eqs. (29) by using the equa- 
tions of motion. In addition to (31) there are four other in- 
dependent constants. These are the energy of the relative 

where i describes the slow variation and is understood to 
mean 1= S UrOrb. Similarly we find 

motion, 

The relative motion is the motion in the electric field of the 
dipole (25), 

and the total angular momentum 

with field strength where L = [ R R ] = ~ ~ [ ~ ] .  There are two other constants of 
motion: 

It is described by the equation 

The quantity P allows us to separate the radial and angular 
relative motion. Specifically, we can note that by using (34) 
we can rewrite Eq. (32) in the form 

From (28), (27), and (24) we find the system 

where B=Un and which is easily integrated: 

Equations (29) constitute a closed self-consistent system for 
finding the trajectories R(t) of the passing electron, the 
atomic angular momentum I(t)=B(t)n, and the vector A(t). 
The initial conditions are the position and velocity of the 
incident particle along with the initial values of I and A. 

From (29) it follows that 

(AI)=o, A ~ + B ~ = I ,  (31) 

where v is the collisional velocity (the velocity of the rela- 
tive motion in the limit t--t - 03). The quantity P is deter- 
mined from the initial conditions for t -+ - co . For P < 0 the 
electron falls into the atom; in other words, a "hard" colli- 
sion occurs. This happens if the impact parameter p is 
smaller than 

i.e., at any time the atomic electron moves in an ellipse. 
Adding and subtracting the last two equations of Eqs. 

(29) we find 

For p>po we always have P>O, i.e., falling is not possible. 
Note that for p<po trajectories with repulsion (P>O) are 
also possible when falling is impossible. The precession 
angle in the case P<O for an electron moving over the por- 
tion of the trajectory with R S ~ '  is equal to 
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10 '0 dt' 
a( t )=2 ! -mdt ' f i ( t ' )=3n/ -m j q q  , 

where to= -/PI 1'2/v2 is the falling time and the factor 2 
takes into account the return of the electron back to infinity. 
This integral diverges logarithmically at small distances and 
must be cut off for ~-r,,,,-n~. Simple calculations yield 

a-ln -2 -2-3, (3 
i.e., total Stark mixing takes place even at large distances 
R%n2. 

Now let us consider the case P>O and explicitly sepa- 
rate the angular from the radial motion. For this we rewrite 
the equation for the angular motion: 

d i i  1 
z=$[~~l. 

using conservation of the total angular momentum (33): 

d i i  1 z=s [(J-~)R]. 

We introduce a new variable (the "precession angle"): 

and again we write Eq. (29): 

As t varies over the interval (-m,m) the quantity a varies 
over O<a<ao, where ao= 3 m / 2 @ .  

The slowest Stark mixing occurs from orbits which are 
close to circular, since in this case the dipole moment of the 
atom is close to zero there. This implies that only a hard 
collision with a(m)-1 can "push" the atom from such a 
state, and this is the limiting stage of Stark mixing. The 
characteristic impact parameter p-po of such a collision is 
determined from the condition 

3m12fi-1.  

The cross section for this process is 

and the rate of Stark mixing is 

To find the numerical factor we carried out a special com- 
puter experiment, based on the Monte Carlo technique. Re- 
laxation of the angular part of the distribution function was 
studied. For this we solved Eq. (36) with various initial con- 
ditions. The result can be written 
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