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A new possibility for generating a nonclassical state of a vector electromagnetic field is 
considered. It is shown that polarization-squeezed light, in which the quantum fluctuations of one 
of the Stokes parameters characterizing the polarization properties of the light are smaller 
than in the coherent state, can form as a result of a nonlinear interaction between two waves with 
orthogonal polarizations in a spatially periodic medium. The region of uncertainty of the 
polarization state for coherent light in the space of the Stokes parameters is a sphere, and the region 
for polarization-squeezed light is an ellipsoid. A definite analogy between suppression of the 
quantum fluctuations of the Stokes parameters of polarization-squeezed light and the components 
of quadrature-squeezed light is traced. The optimal conditions for obtaining polarization- 
squeezed light with respect to the parameters of the problem are elucidated. It is shown, in 
particular, that the relationship between the phases of the original waves at the entrance 
to the nonlinear medium and the linear coupling coefficient of the waves are of great importance 
here. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The quantum analysis of the polarization structure of 
light has aroused definite interest in recent The dis- 
cussion has generally focused on calculations of the Stokes 
parameters, which are associated with Hermitian Stokes op- 
erators and have an explicit physical interpretation. A general 
description of the polarization structure of a multimode field 
was developed in Refs. 5 and 6. In particular, unpolarized 
light having rather specific properties, i.e., having both mean 
values of the Stokes parameters and their variances equal to 
zero, was defined. 

From the standpoint of applying quantum squeezed light 
in high-precision polarimetry and ellipsometry, polarization- 
squeezed light4 is of special interest. Such light is completely 
polarized. However, the quantum fluctuations of one of its 
Stokes parameters are smaller than in the coherent state. It 
was shown in Ref. 4 that polarization-squeezed light can 
form in cubically nonlinear uniform media when there is 
anisotropy of the nonlinear correction to the refractive index. 
The latter circumstance plays a major role in shaping a non- 
classical polarization state in uniform nonlinear media. 

In this paper we consider another possibility for obtain- 
ing polarization-squeezed light in spatially periodic nonlin- 
ear media. In such media, one specific feature of the interac- 
tion process is the occurrence of both linear and nonlinear 
power conversion between different modes, i.e., polarization 
~ o m ~ o n e n t s . ~ - ~  Owing to the linear power conversion, an 
additional channel of fluctuation transfer for the quadrature 
field components appears and quadrature-squeezed light 
forms in such media? It is shown below that the linear cou- 
pling between modes enables the generation of light with a 

nonclassical polarization state in spatially nonuniform non- 
linear media. 

Before proceeding to an analysis of the problem that we 
have posed, let us briefly dwell on the description of the 
polarization characteristics of radiation in quantum optics. 

2. POLARIZATION STATES OF LIGHT 

From the quantum standpoint, the difference between 
polarized (elliptically in the general case) monochromatic 
light and unpolarized light is that in the former case there is 
a pure state, i.e., a coherent mixture of light polarized in two 
perpendicular directions (the amplitudes of these compo- 
nents are summed), while unpolarized light represents a 
mixed state, i.e., an incoherent mixture (the intensities of the 
components are summed).1° 

In the language of wave functions (for photons they exist 
only in the momentum representation1'), for pure states we 
have linear combinations, which can be used to calculate the 
total probability, and for mixed states we can sum the 
squares of the absolute values of the wave functions, i.e., the 
individual probabilities. Moreover, although no type of po- 
larization is dominant, right- and left-circularly polarized 
photons are most easily defined in terms of spin operators." 

The presence of fluctuations, which are unavoidable in 
quantum theory and result in uncertainty in the polarization 
state of light, calls for a quantum-mechanical treatment of 
partial polarization. The directly measurable (observable) 
quantities that characterize the polarization state of light are 
the Stokes parameters Sj  , where j = 0, 1,2, 3. The parameter 
So specifies the total intensity of the light field, and the other 
three parameters specify the polarization state proper." They 
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are measured experimentally using a combination of optical 
elements, viz., polarizers and phase shifters. 

A graphic geometric interpretation of the Stokes param- 
eters can be given using the Poincar6 sphere in the Stokes 
space of S, , S2 ,  S3. Each point on the sphere corresponds to 
a definite polarization state, whose variation is characterized 
by movement of the image point. Here the fluctuational po- 
larization uncertainty can be associated with a certain region 
of uncertainty in the Stokes parameters S1,2,3 around their 
mean  value^.^ In a quantum treatment there are operators 
corresponding to the Stokes parameters [see the expressions 
(2) below]. 

To quantitatively describe the polarization state of light, 
we introduce the degree of polarization P, which is equal to 
the ratio of the intensity of the polarized part of the radiation 
I p l  to the total intensity I,,: 

For completely polarized light P =  1, while for partially po- 
larized light O< P< l ,  and a transition to unpolarized light 
corresponds to squeezing the Poincar6 sphere to zero 
radius.'' The description of partial polarization using real 
Stokes parameters corresponds to the intimate relationship 
between the classical and quantum approaches for treating 
polarization properties. However, quantum theory permits 
the existence of nonclassical polarization states, for which a 
general analysis is presented in the next section. 

3. NONCLASSICAL POLARIZATION STATES, 
POLARIZATION-SQUEEZED LIGHT 

Let us consider two modes of a light field with orthogo- 
nal polarizations interacting in a nonlinear medium. The po- 
larization state of the light is described by the Stokes opera- 
tors (see, for example, 2-4): 

where nj(z) = af (z)aj(z) is the photon number of the op- 
erator in the jth mode, a j  ( a f )  is the photon annihilation 
(creation) operator, and z is the coordinate in the direction of 
propagation of the radiation. The operators a j  and af obey 
the known commutation relations [a j  ,a:]= Sjk , where Sjk 
is the Kronecker delta. The operators Sj satisfy the commu- 
tation relations of SU(2) algebra: 

In addition, the operators Sj(z) ( j =  1 ,  2, 3) commute with 
So(z). 

The noncummutation conditions (3) lead to the uncer- 
tainty relations: 

The quantities (AS?(Z))=(S?(Z)) - ( ~ ~ ( 2 ) ) ~  are the fluctua- 
tional variances of the Stokes parameters. Relations (4) im- 
ply that in quantum optics the Stokes parameters cannot be 
measured simultaneously to arbitrarily high accuracy. As al- 
ready mentioned above, it is convenient to represent the state 
of the quantum vector field in the form of a certain uncer- 
tainty volume with the central coordinates (S1,2,3) in a Poin- 
can5 sphere. In the case of a coherent state, such a region has 
the form of a sphere.4 In fact, the coherent state for a two- 
mode field is 1 a) = 1 al)I a2) ,  where I aj)  is an eigenstate of 
the operator a : 

ailcui)= ajlaj) ( j =  1,2). 

Using the definitions (2), we can easily obtain 

Hence it is seen that the level of fluctuations of the Stokes 
parameters for two-mode coherent radiation is determined by 
the sum of the mean numbers of photons (nj) in the modes: 
N+=(n,)+(n2). 

The relations (3) can serve as a basis for writing in- 
equalities which describe the conditions for the existence of 
squeezed (with respect to fluctuations of the Stokes param- 
eters) states of a light field: 

In Eqs. (6) either the upper or lower signs should be taken. 
Physically, the inequalities (6) mean that the uncertainty re- 
gion of the Stokes parameters transforms and takes the form 
of an ellipsoid with suppressed fluctuations of one of the 
parameters and increased or, at least, undiminished fluctua- 
tions of the other parameters. Such a polarization state of a 
light field is customarily termed a polarization-squeezed 
state.4 It is nonclassical. In fact, in this case one of the quan- 
tities 

where N is the normal ordering operator, turns out to be 
negative. The expression (7) is nonnegative for classical 
states. 

In many cases, orthogonally polarized modes can repre- 
sent light waves with linear polarization, for example, along 
the x and y axes, and with the amplitudes A,  and Ay  . The 
amplitudes A + =Ax? +A then specify modes with circular 
polarization. 

Let us discuss which nonclassical states studied have 
properties which are similar to those of light with squeezed 
fluctuations of the Stokes parameters. We first of all consider 
the parameters So(z) and Sl(z), which are defined by the 
relations (2a) and (2b). It is well known that fluctuations of 
these parameters can be suppressed to values below the level 
corresponding to the coherent state, owing to a correlation or 
anticorrelation among the photons in the two modes. Such a 
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situation is realized, for example, in parametric processes 
and four-wave mixing,I2 as well as for other schemes of 
multiwave scattering,13 where correlated photons are created 
in pairs. 

The physical properties of squeezed light with suppres- 
sion of the fluctuations of (AS;(Z)) or (AS:(Z)) can be elu- 
cidated in the simplest case by assuming that the field of one 
of the modes is classical. Then, for example, replacing a l  by 
the classical quantity I A  lexp(iq1) ( cpl is the phase), we have 

where 

are Hermitian quadrature components for the mode described 
by 0 2 -  

It is seen from (8a) and (8b) that in this case 
polarization-squeezed light is closest to quadrature-squeezed 
states of a field (compare with Ref. 14). Experiments devised 
to obtain light with such characteristics are well known (see, 
for example, Ref. 12). 

When polarization-squeezed light is compared with 
quadrature-squeezed light, the specific features associated 
with the vector character of the field must, of course, be 
borne in mind. For example, in a cubically nonlinear me- 
dium, quadrature-squeezed states can be obtained in practice 
only in processes involving the self-interaction and interac- 
tion of waves,14 while polarization-squeezed light can form 
in such media only when there is anisotropy in the nonlinear 
correction to the refractive index.4 In the latter case, there is 
no power conversion between polarization modes propagat- 
ing in the nonlinear medium. Therefore, both the total num- 
ber of photons and the difference between the numbers of 
photons in the modes are maintained. The main purpose of 
the present paper is to demonstrate the possibility of obtain- 
ing a new class of polarization-squeezed light, in which there 
is power conversion between the polarization modes. 

4. BASIC EQUATIONS AND RELATIONS FOR 
POLARIZATION-SQUEEZED LIGHT UNDER THE 
CONDITIONS OF POWER CONVERSION BETWEEN MODES 

The high efficiency of devices for generating nonclassi- 
cal light on the basis of distributed-feedback systems has 
been established (see, for example, Ref. 15). At the same 
time, the realization of distributed feedback seems most 
promising either in optical fibers with a dielectric constant 
that varies periodically along the propagation coordinate, or 
in tunneling-coupled twin-core fiber waveguides? We show 
that the presence of two orthogonally polarized coupled 
modes in such systems makes it possible to obtain 
polarization-squeezed light with new properties in them. Let 

us consider the formation of polarization-squeezed light in a 
spatially periodic optical fiber. We begin the analysis with 
the classical equations. 

When losses are neglected, the propagation of a linearly 
polarized wave in such spatially periodic fibers is described 
by the contracted equations for the slowly varying complex 
amplitudes A, and A, (Ref. 8) (the components of the polar- 
ization parallel to the x and y axes): 

where /3 is the linear coupling coefficient of the waves, 
R = 2kon2 ln is the nonlinear coupling coefficient 
(ko= WIC),  n l  and n2 are the linear and nonlinear refractive 
indices, s is the effective area of the fiber filled by the radia- 
tion, and k,,  are the wave numbers of the waves polarized 
along the x and y axes, respectively. 

In (9) we perform the following replacement: 

As a result, for B , ,  we obtain the equations 

where S= k,- k, - ko . In deriving (1 1) we neglected the rap- 
idly oscillating terms containing the factors exp(-2ikoz), i.e., 
we assumed that kozB 1 (compare with Ref. 8). In the case 
of R = 0, Eqs. (1 1) describe the propagation of two modes of 
radiation in optical fields with linear power conversion: 
tunneling-coupled or spatially periodic modes?-9 

Upon passage to the quantum description, the complex 
classical amplitudes B,,, in Eqs. (11) should be replaced by 
operators in the standard manner, i.e., 

(V is the quantization volume), and the right-hand sides of 
the equations should be normal-ordered. As a result, we ar- 
rive at the quantum equations of motion for the operators 

ax9, (in the Heisenberg representation): 
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where R = ~ . ~ ~ ~ ~ W R I E ~ V .  
Equations (13) can also be obtained from the Heisenberg 

equations of evolution for the operators a, and a, 

da  
ifi -=[aj,Hint] ( j = x , y )  

dr 

with the interaction Hamiltonian 

when dldt is replaced by - (cln l)dldz, where c is the ve- 
locity of light in vacuum. 

In the classical problem, the solutions of the system (11) 
can be expressed in terms of elliptic integrak7 However, in 
the quantum description of the process, certain difficulties 
arise in solving Eqs. (13); these are related to the operator 
algebra. We solve the system (13) in the secondary- 
contraction approximation (see, for example, Ref. 15). In this 
context we write the solutions of Eqs. (13) in the form 

where C 1 , 2 ( ~ )  are slowing varying operators. After substitut- 
ing (15) into (13) and neglecting the rapidly oscillating terms 
that are proportional to exp(2ipz), we obtain the following 
simplified system of nonlinear equations: 

The approximations under which the system (16) was ob- 
tained are applicable under the condition 

where LL= 1/P and LNL= 11l?1a,1~ are the linear and nonlin- 
ear spatial scales of the interaction of the polarization com- 
ponents. The right-hand side of the inequality (17) physically 
means that we neglected the rapidly oscillating terms during 
the transition from (9) to (16) using the transformations (10). 

The solutions of Eqs. (16) are written in the form 

where C1,2=C1,2(~=0) are the values of the operators at the 
entrance to the nonlinear medium, y= 5izl6,  and a = j z .  

We note that the introduction of Cl,2(z) in accordance 
with relation (15) essentially signifies the selection of inde- 
pendent variables, as is usually done in the treatment of 
coupled oscillators (the transition to independent modes). 

It is easy to see that a , ,  and Cl,2(z) satisfy the commu- 
tation relations for a boson system: 

5. FLUCTUATIONS OF THE STOKES PARAMETERS 

We define the operators of the Stokes parameters by the 
expressions [compare with (2)] 

where the phase 8= @ - koz takes into account both the ini- 
tial phase difference @ between the orthogonally polarized 
waves and the phase difference associated with the differ- 
ence between the wave numbers of these waves [see (lo)]. 

Let the modes a, and a, initially be in a coherent state. 
Then the initial operators also correspond to coherent 
states, i.e., satisfy the relations 

where a1 ,2=(axk ay)lf i  [a,,, is an eigenvalue of the op- 
erator a,,,(z=O)] and the total state vector of the field under 
consideration is 1 ) = 1 a )  1 a ) .  We assume that 
a, = a2 = a, 1 fi, i.e., at z = 0 the polarization component 
a, is in the vacuum state lo), and my =O. 

Averaging the expression (20) with respect to the state 
15) and taking into account the relations (15), for the mean 
values of the Stokes parameters we obtain 

where n 3 1 axI2 is the initial mean number of photons in the 
mode a,. The presence of the exponential factors in (22b)- 
(22d) is due to a purely quantum effect. However, in real 
situations the oscillatory behavior of the parameters (22) due 
to variation of the value of the exponent is not observed, 
since I y- a1 4 1. In this case we can restrict ourselves in the 
calculations to the approximation 

The harmonic factors in (22) are associated with power 
conversion between the interacting ( p  # 0 )  modes and their 
phase difference 8. We note that when 2pz  = m .rr (m = 1,2, 
3, ...), the Stokes parameters are such that (S2)=(S3)=0 
and (S1) takes its maximum value. We note that the degree 
of polarization (1) does not depend on the coupling coeffi- 
cient p or the phase 8, and equals 

Under real conditions, however, the value of P differs only 
very slightly from unity. 

For the variances (AS;.~(Z)) the calculations give 
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where += (- y+ a)n=knz/6 is a nonlinear parameter. In 
deriving (24), we used the fact that ( -  y + ~ ) ~ n e  1. 

It follows from expression (24) that in the general case 
the variances of the Stokes parameters at the exit from the 
nonlinear medium can be either smaller or greater than those 
at the entrance. The variances at the exit depend on pz, 6, 
and +. The nonlinear parameter + determines the extrema of 
the variances. 

We move on to a more detailed analysis of the behavior 
of the fluctuations of the Stokes parameters. Note that the 
effective nonlinear parameter K =  t,beff= + C O S ~ / ~ Z  actually 
plays a major role here. When K is used, the expressions (24) 
take the simpler forms 

The expressions (25a) and (25b) transform into one another 
as a result of the replacement 6--+ 6+ d 2 .  In other words, 
the behavior of the fluctuations of the Stokes parameters as a 
function of the phase 6 is displaced by d 2 .  Three- 
dimensional plots of the functions (25a) and (25b) are pre- 
sented in Figs. l a  and lb. A comparison of Figs. l a  and l b  
reveals that if the variance of one of the Stokes parameters is 
greater than that in the coherent state, the variance of the 
other parameter is less than the latter. In particular, the maxi- 
mum value of the normalized variance az=(h~; (z) ) ln  
(Fig. la) corresponds to the minimum value of 
a ; ~ ( A ~ ; ( z ) ) l n  when ~ = 2  and 6= 1.2 rad. Thus, the state 
of the field is polarization-squeezed. 

Expression (25a) reaches an extremum when 
tan2 6= - YK. The minimum and maximum values are 

( A S ~ ( Z ) ) , ~ =  n[ d m -  1 ~ ) / 2 ] ~ ,  (264 

(As : ( z ) ) , ,=n [dm4+  1 tc1/2I2, (26b) 

Figure 2 presents plots of the dependence of the mini- 
mum variances, which decrease with increasing values of the 

FIG. 1 .  Normalized variances 
u;=(h~,?(z))ln ( j =  2, 3 )  of the Stokes 
parameters a) Sz(z) and b) S3(z) as a 
function of the effective nonlinear pa- 
rameter K and the phase 6. The value 
a;= 1 corresponds to the coherent level 
of dispersion of the fluctuations of the 
Stokes parameters. 

effective nonlinear parameter I K I  . Identical values of 
I K I  = +Icos(~Pz)I, which has its largest absolute values when 
cos(2/3z)= +_ 1, correspond to levels of equal variance. When 
2pz= 7r/2+ rrm (m = 0, 1,2, ...), the effective nonlinear pa- 
rameter I K I  equals zero, and the variances of the Stokes pa- 
rameters at the exit from the medium have the same values 
as in the case of fields in the coherent state [compare with 
(5)]. Such a situation is characteristic of the behavior of the 
fluctuations of observed (quadratures, numbers of photons) 
light fields in media with linear power conversion between 
the waves? 

We note that in the case of (26a) and (26b) under con- 
sideration, the product 

( ~ ~ i ( z ) ) r n h ( ~ ~ ; ( z ) ) m = n ~  

is minimal, and we are dealing with ideal squeezing. 
Let us now examine the expressions (25) from the stand- 

point of achieving extrema as K varies. When K = - cote the 
expression (25a) takes the minimum value 

(AS;(Z)),*= nsin26. (274 

In this case the variance of Sg has the maximum 

FIG. 2. Minimum normalized variance a ~ ~ , , - ( ~ ~ ~ ( z ) ) , ~ , / n  of the Stokes 
parameters S,(z) ( j=2 ,  3) as a function of the nonlinear parameter $ and 
the reduced linear coefficient 2Pz. 

38 JETP 81 (I), July 1995 Alodzhants et a/. 38 



It follows from (27a) and (27b) that if (AS;(Z)),~~+O, 
(AS$(Z)),,-+W in accordance with the uncertainty relations 
(4) 

According to the expression (27a), it is easy to achieve 
suppression of the fluctuations in S2. However, large values 
of the nonlinear parameter K are needed to obtain small val- 
ues of 8 that satisfy the extremum condition K =  -cote. In 
fact, the expressions (27a) and (27b) can be written in the 
form 

These expressions clearly reveal the dependence of the vari- 
ance of the Stokes parameters on K (see also Fig. 2). 

One characteristic feature of the polarization-squeezed 
states of light under consideration is the occurrence of power 
conversion between waves with orthogonal polarizations. 
The linear coupling coefficient /3 in this case can be an ad- 
ditional parameter for regulating the functions (AS&) (Fig. 
2). As /3 varies smoothly, oscillations of the variances (24) of 
the Stokes parameters appear in the general case. 

Let us now consider the fluctuations of the Stokes pa- 
rameter S1. The expression for (AS:) obtained under the 
same approximations as (24) has the form 

It is seen that (AS:(Z)) is also greater than the variance for 
the coherent state with the sole exception being values of the 
distance z satisfying the relation 2Pz = .rr( 1 + m), m = 0, 1, 
2, ... . 

6. CONCLUSIONS 

Thus, the possibility of generating polarization-squeezed 
states of light in spatially nonuniform, nonlinear optical me- 
dia with effective power conversion between the polarization 
modes has been demonstrated in the present work. 

The expressions (24) obtained for the fluctuations of the 
Stokes parameters reveal the occurrence of redistribution of 
the quantum fluctuations, which is largely similar to that oc- 
curring in the quadrature components. 

The optimal conditions for obtaining polarization- 
squeezed light with respect to the parameters of the problem, 
viz., the coupling coefficient of the waves and the nonlinear 
parameter, have been disclosed. Here the initial relationship 
between the phases of the modes, which determines the char- 
acter of the power conversion in the system, is of fundamen- 
tal importance. 

Let us dwell briefly on the question of the realization of 
nonclassical polarization states of light. The possibility of 
observing them is essentially determined by the value of the 
nonlinear parameter rjr, which is linearly dependent on the 
intensity of the coherent radiation. Optical fibers of a special 
type ("twisted" fibers) can serve as spatially periodic media. 
Considerable progress has been achieved in the technology 
for fabricating such optical fibers with Bragg lattices. Such 
highly efficient lattices (with approximately 90% reflection) 

are induced even in a cw laser field (two beams) with a 
radiant flux density of the order of w/cm2 in quartz optical 
fibers with implanted germanium ions and a length of several 
centimeters (see, for example, Ref. 16). In this case the light- 
induced modulation of the refractive index in such structures 
can reach P.5 lou2  - cm-'. Other materials which 
would be promising in this area are possible (see, for ex- 
ample, Refs. 17 and 18). Therefore, experimental observa- 
tion of the effects considered in the present work has been 
fully achieved. 

Finally, some possible applications of polarization- 
squeezed light should be stressed. In addition to high- 
precision polarimetry and ellipsometry, this effect also seems 
promising for obtaining light with sub-Poissonian photon 
statistics19 and for performing nondemolition quantum mea- 
surements of polarization 
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