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It is shown to be feasible, using an active interferometric displacement sensor, to continuously 
measure a classical force at an accuracy beyond the standard quantum limit. Rather than 
detecting the phase, one measures a specially chosen quadrature component of the wave generated 
by the sensor; that component is squeezed, due to a ponderomotive nonlinearity. Two types 
of active sensors are considered: those with gain provided by three-level atoms, and parametric 
amplifiers. Allowance is made for noise due to spontaneous emission and errors due to 
mirror losses and radiative drag. O 1995 American Institute of Physics. 

1. INTRODUCTION 

With the accuracy of experimental measurements of 
classical forces constantly on the rise, achieving the standard 
quantum limit no longer appears to be an unrealistic goal. 
This has piqued interest in methods of achieving even higher 
accuracy. 

One of the most promising force detectors is the optical 
interferometric displacement sensor consisting of a Fabry- 
Perot etalon with one mirror that can undergo translational 
oscillatory motion (Fig. 1). Information about the signal to 
be measured is encoded by the phase of the reflected wave 
E2.  At present, such sensors have been proposed for use as 
gravitational detectors (for example, in the LIGO project) 
and in a number of other fundamental experiments. 

If the phase of E2 is tracked continuously, the measure- 
ment accuracy is bounded by the standard quantum limit, 
which is reached at the optimum power level of the pump 
E ~ . ' - ~  This bound results from the back influence of the 
sensor on the light wave. If the signal is given by the force 

( t ,  = 2?m/wF, n is an integer), which acts on a free mass 
m ,  the standard quantum limit can be written in the form 
FsQL = JG. For definiteness, we will assume below 
that the force being measured has the same form as F ,  . 

There are several ways to mitigate the back influence. 
One can make use of a measuring instrument with noise 
correlated in a special manner? or prepare the pump wave 
E l  in a supercoherent (squeezed) state: rather than a coher- 
ent state. The actual implementation of such correlation or 
squeezing, however, is difficult. 

It has been shown6-' that the displacement sensor itself 
is a generator of squeezed radiation. Let the wave incident 
upon the stationary mirror be in a coherent state; the light 
pressure is proportional to the square of the wave amplitude. 
The greater the amplitude, the higher the pressure (and thus 
the greater the displacement of the mirror), thereby increas- 

ing the phase shift of the reflected wave. This means that 
amplitude and phase fluctuations in the reflected wave will 
be interdependent. A ponderomotive nonlinearity results in 
squeezing of the reflected wave. 

The squeezing of light due to a ponderomotive nonlin- 
earity has been proposed as a means of detecting forces be- 
yond the standard quantum limit7,8; the assumption was that 
the pump wave E l  is in a coherent state, with no preparatory 
squeezing. All that is necessary to circumvent the standard 
quantum limit is to detect a specially determined quadrature 
component of the phase of E2, rather than the phase itself, 
using a modified homodyne setup? 

A similar means of improving measurement sensitivity 
was apparently first suggested in Ref. 10. That method is 
only quasioptimal, however, and enables one to achieve ac- 
curacy beyond the standard quantum limit only for signals in 
a narrow frequency range inversely proportional to ( ( E  

An active displacement sensor can be used instead of a 
passive one. Kulagin and ~udenko" show that the insertion 
of a parametric amplifier near the lower oscillation threshold 
between the interferometer plates reduces the measurement 
error below that achieved with a conventional interferometric 
sensor (the back influence of fluctuations is not taken into 
account). They go on to showI2 how one can use parametric 
amplifiers to specially induce a terminal cascade reaction, 
which can be used to squeeze the backward wave. Panov and 
~ u d e n k o ' ~  study a displacement sensor in oscillatory mode 
from a classical standpoint, based on a lumped-element ar- 
rangement. 

In the present paper, we analyze two types of active 
interferometric displacement sensors using a quantum theo- 
retic approach: these are based on a three-level atomic am- 
plifier and a parametric amplifier (Fig. 2)  (employing a me- 
dium with X(2) susceptibility). We study the influence of 
fluctuations in spontaneous emission (for the atoms) and in 
the pump noise (for the parametric amplifier) on experimen- 
tal accuracy. Losses in the interferometer mirrors are taken 
into consideration, as is radiative drag. 

In doing the calculations, we have assumed that a) E ,  is 
a vacuum fluctuation field in the coherent state; b) both tech- 
niques work near the threshold of oscillation; c) there are no 
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FIG. 1 .  Passive interferometric displacement sensor. The force to be de- 
tected affects the movable mirror. It is possible to surpass the sensitivity 
given by the standard quantum limit in measuring the quadrature component 
(rather than the phase) of the reflected wave E2. 

intrinsic losses in the mechanical system or the pump reso- 
nator (used in the parametric amplifier), and losses in the 
measurement interferometer are small ( 1  S q S R ,  where q is 
the transmission coefficient of the interferometer input mir- 
ror, and R is the loss factor in both mirrors); d) perturbation 
theory is applicable, i.e., the mean value of any observable in 
the system is much greater than its rms deviation during the 
measurement interval; e) the sensor is operating in the mass- 
controlled domain (oFS o, , where w,+, is the natural fre- 
quency of the mechanical oscillator); f) the relaxation time of 
the resonator is greater than the time over which the force 
acts, i.e., q 4 L o w F l c  (Lo is the separation between the walls 
of the measurement resonator and c is the speed of light), a 
condition that can hold, for example, in the LIGO project. 

In the first section of the present paper, we consider an 
active parametric displacement sensor. Near the sensor's 
threshold of oscillation, it is possible to suppress pump fluc- 
tuations and surpass the level of accuracy imposed by the 
standard quantum limit. The influence of these fluctuations 
will decrease as the resonator pump power W ,  increases. If 
the mirrors are lossless, then 

is the power required within the passive interferometric dis- 
placement sensor to achieve the standard quantum limit, and 
from this point onward, v represents a factor of order unity. 
If the transmission coefficient of the front mirror of the pump 
resonator is oF=300 sec-', o,,=3.10'~ sec-', 
rn = 1 o ~ ~ ,  L = 4. lo5 cm, and the pump power i, in the ac- 
tive medium is of order 103w, then we have 
Fminl=O.lFSQL. 

The second section concerns the sensor with a three- 
level atomic active medium. We show that if the mirror are 
lossless ( R = O ) ,  it is possible to achieve sensitivity better 
than the standard quantum limit outside the gain bandwidth 
r of the atoms. The minimum detectable force is then 

The present state of the art in atomic force sensors is such 
that their accuracy is no better than the standard quantum 
limit, due to noise in the active medium. There is some hope, 
however, that atomic or molecular transitions will be identi- 
fied that are suitable for making an oscillator with a narrow 
enough bandwidth that the sensor sensitivity can be im- 
proved. 

In either case, mirror losses limit the minimum detect- 
able force. Assuming that these losses dominate other 
mechanisms that bound the measurement sensitivity, we have 

For R = and q = 3 . 1 0 - ~ ,  we have Fmin2=0.38 FsQL. 
There is another mechanism besides the ones mentioned 

above that limits measurement accuracy, and that is impor- 
tant when Fminl and Fmin2 are sufficiently small-namely, 
radiative drag (when an electromagnetic wave is reflected 
from the moving mirror, the frequency of the reflected wave 
and the radiation pressure depend on the mirror velocity) 
resulting from a combination of the Doppler effect and the 
resonator effect (the mechanical system exhibits additional 
stiffness due to coupling to an optical mode). For an oscilla- 
tor with an atomic-level amplifier, the sensitivity will be the 
same as that of a passive displacement sensor: 

Here 

In a parametric amplifier, the accuracy will be higher: 

FIG. 2. Active interfernmetric displacement sensor based on a parametric 
amplifier. It is possible to surpass the sensitivity given by the standard quan- 
tum limit in measuring the quadrature component. The ultimate measure- 
ment accuracy, which depends on radiative drag, can be higher than that of 
a passive sensor. Increasing the power associated with the field f?, can lead 
to unlimited suppression of pump noise. 

We can explain these results by noting that if the oscillator 
operates near its oscillation threshold, the relaxation time of 
the resonator will increase within the gain bandwidth of the 
active medium. When condition f above is satisfied, this will 
reduce the radiative drag. 
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The expressions for the minimum detectable force were 
obtained for the optimum value of the power W within the 
resonator used for the measurement. Rewriting (1)-(3) in the 
form Fmi,= FsQL[ ([<I), we have 

W= (6) 

To reach the limits (4)-(5), the required power is 

We now proceed to examine the proposed methods directly. 

2. ACTIVE INTERFEROMETRIC DISPLACEMENT SENSORS 
WITH A PARAMETRIC AMPLIFIER 

The temporal evolution of this sensor (Fig. 2) is given by 
a set of three equations: 

Here g is the coupling constant between the between the 
pump resonator mode and the interferometric displacement 
sensor mode, L1 is the distance between the pump resonator 
mirrors, and Ep is the external electromagnetic field driving 
the pump mode oscillations. To streamline the calculations, 
we have assumed both the transmission coefficients of the 
input mirrors and the mirror areas in the two resonators to be 
equal. The carrier frequency of the wave Ep and the eigen- 
frequency of the pump resonator are equal to twice the fre- 
quency of the measurement resonator (with radiation pres- 
sure taken into account). The requirement that the system 
operate near the oscillation threshold means that the field 
amplitude Ep in the pump resonator depends weakly on the 
field Ein in the measurement part of the system. The setup 
shown here is phase-sensitive. Let (i,) = il (Ep) 1 e-2iwo'. If 
we then equate observables as in the previous section, we 
have from (8) that 

In these equations, we assume for definiteness that (i,) lags 
(Ei,) in phase by 7r12. (It can also lead by d 2 ;  the actual 
phase of the generated wave can only be determined experi- 
mentally, as these two phases are equally likely.) 

Let the pump resonator relaxation time be less than the 
time over which the force acts (this is possible if Lo>Ll). 
We then have for the fluctuations in the output wave E2  

b2=NbI+K(bI+b:-)+ - [(1 +N)d+K(d+df) ]  x 
where 

The operators d2= d2(2 wo+ Q) and d,f_ = dk(2wo-  Q) 
characterize fluctuations induced by the pump wave I?, . 

We can write the impedance of the mechanical system in 
the form 

It can easily be seen that radiative drag decreases when con- 
dition f above holds. 

3. INTERFEROMETRIC DISPLACEMENT SENSOR BASED 
ON A THREE-LEVEL ATOMIC OSCILLATOR 

The temporal evolution of the sensor is given by 

In these equations, Q = q +R; WR is the natural frequency of 
the unloaded resonator; wo is the oscillation frequency; a_, 
a+, ull, and are operators that describe the three-level 
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atomic mediumI4; ,u,=N,pEo and k= ,dEo  are the atom- 
field coupling constants (N1 is the number of atoms in the 
resonator, Eo= ( h  oo 12 v ) " ~  is the electric field attributable 
to one photon in the resonator mode, V is the effective vol- 
ume of the oscillation mode, and p = ( p ~ o l h )  is the mean 
coupling constant between the dipole moment p and the field 
Eo of one photon); x is the position of the mechanical oscil- 
lator; a,= 2wlmc2 is the radiative drag coefficient; 
W= ( S C / ~ T ~ ) ~ ( E , , ) I ~  is the radiative power inside the reso- 
nator; S is the area of each resonator mirror; m is the mass of 
the movable mirror; (c12Lo) &Ep is the Langevin force re- 
sulting from mirror losses; and FI2, Fll , and F2, are 
Langevin forces related to the atomic linewidth r and the 
atomic population inversion factor wzo .I4 

In writing Eqs. (12), we have taken the working atomic 
transition frequency to be equal to the oscillation frequency 
q,, which for simplicity we have assumed to be equal to the 
frequency of the measurement resonator (with allowance for 
radiation pressure). The oscillation condition near threshold 
(ru21(~in)llT< 1) implies that the Langevin forces Fl and 
Fz2 make a much smaller contribution to the system than 
does F 12. For convenience in subsequent calculations, we 
can express the latter in terms of a fluctuating electric field 
analogous to E,, : 

Solving for Ein in (12), we obtain for the output wave 

Putting the observables of the system in the form 

1 
x= (x) dnx(n)e-'"', 

2Tr -m 

we obtain for the oscillation frequency and amplitude 

We then have for the fluctuations in the emerging wave 

+ K ( ~ ~ + ~ : - ) ] + u F , ,  

where 

2q+ ia (4L0lc)  - ~ [ l  - r / ( r -  i n ) ]  
N= - in(4Lo lc) + ~ [ l  - r / ( r -  i n ) ]  ' 

In these four equations, Z(Q) is the effective impedance of 
the mechanical oscillator; b = b (oo+  0 )  and 
b :- = b :- ( o o  - 0 )  are the spectral amplitudes of the anni- 
hilation and creation operators in the damped wave; d and 
d?  are the mirror-loss fluctuation operators; and d l  and 
d:- are the spontaneous-emission noise operators in the ac- 
tive medium. 

4. OPTIMAL SIGNAL FILTERING 

We apply the optimal signal detection method developed 
in Ref. 9 to the devices described above. This method em- 
ploys a modified homodyne detector for noise like that given 
by Eq. (10). 

A homodyne detector (Fig. 3), as is well known, can be 
used to measure the quadrature components of an electro- 
magnetic wave. The difference photocurrent J is proportional 
to E ~ ~ ( ~ ) E : ( ~ ) + H .  c. (ELO(?) and E2(r) are the complex 
amplitudes of the local oscillator and signal). In order for 
fluctuations in ELO(?) not to make any appreciable contribu- 
tion to the measured results, the power associated with ELo 
must be high: I ~ ~ ~ l % - k l ~ ~ 1  (k is the squeezing factor of the 
signal field E2). It is assumed that ELO is in a coherent state. 
In that event, we can assume that the photocurrent J ( t )  is 
proportional to the quadrature component B ( 8, r) , 

where the angle 8 is given by the phase of ELO . Due to the 
fact that the measurement time is finite, we detect not the 
quadrature component but some mean value: 
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FIG. 3. Homodyne detector layout. If the power in the local oscillator 
ELO is much greater than the power in E,, the photocurrent difference J 
= J I  - J z  will be proportional to the quadrature component B ( 0 )  of the 
signal wave, and the phase 0 will be determined by the phase of the local 
oscillator. 

The modified homodyne method proposed in Ref. 9 entails 
phase-modulating the local oscillator. We can show that the 
averaged function @(t) and the phase modulation O(t) can 
be chosen such that BT contains no information on noise due 
to the back influence of fluctuations. 

To simplify the mathematics, we assume that sensitivity 
is limited solely by radiative drag effects. if 

gs(il) = j '@(t)sin~(r)e'"' dt, 
0 

then when 

BT can be put in the form 

(20) 

Here N, U, K=K1+K2, K T ( - R ) = K ~ ( ~ ) ,  and 
K,*(-a)= - K2(fl) are parameters that describe the wave 
E2. 

We are now in a position to write the signal-to-noise 
ratio for the measured quantity2: 

4 1 ~ ~ ~ ( i l ) [ ~ d i l  .=I-.. ,I,[2 (21) 

In measuring a force of the form described above, the inte- 
gral (21) can be evaluated over the closed interval 
fl E [wF- wF/2 ,aF+ wF/2]. Optimizing the signal-to- 
noise ratio by varying the pump power and calculating the 
corresponding integrals leads to Eqs. (4)-(5). We note in 
closing that mirror losses and fluctuations due to spontane- 
ous emission do not alter the foregoing signal-detection strat- 
egy. 

One fundamental difficulty encountered in experimen- 
tally implementing the proposed measurement technique is 
the need for a stable pump for the parametric amplifier-based 
sensor (this is not a problem for the three-level atomic am- 
plifier), as well as a stable local oscillator. Whereas for the 
parametric oscillator we are faced with the strictly technical 
problem of designing a stable, high-power signal source to 
be simultaneously used as a pump and local oscillator, the 
problem is somewhat more complicated for the atomic oscil- 
lator due to the fact that the radiation is not phase-locked to 
the pump. If the atomic oscillator is not stable enough, it can 
be stabilized using a frequency standard. The measurement 
accuracy remains unchanged. 
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