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The motion of quasilocalized packets of an intense wave field in inhomogeneous media with 
nonlocal nonlinearity is studied both analytically and numerically. The approach takes into account 
the reaction of the radiation emitted by the packets. The paths of packet motion are 
constructed, and the lifetime and the depth of packet penetration in the shadow region are 
calculated. Finally the possibility is demonstrated of particle-like packets penetrating regions 
inaccessible to classical light fluxes. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Interest in the motion of packets of an intense wave field 
in inhomogeneous media stems both from the fundamental 
problems of the theory of nonlinear waves and from the ap- 
plications in which packets of strong electromagnetic fields 
penetrate dense plasma layers. The most thoroughly studied 
problems in this area of research are spatially localized high- 
frequency field packets whose paths are described by the 
equations of geometrical optics in smoothly inhomogeneous 
media with local'-3 and nonloca14 striction nonlinearities. the 
effect of the emission of wave fields by packets moving in 
smoothly inhomogeneous media have been analyzed only by 
perturbation theory  technique^.^ 

In this paper we analyze the motion of packets of an 
intense one-dimensional wave field in smoothly inhomoge- 
neous plane-layered media with nonlocal nonlinearity, where 
a packet consists of a kernel and the high- and low-frequency 
radiations emitted by the kernel. We show that the low- 
frequency radiation caused by the nonlocal nonlinearity 
changes the effective potential profile and forces the path of 
packet motion to deviate from the classical path. In particu- 
lar, for wave packets emitting waves in the direction of rar- 
efied plasma layers and moving in the direction of the den- 
sity gradient the depth of their penetration of dense plasma 
layers increases in comparison to that for localized wave 
packets. 

2. STATEMENT OF THE PROBLEM 

We take a one-dimensional field q ( z ,  t), the envelope of 
the wave process W(z,t)exp(-it} in a smoothly inhomoge- 
neous plane-layered medium with a linear inhomogeneity 
profile pz and a nonlocal nonlinearity: 

Here n is the concentration perturbation. This system of 
equations describes packets of, say, a Langmuir or electro- 
magnetic wave field, in the approximation of a "parabolic" 
law of dispersion for these waves and serves as a generali- 

zation of a well-known system of equations6 to the case of a 
smoothly inhomogeneous medium. Assuming the wave 
packet velocity equal to a(t),  where a(t) is interpreted as 
the velocity of motion of the center of "gravity" of field 
q ,  we go over in Eqs. (1) and (2) to the comoving reference 
frame: 

(in what follows the prime on r is dropped). Substituting the 
sought field function in the form 

into Eqs (1) and (2) reduces these equations to 

d2n d2n d2n dadn d2((@I2) 
( ~ ~ - l ) ~ + - ~  -2a - -- = 

d t  dt drde dtd6 at2 
(5) 

We are interested in nonlinear wave packets moving in a 
smoothly inhomogeneous medium with a time-independent 
acceleration 

where A is a constant characterizing the deviation of a from 
the "classical" acceleration - $. In what follows we limit 
ourselves to examining wave packets whose velocity is suf- 
ficiently low in comparison to the velocity of low-frequency 
perturbations. In this case, neglecting in Eq. (5) the terms of 
orders a and a2  and the term with the second time derivative 
and integrating the resulting relationship with respect to t 
from to infinity as n((--++m,t)+O and 
a(&-+ + w,t)+O, from Eqs. (4) and (5) with (6) we arrive at 
the following system of equations: 
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The equations obtained describe the evolution of wave pack- 
ets of an intense wave field moving with a constant accelera- 
tion in a smoothly inhomogeneous medium with a nonlocal 
nonlinearity. 

3. PHASE-CONJUGATE SOLUTIONS 

Equations (7) and (8) are invariant under the simulta- 
neous substitutions 

t - t ,  @--+a*, n j n ,  (9) 

where @ * is the complex-conjugate of @. This implies that 
for packets @(t , t )  described at the moment t=O at which 
the packet center t = 0  passes the reversal point by the real 
functions 

@(t ,o)=@*(tP) ,  

solutions are possible that relate the packet parameters before 
and after reflection via phase-conjugate relations: 

In this case the packet parameters before and after reflection 
differ only in the sign of the phase (phase-conjugate solu- 
tions). 

4. METASTABLE PACKETS OF AN INTENSE WAVE FIELD 

For further analysis we take Eq. (8) and express the con- 
centration perturbation n in terms of the field's intensity 
[@I2 explicitly. To this end we multiply the equation by 
exp(a0 and integrate the product with respect to 5 from 6 to 
infinity as n ( , f - - + + ~ , t ) j O  and @(t-++m,t)-+O. The re- 
sult is 

n( t , t )= - 1@12-aexp(-a~) I@12exp(at)dt. (11) I," 
For wave packets whose acceleration is so low that 
L- (a)- ' 9 L@ , where La is the scale of nonuniformity of 
the field @, the exponential factors in (1 1) can be neglected. 
As a result for @ we have the equation 

with an effective potential 

Equation (12) describes quasilocalized packets of an intense 
wave field whose decay is due to emission of low-frequency 
and high-frequency waves. 

4.1. Emission of low-frequency radiation 

This process is caused by the nonuniformity of packet 
motion in a medium with a nonlocal nonlinearity (the last 
term on the right-hand side of Eq. (13)) modifies the profile 
of the effective potential Ueff. Equation (13) shows that 
when the packet is retarded, (a<O,) emission of low- 

frequency radiation leads to an increase in the effective po- 
tential behind the packet's kernel and in its vicinity, thereby 
lowering the value of the rolling-down force with which the 
inhomogeneous medium forces the high-frequency kernel to 
the region of small values of the unperturbed potential. At 
the center of the packet's kernel and at t = 0  and 

the slope of the effective potential, which is proportional to 
the rolling-down force f ,  is 

This implies that the critical amplitude of the packet, 
l@,(t,c= 0)12, at which the force acting on the packet's cen- 
ter is zero, is given by the following formula: 

When l@(t,t=0)1< 1@,(t,eO)l,  the inhomogeneous me- 
dium moves the packet into the region of small values of the 
effective potential. In the opposite case, when 
I@(t,t= 0)l> l@,(t,t= 011, the low-frequency radiation 
shifts the packet into the region of high values of the effec- 
tive potential. Note that condition (15) is met if h(-a)=; 
X(P-A)>O, from which, allowing for the fact that P>O, 
we get P>h>O. The packet's acceleration a varies from 
- /? to zero. 

To analyze the given effect numerically, we introduce 
the following variables into Eqs. (7) and (8): 

As a result we have 

where q = X/( - a13. For the initial wave field in (16) we take 
the one-soliton solution of Eq. (16) for a homogeneous me- 
dium with a local nonlinearity: 

'Po 
'P(v,r=O)= (17) 

cash( 'Po v r n )  ' 

Equation (16) was analyzed for a value of the dimensionless 
parameter q equal to lo3 and different values of the initial 
amplitude qo. Figure 1 depicts the distributions of the am- 
plitude 1 ( ~ ( r ,  v)1 and the concentration n at (po=0.5, 
1.2247, and 1.5 for different moments of time r. Numerical 
calculations reveal that there is a critical value of the packet 
amplitude, 

at which the packet is immobile in the selected reference 
frame. In the old variables Eq. (18) has the form 
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FIG. 1. Distributions of the high-frequency field amplitude 1 q( r, 7)  1 and the 
concentration n of Eq. (16) at (a) qo=0.5, (b) Q,= 1.2247, and (c) 
(po= 1.5 at different moments of time: curves 1, r=0; curves 2, 
r=2X and curves 3, 7=4X lo-'. 

and differs from Eq. (15), which was obtained earlier from 
the requirement that the forces acting on the packet kernel in 
an inhomogeneous medium with a nonlocal nonlinearity are 
balanced. This discrepancy is due to the finite size of a 
packet in the presence of an inhomogeneous effective poten- 
tial. For instance, for the packet's acceleration 

with j j =  ( 1 / ~ ~ ) J " _ ~ l q l ~ d  77 the packet's center of "grav- 
ity" and No= 521 ql 2d 77 the number of wave-field quanta in 
the packet, we obtain, with allowance for (16), the following 
relationship valid in a reference frame moving with velocity 
a : 

where N ,  = $21 q14d T.  For wave packets corresponding to 
the initial distribution (17) we have 

This implies that a packet remains immobile in a reference 
frame moving with velocity a if its amplitude is 
qo == m= 1.2247, which agrees with the result of numeri- 
cal calculations (18). With allowance for (18) the packet's 
acceleration in the laboratory reference frame is 

In this case the parameter q is given by the following rela- 
tionship: 

4.2. Emission of high-frequency radiation 

Emission of high-frequency radiation from a packet's 
kernel region is due to the slope of the effective potential 
UeE a A t  related to the deviation of the path of the wave 
packet from the classical path, on which A = 0. For instance, 
for packets that are immobile in an accelerated reference 
frame with allowance for the condition P> A > 0, which cor- 
responds to a retardation of the packet that is slower than the 
classical deceleration (a= -$p) ,  the emission of high- 
frequency radiation is in the direction of rarefied plasma: 
5 1  - (Fig. 2a). For A<O, which corresponds to the case 
where the retardation is faster than in the classical case, 
emission is in the direction of dense plasma: 6-03 (Fig. 2c). 
The value A = O  corresponds to packets that do not emit 
high- frequency radiation (Fig. 2b). If emission of low- 
frequency radiation is ignored, the lifetime of the given ker- 
nels of wave packets is infinite. 

Finite values of A correspond to metastable kernels of 
wave packets whose lifetime is finite and increases as IAI 
drops. At the same time, as A grows, so does the depth of 
penetration of dense plasma layers by the high-frequency 
kernel of the wave packet. Obviously, transport of the energy 
of the high-frequency field to dense plasma layers requires 
that the packet's lifetime to be longer than the time it takes 
the packet to get to its reversal point, r,, i.e., ro>tr. 

4.3. The lifetime of metastable packets 

To find the packet's lifetime determined by emission of 
high-frequency radiation we employ the method of a "fro- 
zen" nonlinearity. For the emitting wave kernel we take the 
one-soliton solution 
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FIG. 2. Profiles of the effective potential U ,ft((. IqIZ) of Eq. (12) (the left 
diagrams) and the corresponding paths of motion of high- frequency wave 
packets (the solid curves in the right diagrams) for different values of A: (a) 
A>O, (b) A = O .  and (c) A<O. 

'Po 
~ ( 7 7 9 7 ) '  exp[!$ ] 

cash( 'Po 77 rn) 
of Eq. (12) for a homogeneous medium with a local nonlin- 
earity and at the packet's critical amplitude qo= 1.2247. Ap- 
proximating the smooth profile of the effective potential of 
Eq. (161, 

with a given field distribution 1 q ( 2  (the dashed curve in Fig. 
3) by a broken line (the solid curve in Fig. 3), we find the 
coefficient of transmission of high-frequency waves through 
a triangular potential barrier into the rarefied-plasma region:7 

FIG. 3. Approximation of the smooth profile of the effective potential 
U,& ?7.1cP12) of Eq. (16) (the dashed curve) by the broken solid line used in 
calculating the coefficient of transmission of a high-frequency field through 
a supercritical barrier in the frozen nonlinearity approximation. 

where ,u= cosh-' fi. We find the time r0 that it takes pho- 
tons to travel along a closed path in the potential well created 
by the soliton (24) in a homogeneous medium by ignoring 
the fact of radiation emission into the region of small values 
of the effective potential U e f f (?7 , ) (P12 ) .  In this case we have 

As a result we arrive at the following expression for the 
lifetime of metastable wave packets, defined as r ~ =  TOIT, 
with the packet's critical amplitude y$= 3 

The lifetime TL is commensurate with the time that it takes 
the packet center to reach the reversal point, T , ,  which ac- 
cording to (6) for a<O is equal to a o / ( - a ) ,  where 
ao=a(r=O)  is the velocity of the packet's motion at the 
initial moment. The ratio of these two times is 

When 9% 1, 

Substituting the expressions for Eq. (28) a and q with 
a;< 1, 

we get 

This implies that for ao< P the packet lifetime in Eq. (29) is 
much longer than the time that it takes the packet's center to 
reach the reversal point: K % 1. 

We define the effectiveness with which quasilocalized 
wave packets penetrate dense plasma layers by the ratio of 
the displacement Az, of the coordinate z, of the reversal 
point of the radiation-emitting kernels of wave packets, 
z,=ai(/3- A ) ,  from the coordinate of the reversal point, 
z,(A = 0 )  =a$, of nonradiative packets when the latter 
move along the classical path Az,= z$'- z,(A = 0 ) ,  to the 
scale of inhomogeneity of the medium, L-P-':  

For one thing, for packets whose amplitude and acceleration 
are related by (22) we have 

The depth of penetration grows with the initial velocity a .  of 
packet motion and the packet's amplitude Q o  and can reach 
considerable values for ao% I .  
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In conclusion we estimate the time of modulation insta- 
bility of the nonlinear wave packets considered here. Since 
the medium's inhomogeneity is smooth (PG 1)  and the ve- 
locity of motion of the packets is low ( a 4  l ) ,  we estimate 
the time that it takes an instability to develop by using the 
two-dimensional nonlinear Schriidinger equation 

where y is the transverse coordinate. For the unperturbed 
one-dimensional nonlinear solution of (31) we take the 
Langmuir soliton (17). In this approximation there is no lon- 
gitudinal instability leading to the partitioning of packets into 
separate time pulses, while the partitioning into transverse 
structures takes place with an optimum scale A, of the order 
of the soliton width A =-cPofi. The value of the increment 
on this scale reaches its maximum and amounts to 
I'=gq7;4 (see Ref. 8). In this case, comparing the time it 
takes transverse perturbations to develop, T, = I'-', with the 
lifetime (26) of nonlinear wave packets for which emission 
of high-frequency radiation is responsible, we arrive at the 
following ratio for q S 1 : 

Equation (32) implies that for q7iG 1 the lifetime of nonlin- 
ear wave packets for which emission of high-frequency ra- 
diation is responsible can be shorter than the time of devel- 
opment of transverse perturbations. 
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