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An analysis of the features of the photoluminescence spectra of plastically deformed crystals of 
Ge and Si provides a basis for a physical picture of the emission process as the 
recombination of excitons bound to dissociated dislocations. These act on electrons through 
periodic potentials along the dislocation lines and potentials localized in the transverse directions, 
as well as through the potential of the packing defect, which is localized in the plane of the 
latter. Equations for determining the energies of the bound states are derived, and a modified 
version of the Koster-Slater approximation, which permits the use of the effective-mass 
approximation in the analysis of deep levels, is proposed. The situation for the case of the d series 
in Ge, which contains 13 clearly distinguishable lines and a short-wavelength limit in the 
emission spectrum, is examined. An alternative description of a bound state, which the roots of 
the dispersion equation for excitonic energies can be successfully reconciled with all the 
energies of the d lines in Ge using two fitting parameters (there is an independent experimental 
estimate for one of them), is proposed. The possibilities of revealing the one-dimensional 
details of the electronic states are discussed. O 1995 American Institute of Physics. 

I. INTRODUCTION 

The photoluminescence of plastically deformed samples 
of silicon and germanium (dislocation photoluminescence) is 
characterized by a rich emission spectrum having several in- 
teresting features. The lines in this spectrum cover a broad 
range of frequencies and are very bright for the case of emis- 
sion in indirect-gap semiconductors. Mechanical action and 
thermal treatment make it possible to significantly alter dis- 
location photoluminescence. It then becomes possible to pur- 
posefully order the dislocation structure and to promote the 
display of specific properties of one-dimensional electronic 
states belonging to long straight segments of dislocations. A 
large amount of experimental data has been accumulated, so 
that the physical picture of dislocation photoluminescence 
can be described in great detail and a description of the elec- 
tronic states which are bound to dislocations and participate 
in the corresponding optical transitions can be proposed. 

Investigations of the luminescence of silicon and germa- 
nium crystals subjected to a two-step deformation procedure 
(during which fairly extensive portions of the dislocation line 
are straightened in the second step1) revealed the fine struc- 
ture of the known broad dislocation photoluminescence 
bands2v3 appearing after the first deformation step. It was 
discovered that the dislocation photoluminescence spectra 
consist of a set of narrow  line^.^-^ The experiments showed 
that individual lines and even whole groups of lines can be 
caused to appear or disappear by varying the deformation 
conditions, as well as by annealing. It is significant that the 
spectral positions of the observed dislocation photolumines- 
cence lines practically never changed. The superposition of 
dislocation photoluminescence spectra obtained under differ- 

ent conditions makes it possible to obtain a rich set of lines 
and reveals bunching and convergence at a limiting emission 
energy on the short-wavelength side. It was also shown (for 
the dislocation photoluminescence in Ge) that the intensities 
of the lines from this set depend in approximately the same 
manner on the excitation level and on the temperature. 

The data obtained provide some basis to regard the en- 
tire set of dislocation photoluminescence lines as the result 
of a series of transitions between quantum states of a com- 
mon physical nature. In the investigation of the dislocation 
photolurninescence in Si in Ref. 4, the individual lines were 
numbered with integers, it was postulated that radiative tran- 
sitions of pairs of point centers participate in the processes, 
and the distance between the centers in such pairs was pro- 
posed as the discrete parameter influencing the spectral fre- 
quency of the radiation. The thorough investigations of the 
dislocation photoluminescence in Ge crystals in Refs. 7 and 
8 led to a more detailed picture of the origin of the spectral 
series. The importance of the dissociation of dislocations into 
partial dislocations (or partials) separated by packing defects 
with a set of discrete widths 

( V  are integers, and a, is an elementary step in the glide 
plane in the direction perpendicular to the dislocation lines) 
was revealed. Actual direct experimental evidence of this 
was obtained in Ref. 8 by applying a specially oriented ad- 
ditional load, which caused either an increase or a decrease 
in the dissociation of the dislocations producing mostly 
short-wavelength or long-wavelength regions of the disloca- 
tion photoluminescence spectrum, respectively. The simulta- 
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neous appearance of several lines should thus be a conse- 
quence of the presence of several different dissociation 
widths in the collection of dislocations. 

If we accept the established fact that the packing-defect 
width (1.1) has a decisive influence on the position of the 
emission lines, we can move forward in ascertaining the na- 
ture of dislocation photoluminescence. First of all, this fact 
means that at least one of the states participating in each 
optical transition is essentially bound to a dissociated dislo- 
cation and forms under the action of a potential which de- 
pends on R , .  There are experimental data indicating the in- 
sensitivity of dislocation photoluminescence spectra to 
doping with various impurities.7 Therefore, it may be as- 
sumed that the local potentials are created by the dislocations 
themselves, i.e., by the structural differences in the arrange- 
ment of the atoms in the dislocation cores from the position 
in an ideal lattice. In such a case potentials which are peri- 
odic along the dislocation lines and are localized in the trans- 
verse directions should be assigned to the straight segments. 
The isolated point centers can be associated with features on 
the dislocation lines themselves (jogs, kinks, intersections). 
An arrangement of these features in pairs on the two lines of 
a dissociated dislocation with separation width (1.1), i.e., 
along a perpendicular to the direction of the dislocation lines, 
was not identified among the other possible relative posi- 
tions; therefore, the observed dislocation photoluminescence 
spectral series should most probably not be attributed to 
point centers. In this paper we shall discuss the situation in 
which dislocations create a potential which is extended along 
their lines and localized transversely to them.') 

The spectral composition of the dislocation photolumi- 
nescence makes it possible to draw some conclusions which 
pertain to the nature of the radiative transition and the degree 
of influence of the dislocation potential on the binding of 
carriers and are important for formulating the physical pic- 
ture. The convergence of the series at a short-wavelength 
limit as the dissociation width of the dislocations increases 
points out the recombinational nature of the luminescence. In 
fact, when there is a two-center potential, the lowest energy 
level of the bound states determined by it should become 
deeper with increasing R , ,  so that the spectral line corre- 
sponding to the radiative capture of a carrier from a band 
state in that level should be shifted to a longer wavelength. 
In the case of the recombination of a carrier trapped in a 
dislocation with, for example, a band carrier of opposite 
sign, the progression of lines for increasing values of R ,  will 
correspond to the experimentally observed progression. In 
this case the recombination picture can also be detailed. It is 
assumed that a potential which is periodic along a dislocation 
line allows the formation of a one-dimensional electronic 
band (several experimental observations shows that this hap- 
pens). Optical transitions between band states should pro- 
duce broad (relative to the width of these bands) bands with 
corresponding energy thresholds. Nevertheless, the disloca- 
tion photoluminescence spectra of Ge and Si consist of nar- 
row (- 1 meV) lines. To explain this fact, it is natural to call 
upon the properties of radiative exciton recombination and to 
examine the case of the excitonic binding of an electron and 
a hole under conditions such that at least one of these par- 

ticles is trapped in a level of the dislocation potential (a 
dislocation e~citon).~) Here it is important to stress that the 
energy position of the state under consideration must be de- 
termined mainly by the dislocation potential. In fact, the pure 
excitonic (Coulomb) interaction in atomic semiconductors is 
weak (the binding energy is far smaller than the width of the 
band gap E, ). At the same time, under the proposed scheme 
of a recombinational emission process, the frequencies of the 
dislocation photoluminescence lines correspond to liberation 
of the binding energy, which is fully noticeable on the scale 
of E ,  . The bulk of this energy should, therefore, be utilized 
for dislocation binding and should correspond to fairly deep 
dislocation levels. 

We next note that the differences in the recombination 
energies of the successive lines in a series are considerable, 
from a few to tens of  me^.^ This means that the binding 
power of the dislocation potential varies appreciably when 
R ,  varies by a unit step and that these changes occur over a 
great range of distances. Therefore, when the energy level is 
deep, the electron cloud should span the two partials and 
penetrate through extensive portions of the packing defect. 
This combination of dislocation wells of considerable depth 
and easy tunneling between them attests to the highly local- 
ized nature of the potentials. Consequently, the expanse of 
the wave function should be determined mainly by the be- 
havior of its asymptote beyond the range of influence of the 
potential and, in principle, can be considerable. 

The physical conclusions following from the foregoing 
analysis of the experimental data were used in this study to 
construct a theoretical model of dislocation luminescence. It 
is assumed that the potentials acting near dislocations are 
localized in directions transverse to their axes and form the 
deep states of the carriers trapped in them. The potential of a 
packing defect, which can facilitate transitions between 
states in the separate wells (for example, by lowering the 
obstacle between the holes under which tunneling must oc- 
cur) and enhance the dependence of the energy level on the 
dissociation of the dislocations into partials, can also be uti- 
lized. A carrier trapped by such a field also interacts with a 
band carrier of opposite sign, forming an exciton, which is 
localized transversely to the dislocation lines and free along 
them. The excitonic binding is assumed to be far stronger 
than the binding with the local potential; therefore, the analy- 
sis refers mainly to the one-particle states at the dislocations. 
Here we employ the known approach to the problem of deep 
levels based on a zero-radius in which the po- 
tentials are not specifically modelled, the corresponding ma- 
trix elements are assigned phenomenologically, and the bind- 
ing energies are taken from experiment. In our case, owing to 
the appearance of a whole series of energy levels in the dis- 
location photoluminescence spectra, there is an additional 
possibility for a theoretical analysis, which is significant in 
our opinion: a comparison of the dispersion equations speci- 
fying the energies of the electronic states for a fixed packing- 
defect width and infinite dissociation lines (the point of con- 
vergence of the dislocation photoluminescence series) 
permits the use of a calculation scheme in which the 
effective-mass approximation is permissible (in a deep-level 
problem). As is shown below, in the case of the dislocation 
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photoluminescence in Ge crystals, a fairly simple alternative 
can be chosen, in which the entire set of experimentally ob- 
sewed dislocation photoluminescence lines forming the 
spectral series can be reconciled with the results of the cal- 
culations with good accuracy using a minimal number of 
phenomenological parameters. 

2. DESCRIPTION OF THE STATE OF AN ELECTRON BOUND 
TO A DISLOCATION 

We begin by posing a specific one-electron problem. We 
consider the case in which a long straight segment of a com- 
plete dislocation line parallel to the [i 101 direction is split by 
a (1 11) glide plane into two partials separated from one an- 
other along the [ii2] direction by the packing-defect width 
R ,  (1.1). We assume that this entire structural defect (the two 
partials and the packing defect) supplements the crystal po- 
tential of the ideal lattice with an additional potential having 
a fairly small radius of action (on the order of the lattice 
constant), which is capable of creating deep local levels in 
the band gap. We write this part of the defect potential in the 
form 

where Rl I denotes the coordinates of the centers of the 
5 1 r  

individual potentials, which are distributed periodically 
along the dislocation lines (v ld and vZd) and in the plane of 
the packing defect (v,). The unit vectors taken are the direc- 
tions 

t=[i 111, v=[ii2],  c = [ ~ I o ] ,  (2.2) 

and I, are integer indices. The smooth parts of the potential 
of the defect (the deformation potentials, etc.) are omitted. 
We use (2.1) in the Schrijdinger equation 

and expand the 9 function in the complete system of Bloch 
functions corresponding to the Hamiltonian H ~ :  

ei(kr+qC) 

'0&q=';qvk9 Vi!(r)=- fi u&(r), 

(n is the band index, k is the two-dimensional wave vector in 
the plane perpendicular to the dislocations, q is the projec- 
tion of the wave vector onto the dislocation axis 5, and a is 
the normalized volume). For the coefficients C, which char- 
acterize the contribution of the band states Vk to the wave 
function qd of a state generated by the defect, we have 

In (2.6) a transition has been made from summation to 
integration over the Brillouin zone, and the integration in the 
matrix elements is carried out over the volume of the 
Wigner-Seitz cell G. For sufficiently long segments of 
straight dislocations (the lengths actually reach hundreds of 
interatomic distances) the sum over lC in (2.6) is replaced by 
( 2 ~ 1 ~ ~ )  S(q  - q ,). In this case identical values of the projec- 
tion of the wave vector onto the axis will appear every- 
where in Eq. (2.6), so that q is a quantum parameter of the 
state. This means that the independent q states with energies 
Ed= Ed(q) and the wave functions qdq 

which are individual terms in the sum over q in (2.4) (the 
functions 4 are periodic along the 5 axis, LC is the normal- 
ized length, and LCSC=Q), should be considered. We re- 
place the function and the sum over 1, in the last term in 
(2.6) by S (this approximation is permissible when the 
packing-defect width is equal to tens of steps; the matching 
of the phases in the narrower packing defects and the matrix 
is then somewhat overestimated, but this is of nearly no sig- 
nificance for the rest of the calculation, which relies on the 
decisive role of vld and v2d in the formation of the deep 
levels). After such replacements, (2.6) takes the form 

To write the expressions in a less cumbersome form, the 
subscript q, which is common to all the terms, is omitted, 
and the following notation is introduced: 
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where ef and e, are unit vectors along the 5 and q directions. increase and shift toward the corresponding band edge, con- 
The expressions in (2.9) take into account the local character verging at a certain limiting value Edm which satisfies the 
of the potentials vp stipulated above, which permits assum- equation 
ing that the matrix elements are not dependent on the wave 
vectors (to test this an expansion in Wannier functions must 1 

PO(Edm) = -, Iv,,I = maxi vpl, (2.12) 
be used, keeping only the one-center integrals). urn, - - 

Since we are interested in the states Ed within the band i.e., is determined by the largest potential. Using the expres- 
gap and since the gaps E, in atomic semiconductors are far sion for Po(Ed,) from Eq. (2.10), we write the difference 
narrower than the electronic bands, only the contributions Po(Ed,) - Po(Edm) in the form 
from the bands closest to this gap (the conduction band c and 
the valence band v) can be retained in the system (2.8). 

We take into account the evidence following from the Po(Edv)-PO(Eda)= 2 
experimental data that the energy of a bound state becomes 
deeper as the dislocations are approached, i.e., as the regions 
where the potentials Vld and Vzd act, are approached. In 
analogy to the usual problem of an electron in a two-center 
potential, it should be expected that the energy of the lowest 
level decreases only when Vld and V2d have the same sign. 
Then for negative Vd (attraction of an electron) the levels 
created within the gap split off from the conduction band, 
and for positive potentials (repulsion of an electron, i.e., 
binding of a hole) these levels split off from the valence 
band. (When Vld and Vld have different signs, the levels 
split off from both the conduction band and the valence 
band, but a decrease in the difference between the potentials 
should then be accompanied by displacement of the levels 
toward the edges of the bands which produced them due to 
the effective weakening of the total field. 

Let us next treat the situation in which both potentials 
have identical signs. We consider the simplest case of the 
one-band Koster-Slater approximation, i.e., the possibility 
of omitting the off-diagonal matrix elements of the potentials 
in Eqs. (2.8) (since we are concerned with selecting a simple 
uniform description of the entire rich series of dislocation 
photolurninescence lines, we are still not seeking the basis 
for such an approximation, for example a symmetry basis). 
After integrating both sides of Eq. (2.8) with respect to K* 

and determining dK7,  we then find a system of equations for 
d(0) and d(v) and the condition for solvability of that sys- 
tem, which is the dispersion equation for the energy of a state 
bound in a dissociated dislocation: 

Here 

and the vp are the matrix elements of potentials (2.9) (the 
band indices have been omitted). We are interested in the 
smallest of the roots of Eq. (2.10), which corresponds to the 
packing-defect width R, (1 .I). We add the subscript v to this 
value of the binding energy v: Ed= Ed,. It is obvious that as 
v increases the roots of (2.10) under consideration should 

(the 2 sign corresponds to positive and negative potentials). 
Writing the dispersion equation in the form (2.13) makes 
further calculations much more specific. This possibility is 
associated with the fact that the value of the difference Po 
(Ed,) - PO(Edm) is mainly determined by the integration 
regions with respect to k near the energy extrema E ~ .  In fact, 
the parts of the integrals determined by the integration re- 
gions which are distant from the energy extrema depend 
weakly on Ed, and Edm , which are located in the band gap. 
Therefore, these parts of the integrals compensate one an- 
other in the difference Po(Ed,)-Po(Edm). The value of 
P,(Ed,) is also determined by the region of k near an extre- 
mum, since sign-reversing oscillations of the phase expo- 
nent, which suppress the corresponding contribution to the 
integral, are included at large k. Therefore, only the regions 
of the band spectrum near the extrema E~ where the 
effective-mass approximation is applicable, are important in 
(2.13). 

For concreteness, we restrict ourselves to calculations 
for Ge crystals (it is easier to select an adequate alternative 
for analysis in this case). Since at least 13 clearly distin- 
guishable lines of the dislocation photoluminescence series 
are observed experimentally in Ge, we have evidence that the 
contribution from the overlapping of the states at individual 
dislocations, which is described by P ,  in (2.10) and (2.13), 
to the shaping of the energy level is significant over a broad 
range of distances between the local potentials. The charac- 
teristic length parameter 8, which determines the variation of 
this addition with R,, clearly has the form 

where m* is the effective mass along q given by (2.2) and 
ck0 is the extremum energy (the potential of the packing 
defect is not yet taken into account here). To realize the 
largest possible value of a,, band states at the extrema with 
a small effective mass must play the decisive role in the 
dispersion equation. In the case of Ge, a selection based on 
this characteristic yields three groups of candidates: light 
holes, the electronic minimum at the r point of the Brillouin 
zone, and the electronic valleys at the L points on the [ l l l ]  
axes (in the first two cases the masses are minimal and simi- 
lar: m*lmo=0.04; the transverse masses for the latter are 
small: m~lmo=0.08).  The situation in which the 
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dislocation-bound state of a carrier taking part in the dislo- 
cation photoluminescence is determined by the surroundings 
of the electronic r minimum will be analyzed next. Omitting 
the details of the trial calculations, we present the qualitative 
basis for this choice. 

In dispersion equation (2.13), which specifies the energy 
of a bound state, the "two-center" term P , ,  which depends 
on R,, appears along with the "one-center" term P o ,  which 
corresponds to the contribution of the isolated potential of 
one partial. The values of these terms depend on the densities 
of states, i.e., are proportional to the effective mass. Since at 
the r point the representations according to which the Bloch 
amplitudes for light and heavy holes transform are identical, 
there is no basis to assume that the matrix elements of the 
potentials v d  in the functions of light and heavy holes differ 
significantly. This means that in the case of a dislocation 
level split off from the valence band, both branches of the 
hole band spectrum should be taken into account. However, 
the density-of-states mass for heavy holes is almost an order 
of magnitude greater than that for light holes, and thus the 
contributions for heavy holes should be predominant. Con- 
sequently, the bound state is characterized by a shorter tun- 
neling distance Su and cannot provide for differences in the 
energies Ed,  as v varies that are large enough to reconcile 
these levels with the series of dislocation photoluminescence 
lines in Ge. The portion of the electronic band state with a 
minimum at the r point seems more suitable from this stand- 
point. This minimum is somewhat higher than the c valley at 
the L point, but is characterized by an effective mass two 
times smaller and, therefore, by a larger value of 8,. This 
situation (together with the additional possibility of facilitat- 
ing tunneling by altering the potential of the packing defect) 
ultimately allowed for successful reconciliation with experi- 
ment. 

The following concomitant qualitative argument also 
seems very important. The matrix element specifying the 
probability of the radiative decay of a dislocation exciton 
contains an integral of the momentum operator 6 and one- 
electron functions for the electronic and hole "seed" states. 
If an electronic state is bound to the r minimum, the sym- 
metry properties of the r states and 6 allow direct recombi- 
nation with a hole r state.12 In the case of potentials which 
attract electrons and repel holes under consideration here, it 
is natural to use a hole state which "emerges" at the r maxi- 
mum of the valence band to construct a dislocation exciton 
(which will be done below). This situation corresponds to 
direct recombination luminescence and a large luminescence 
quantum yield, which are apparently manifested experimen- 
tally. Finally, after more elaborate construction of a disloca- 
tion bound state (involving both the r and L band extrema), 
direct collapse of a dislocation exciton can occur in indirect- 
gap Ge, but only to the extent of the mixing of the electronic 
r minimum. 

Let us thus examine the energy levels split off by the 
dislocation potential from the states bound to the minimum 
of the conduction band at the r point, while disregarding the 
influence of the other band edges. The dispersion law E:  in 
the conduction band of Ge near the r point is isotropic: A,14 

Then the integrals (2.11) are 

where 

The limiting cut-off value K, , for which we assumed ~ , > 2  
a ,  was introduced into the integral in (2.16); it drops out 
from the left-hand side of Eq. (2.13), and on the right-hand 
side, in P , ,  it can be replaced by w. The role of the potential 
of the packing defect v ,  has not yet been discussed. The 
calculations which we present here 'showed that the case of 
v s < O  is most suitable and that for the deep levels of interest 
to us, it is sufficient to consider the situation of a "weak" 
packing defect, in which A ~ , > C : .  In this case the integral 
Pa in (2.16) does not have any singularities on the real axis. 
To calculate P ,  we pass to the complex plane with cuts from 
the branch points K,= +i& to infinite limits along imagi- 
nary semiaxes, select a contour which passes the point ~ , = i  

along a cut, and obtain 

Here 

and KO is the modified Bessel function. The first term in 
(2.18) corresponds to the contribution from the pole K, 

=i Jm, and the function F ,  appears as a result of 
circumventing branch point. The influence of the potential of 
the packing defect caused the appearance of the first term in 
P, [see Eq. (2.18)] with an exponential function, whose 
exponent is smaller than in the asymptotic (for 27~v 
&> 1 expression for F, .3) 

For Po(Ed,) with logarithmic accuracy we have 

At this point we can take advantage of another sirnplifica- 
tion, which is not of fundamental significance, and set 
v  l d =  V 2 d .  In this case a single free parameter 6, remains in 
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Eq. (2.13). The other parameters (the bottom energy E;, the 
mass me, and the lattice constants at and a, are known. The 
overall form of Eq. (2.13) for the binding energies included 
in yv [see (2.19)] is - 

The quantity Adv defines the eigenvalue of the energy of 
the bound state Edv measured from the energy of a free elec- 
tron with a wave vector q. Finding Adv as the root of the 
dispersion equation (2.21), which does not depend on q,  we 
also find Edv, which has a one-dimensional band spectrum 
beginning from the level ~ 6 -  E :Adv : 

The comparison with experiment is confined to converting 
the emission energies into Adv [see Eq. (2.17)] (with consid- 
eration of the excitonic binding) and verifying that they sat- 
isfy the dispersion equation for all the lines of the dislocation 
photoluminescence series in Ge [this procedure requires one 
more parameter: the point of reference for the number v, i.e., 
matching of the number of each line in the series to the 
corresponding packing-defect width Rv of (1. I)]. 

3. EXCITON BOUND TO A DISSOCIATED DISLOCATION 

To describe a dislocation exciton we use the two-particle 
Schrodinger equation 

The procedure for passing from the many-particle treatment 
to Eq. (3.1) can be performed in the usual manner (see, for 
example, Ref. 15) and is omitted here. Equation (3.1) con- 
tains the effective Hamiltonian corresponding to an excited 
state of the crystal, in which an electron from the valance 
band has been transferred to a dislocation level [this corre- 
sponds to fic(rl), which coincides with the Hamiltonian in 
(2.3)] and a hole was left in the valence band [the Hamil- 
tonian -gV(r2)]. The situation with an electron-attracting 
dislocation potential V is considered; therefore, the state re- 
leased in the valence band should correspond to the emer- 
gence of a newly formed hole and is described by a Hamil- 
tonian in which V(rJ can be omitted. On this basis we have 
fiu(r2)=fif;(r2) and the Schrijdinger equation (2.4) can be 
used for states in the valence band. The electron-hole inter- 
action in (3.1) is given by Coulomb attraction with the di- 
electric constant 4. 

The conceptual problem is similar to the familiar prob- 
lem of a direct exciton in Ge (see, for example, Ref. 12, Sec. 
27); one difference is the localized nature of the electronic 
state in directions transverse to the dislocation lines, which 
should not significantly alter the result regarding the weak- 
ness of the binding in the electron-hole pair. Therefore, we 

can use one-particle functions in the Luttinger-Kohn basis,'' 
where the periodic parts @rl) and u&(r2) are taken at the I7 
point: 

The effective-mass approximation is permissible for the en- 
ergy spectrum: for simplicity we shall disregard the degen- 
eracy of the hole spectrum at the r point, replacing it by an 
isotropic spectrum with a certain mean effective mass mu : 

(this simplification is of no consequence for subsequent 
quantitative evaluations). 

Thus, we represent the function Tdex in the form of a 
superposition 

where 

is the envelope of the function. Plugging (3.4) into (3.1), 

, , r2 , and integrating with re- ~ t T ( ~ 1 ) 9 ; : ~ ~ (  ) 

spect to d n 1 d Q ,  we obtain an equation for a dislocation 
exciton in the usual manner: 

e2 dtld7711&(tl ,1;11)12 

k 5 1 - 5 2 ) 2 + ( ~ l - t 2 ) 2 + ( ~ 1 -  71~)' 

x@dex(51 t r 2 ) = [ E d e x + & ; - E d v l @ d e x ( l l  7r2). (3.6) 

Here the potential term contains the wave function of an 
electron bound in a dissociated dislocation averaged over the 
coordinate 5,. Separating the free motion of the center of 
gravity with the coordinate 

which can be described by the equation 

we write the equation for the bound state 
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TABLE I. 

Line d d d d d d d d d d d d d ... d 

whose eigenvalue Eb , which has the form 

determines the excitonic binding energy and, therefore, Edex . 
In (3.9) 5={1-{2 is the relative coordinate of the electron 
and hole along the dislocation axis, 6= t2 and q= are the 
coordinates of the exciton (hole) transverse to the axis, and 
p-l=m,l+m;l. After setting the energies Ed,,, for recom- 
bination of a dislocation exciton [which are expressed in 
terms of Eb  using (3.10)] equal to the energies hw, of the 
dislocation photoluminescence spectral lines 

(3.9): replacement by a value of the same order has practi- 
cally no effect on the results following from Eq. (2.21). 

Table I presents the emission energies ho, of the dislo- 
cation photoluminescence d lines in Ge and the correspond- 
ing values of e; - Ed, = E: + Eb - h W, (in meV). 

The values of y, and An were adjusted in Eq. (2.21) to 
achieve agreement between its two sides when 

for all the values taken from Table I is plugged into the 
left-hand side. The following parameters were used in the 
calculations: E: = 897 meV, m, =0.041mo, a ,= 
J m = 3 . 4 6  A, ag=al&=3.36 A. The best agreement 
was achieved when the following values were chosen: 

In this case the accuracy (the difference between the values 
on the right- and left-hand sides divided by the value of the 
right-hand side) was at least 1-2%. 

(K = 0 -a direct process), we are able to compare the series 4. CONCLUSlONS 

of roots of the dispersion equation (2.21) to the series of the The problem of the energy states of a one-dimensional 
frequencies %. Here the between dislocation exciton has been considered in a simplified ver- 

the number of. each line and the number is ex- sion of the Koster-Slater model for the local potentials (as- 
pressed in terms of a reference offset An: sociated with the partials and the packing defect). The pos- 

v=n+An, (3.12) sibility of quantitative agreement between the excitonic 

whose value is the free parameter mentioned at the end of 
Sec. 2. The main dependence on the number n of the line (or 
the packing-defect width R,) is determined by the electronic 
binding energy Edu , the dependence of the excitonic binding 
energy Eb on v can be disregarded in this case owing to the 
smallness of both Eb itself and its departure from Ed, , as 
well as the changes in them. [To evaluate Eb we take into 
account the localized nature of the function & near the par- 
tials. Consequently the potential term in (3.8) can be written 
in an approximation in the form 

-'( 1 1 
2 ~ o  PGT+ k 2 + (  ?7-Ru)2+i2) 

which corresponds to the problem of two Coulomb centers 
with charges e12. In the limit WO the value of Eb should be 
close to the binding energy of a direct exciton in Ge. As v 
increases, Eb  decreases due to the separation of the charge 
between two wells. A comparison with the results for a direct 
exciton in Ge indicates that Eb has a value of order several 
meV.1 We set Eb=2 meV (in agreement with the experimen- 
tal data16) in (3.10) for further calculations. At this point 
there is no need to refine the value of E b  by analyzing Eq. 

energies corresponding to a set of discrete packing-defect 
widths and the spectral positions of 13 dislocation photolu- 
rninescence lines of the d series in Ge was demonstrated 
using a modified form of the dispersion equation for the 
energies, which permits analysis in the effective-mass ap- 
proximation. It is doubtful whether an attempt should be 
made to increase the accuracy of this agreement: the physical 
model is, by any standard, highly simplified; the values of 
the parameters used (for example, the direct band gap E:) 
are not very accurately known; the effect of dislocation de- 
formation on the band characteristics was not taken into ac- 
count; the form of the spectrum of the d series allows the 
positions of the lines to be fixed somewhat differently, i.e., 
with a 1-2 meV shift; etc. It is important that the spectrum 
can be very sensitive to variations in the distances R, over a 
very broad range when the initial distance between the par- 
tials corresponding to the first line in the series is sufficiently 
large. The proposed physical picture of dislocation photolu- 
minescence is also supported by the realistic nature of the 
values of the two free parameters of the problem. The value 
An =5 falls within the range discovered experimentally in 
Refs. 7 and 8 when a load increasing or decreasing the dis- 
sociation of the dislocations was studied; to the data in Ref. 
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8 imply An=7+2. The effective value of the packing-defect 
potential obtained from (2.17) and (2.19), the value of (3.13) 
selected, and the data in the table is estimated to be us-2.7 
eV, i.e., it has the typical scale of the electronic energy pa- 
rameters in Ge (Refs. 13 and 14) and is totally permissib~e.~) 

In conclusion, let us discuss the question of the effi- 
ciency of the radiative processes accompanying quantum 
transitions involving dislocation states. For plastically de- 
formed Ge the process of the emission of the lines of the d 
series may be considered direct (to the extent that the physi- 
cal picture of electronic transitions considered above is cor- 
rect); being an elementary event, this process should be very 
efficient. In the case of Si, the analogous process apparently 
does not occur [here the direct band gap at the r point is 
large, i.e., about 3.5 eV (Ref. 14), so that the r-minimum can 
hardly play an appreciable role in creating an electronic 
bound state]. Therefore, the dislocation photoluminescence 
in Si most probably occurs by means of indirect transitions. 
Of course, the real quantum yield depends not only on the 
value of the constant of the elementary emission event, but 
also on the participation of radiationless channels (we are 
referring to true multiphonon transitions, rather than compe- 
tition with other capture centers). In this context the role of 
the one-dimensional nature of the electron (and exciton) 
states bound to long straight segments of dislocations seems 
very important. We recall that the occurence of a process of 
multiphonon energy transfer requires a lattice fluctuation in 
the volume occupied by the least extended state participating 
in the transition. The probability of a lattice fluctuation, 
which is exponentially dependent on that volume, is negligi- 
bly small in the case of the extended one-dimensional system 
under consideration (the corresponding volume is equal to 
about - L ~ ~ ,  i.e., is a macroscopic quantity), limiting the 
efficiency of the radiationless process and eliminating the 
Stokes shift and the phonon broadening of the emission 
lines. However, electron localization, particularly self- 
trapping due to the interaction with acoustic phonons, is pos- 
sible in the one-dimensional situation (this question, as ap- 
plied to dislocation states, was considered in Ref. 17, and 
calculations show that the self-trapping energy is smaller 
than the excitonic binding energy E b ) .  Therefore, several 
characteristic regimes can arise in dislocation photolumines- 
cence, in principle: 

1) At very low temperatures dislocation excitons are 
self-trapped (or some other type of capture occurs). In this 
case the luminescence can be weakened as a consequence of 
the mechanism for radiationless losses upon recombination. 

2) As the temperature rises, these trapped states are ion- 
ized, a transition is made to a one-dimensional exciton band, 
and the radiationless channel is eliminated, i-e., narrow exci- 
ton recombination emission lines appear. 

3) When the temperature rises further, the excitonic Cou- 
lomb interaction is disrupted; the electron trapped by the 
dislocation can recombine with a free band hole; there are no 
radiationless losses, but the shape and width of the lines 
should vary in accordance with the form of the one- 
dimensional dislocation band. According to the evaluations 
from the present work and Ref. 17, such transformations of 
the dislocation photoluminescence spectrum are possible in 

the case of Ge at helium temperatures. Similar effects can be 
caused by illumination at suitable frequencies. Alteration of 
the dislocation structure, which is accompanied by shorten- 
ing of the straight segments of the dislocation lines, by the 
introduction of point defects (intersections, jogs, kinks, etc.) 
on them, i.e., elimination of the one-dimensional nature of 
the electronic states, should also have a quantitative effect on 
the character of the dislocation photoluminescence spectrum. 
Well designed experiments of this kind and determination of 
the characteristic temperatures or frequencies which stimu- 
late the appearance of the one-dimensional characteristics of 
the electronic system would provide important data for un- 
derstanding the physical properties of the interesting and 
complex system of electrons in plastically deformed semi- 
conductors. 
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')A simplified version of such an analysis was previously performed in Ref. 
9. 

')we note that an alternative excitonic interpict~tl~ f dislocation photolu- 
minescence was previously proposed by Fel.i.1' a* i iassievich in Ref. 16. 
They suggested that the luminescence is <hb~,u by recombination of an 
exciton trapped in one of the partials when ns state is disturbed by the 
deformation potential of another dislocation at a distance R ,  . According to 
their hypothesis, just this disturbance creates the differences between the 
h u e n c i e s  of the lines in the series. However, the excitonic binding en- 
ergy is about 2-3 meV, according to evaluations based on temperature- 
induced changes in the dislocation photoluminescence spectrum,'5 while 
the serial differences are significantly greater, so that when the quantum 
state is constructed, the hierarchy of potentials should be different. 

3)~hysically, the decrease in the exponent of the exponential function d e  
creases because tunneling occurs below the bottom of the two-dimensional 
band of bound states created by the packing defect itself. The position of 
the bottom of this band is determined by the pole of the integrand in (2.16) 
for G,<O and equals E , B - E T G ~ .  

')The other potential vd from the dispersion equation (2.21) was eliminated 
and should be evaluated independently from Eq. (2.12), but expression 
(2.20) for Po is unsuitable here, since the integral diverges at large k and 
the effective-mass approximation is therefore inappropriate. If (2.20) is, 
nevertheless, used with the cut-off parameter K,= 1 and the tabulated 
value of e:-Ed, ,  we obtain the rough estimate vd=9 eV, which could 
also be compared with some characteristic energies in ~ e . ' ~ . ' '  
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