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We generalize the self-consistent theory of electron localization in disordered systems to allow 
for the electron-electron interaction. We suggest and compare several kinds of self- 
consistency that take into account the lowest orders of the perturbation theory in the interaction. 
Depending on the scheme, we arrive either at a continuous metal-insulator transition or at 
a transition with the lowest possible metallic conductivity. In the scheme with a continuous 
transition we calculate the frequency dependence of the generalized diffusion coefficient 
in both the metal phase and the insulator. Finally, we calculate the renormalization of the density 
of states caused by the interaction, which shows that in the transition from metal to 
insulator an effective gap is formed. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The disorder-induced metal-insulator transition is one of 
the most fundamental problems of the theory of condensed 
state.Is2 The greatest difficulties lie in the problem of consis- 
tently taking into account the electron--electron interaction, 
whose important role has been evident for a fairly long time 
in the case of weakly disordered  metal^.^ In recent years an 
entirely new avenue of research has appeared in which this 
problem is studied within the renormalization-group 
approach,'.274 which generalizes the ordinary scaling local- 
ization theory.' Notwithstanding the indisputable successes 
of this approach, the problem is still far from solved, espe- 
cially in the prediction of specific experimentally verifiable 
patterns of behavior of physical quantities. Generally the 
renormalization-group (scaling) approach is suited only for 
analyzing the immediate vicinity of the transition? while ex- 
periments usually deal with variations in physical properties 
over a wide range of parameters controlling the transition. 
For one thing, we know of no papers in which the 
renormalization-group approach was successful in describing 
the properties of the insulator phase. 

For a fairly long time theories of the metal-insulator 
transition that exclude the electron-electron interaction, in 
addition to the scaling approach,' have used what is known 
as the self-consistent localization theory?-7 which represents 
an effective interpolation scheme allowing the main physical 
characteristics to be calculated over a broad range of varia- 
tion of the parameters, from a weakly disordered metal to an 
Anderson insulator. This theory also reproduces the basic 
results of the scaling approach.536 Although no rigorous dia- 
grammatic substantiation of the self-consistent justification 
exists, quantitatively the theory agrees with the results of 
exact numerical modeling of the Anderson tran~ition!,~ The 
first attempts at allowing for the electron-electron interac- 
tion in the self-consistent localization theory were done in 
Refs. 10 and 1 1 (see also Ref. 6). 

In this paper we construct a self-consistent theory of the 
metal-insulator transition that allows for the effects of 
electron-electron interaction in the first order of perturbation 
theory. In contrast to Refs. 10 and 11, we allow for the effect 

of the interaction on the generalized diffusion coefficient, the 
main quantity that must be determined self-consistently. Un- 
fortunately, there is a certain ambiguity in our approach, and 
several self-consistency schemes can be suggested that lead 
to different physical results. Which scheme to choose must 
apparently depend on which agrees best with the experiment. 
For one thing, the choice will determine whether one can 
obtain a continuous metal-insulator transition or a transition 
with the lowest possible metallic conductivity. As is known, 
present-day experiments favor the continuous transition 
pattern.'92 Within this scheme we calculate the frequency de- 
pendence of the generalized diffusion coefficient and the 
renormalization of the one-particle (tunneling) density of 
states caused by the interaction in the transition from metal 
to insulator. 

2. THE INTERACTION CORRECTIONS TO CONDUCTIVITY 
NEAR THE ANDERSON TRANSITION POINT 

We introduce the two-particle Green's function of an 
electron in the random field of impurities:' 

where p, =p-+q/2, and (..-) stands for averaging over the 
random potential. Next we introduce two quantities corre- 
sponding to the Green's function: the total vertex 
ri;,(q,o) and the "triangular" vertex f l A ( ~ , q , o )  (Fig. I). 

In the self-consistent localization theory the total and 
triangular vertices have the following form? 

where y= 1/2r= . r r p ~ 2 ~ o ( ~ )  is the Born damping, p is the 
impurity concentration, U is the impurity potential, No(0) is 
the density of states of independent electrons on the Fermi 
level, and D ( o )  is the generalized diffusion coefficient. 

The form of the respective vertices corresponds to that 
obtained in the ladder approximation with the ordinary 
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FIG. 1. The two-oarticle Green's function 
mRA, (q, 0 , s )  and the corresponding vertices 
R p . q . 0 )  and r::.(q.w). 

P-3 E 

Drude diffusion coefficient Do replaced by the frequency- 
dependent generalized diffusion coefficient D ( o )  defined by 
the following 

where ko=min{l-',kF) is the cutoff momentum, 1 is the 
mean free path, and kF is the Fermi momentum. 

In a three-dimensional system the generalized diffusion 
coefficient in the self-consistent localization theory has the 
following form 

I (metal), 

(3.rrA12)(- i o t ~ ~ ) " ~ ,  OB 0, 

= 1 (metal and insulator), 

(3~A/2) (o ,  / ~ , ) - ~ ' ~ ( - i o l E ~ ) ,  o&o,, (Y<O 

( (insulator), 

where A = ylnEF is the dimensionless order parameter, EF is 
the Fermi energy, o,= (21 a 1 1 3 ~ ~ ) ~ ~  is the characteristic 

frequency, a= 1 -3Axo is a parameter characterizing the 
transition from metal to insulator, and xo= ko lk, is the cutoff 
parameter. 

If we ignore the localization contributions, the first-order 
corrections in the Coulomb-interaction to the conductivity 
are represented by the diagrams depicted in Fig. 2 (see Ref. 
12). Altshuler et al.I2 have shown that the total contribution 
of the diagrams (a), (b), and (c) is zero and that the correc- 
tion to the conductivity is determined only by the diagrams 
(d) and (e). Here we ignore the so-called Hartree contribu- 
tions to the conductivity?.12 which is valid in the limit 
2kFI K% 1, where K is the reciprocal Debye screening radius. 
Strictly speaking, this is true for systems with a low electron 
number density. Such systems are most interesting from the 
standpoint of metal-insulator transition experiments. In view 
of the well-known divergence of the screening radius at the 
Anderson transition this approximation, apparently, 
improves as the system approaches the transition point. This 
is a reservation to be kept in mind in interpreting the "point" 
interaction model employed here. 

Using the form of the impurity vertices (2) and (3), we 
arrive at the following expression for the correction to con- 
ductivity (cf. Ref. 12): 
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FIG. 2. First-order interaction corrections to 
conductivity. 
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Here e is the electron charge, d is the dimensionality of the 
system, and V ( q f l )  is the interaction. For simplicity we con- 
sider chiefly the point interaction V ( q f i )  = Vo . In the case of 
dynamically screened Coulomb interaction and small q  and 
f l  we have:3 

For the point-interaction correction to the diffusion co- 
efficient we have 

X 
q2 

[- i(n + o) + ~ ( n  + w ) q 2 ] [ -  in+ D ( R ) ~ ~ ] ~  ' 

(8 )  

where p= VoNo(0).  Employing in (8) the diffusion coeffi- 
cient obtained in the self-consistent localization theory ( 3 ,  
we have for the three-dimensional system 

(metal), 

( 3 / 7 r ) ( ~ ~ / - i w ) " '  w% 0,  

(metal and insulatar), 

( 1 / 7 r ) ( w ~ / ~ ~ ) " ~ ( ~ , l - i ~ ) ~ ,  wGw, ,  a<O 

(insulator). 

(9) 
Clearly, the correction to the diffusion coefficient (or the 
conductivity) diverges as the system approaches the Ander- 
son transition point from the metal phase (w,-+O), while in 
the insulator phase a divergence emerges as w+O. 

If instead of the point interaction we take the dynami- 
cally screened Coulomb interaction of type (7), the correc- 
tion to the diffusion coefficient assumes the form 

If we take the diffusion coefficient in the form (5) ob- 
tained in the self-consistent localization theory, we arrive at 
the expression (9) for the correction with p= 113. Using the 
dynamically screened Coulomb interaction instead of the 
point interaction results only in p being of order unity. 
Hence in what follows we chiefly consider the point interac- 
tion. 

Thus, near the Anderson transition point the correction 
to the diffusion coefficient considerably exceeds the diffu- 
sion coefficient obtained from the ordinary self-consistent 
localization theory. This requires building a new self- 
consistency scheme that includes the electron-electron inter- 
action from the start. 

3. SELF-CONSISTENCY SCHEMES 

First we recall the scheme used in the ordinary self- 
consistent theory without Coulomb 

When disorder is weak, the conductivity is determined 
by the Drude diffusion coefficient D o .  Summing the series 
of "maximally crossing" diagrams leads to the following 
localization correction to the diffusion ~oefficient:~ 

We introduce what is known as the relaxation kernel 
M ( w ) ,  which is related to the generalized diffusion coeffi- 
cient through the following f~ rmula :~  

For one thing, the Drude relaxation kernel is 

The correction to the relaxation kernel can be directly 
expressed in terms of the correction to the diffusion coeffi- 
cient as follows: 

Let us take a Drude metal as the zeroth approximation. Then 

Replacing the Drude diffusion coefficient Do by the general- 
ized diffusion coefficient D ( o )  in the diffusion pole of (11) 
and substituting the result into Eq. (14), we arrive at the main 
equation of the self-consistent localization theory: 

which coincides with (5) if we allow for the fact that 
M ( w ) l M o = D o l D ( w ) .  

Now we add the Coulomb interaction to the system. The 
first-order corrections due to this interaction are represented 
by the diagrams (d) and (e) in Fig. 2. Unfortunately, we 
cannot suggest an unambiguous self-consistency scheme that 
allows for corrections introduced by the electron-electron 
interaction. Several alternative forms of such a scheme can 
be considered, and a choice is made on the basis of addi- 
tional ideas of a qualitative nature. 

Variant I. We act in the same way as we would in the 
ordinary self-consistent localization theory. We take a Drude 
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metal as the zeroth approximation and examine the localiza- 
tion and Coulomb corrections on an equal basis, carrying out 
the self-consistency procedure in terms of the relaxation ker- 
nel, which here has the form 

M ( w ) = M o +  S M ( w ) ,  (16) 

where 

Here the localization correction to the diffusion coefficient 
D l ( w )  is determined by (11) and the Coulomb correction 
Dc(w)  by (8).  The self-consistency procedure is reduced to 
replacing Do by the generalized diffusion coefficient at all 
diffusion poles. As a result we arrive at the following integral 
equation for finding the generalized diffusion coefficient: 

Variant 11. For the zeroth approximation we take an 
"impure" metal, which is described by the ordinary self- 
consistent localization theory, and add the weak Coulomb 
interaction. We again perform the self-consistency procedure 
by examining the corrections to the relaxation kernel. 

The ordinary self-consistent theory is described by Eq. 
(15). To the right-hand side of this equation we add the Cou- 
lomb correction to the relaxation kernel, S M c ( o ) .  Here this 
correction has the form 

where Ms(w)  and D , ( w )  are the relaxation kernel and dif- 
fusion coefficient of the ordinary self-consistent localization 
theory [see Eq. (5)]. In this case the equation for finding the 
diffusion coefficient assumes the form 

Variant 111. In contrast to variant 11, we also calculate in 
a self-consistent manner the Coulomb correction to the re- 
laxation kernel, 6 M c ( w ) ,  which is added to the right-hand 
side of the self-consistency equation (15): 

The equation for finding the diffusion coefficient in this case 
assumes the form 

Variant IV. We assume once more that the ordinary self- 
consistent localization theory is the zeroth approximation. 
However, the self-consistency procedure now consists in ex- 
amining the corrections to the diffusion coefficient rather 
than to the relaxation kernel. 

The self-consistency equation (4 )  can be written as 

If to the right-hand side we add the Coulomb correction to 
the diffusion coefficient, Eq. (8) ,  we arrive at the following 
equation for finding the diffusion coefficient: 

The choice between the alternative variants I-IV can 
hardly be done on the basis of general considerations. Hence 
we turn to an analysis of the qualitative implications of these 
equations. 

4. QUALITATIVE ANALYSIS OF THE SELF-CONSISTENCY 
VARIANTS IN THE METAL PHASE 

From now on we examine only three-dimensional sys- 
tems. In the self-consistent localization theory the diffusion 
coefficient is determined by Eq. (5) .  This readily yields the 
relaxation kernel: 

Let us examine the electron-electron interaction correc- 
tion to the relaxation kernel. The correction is given by the 
following expression: 

Here for the zeroth approximation we have taken a "Drude" 
metal. 
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The Coulomb correction to the diffusion coefficient in 
the ordinary self-consistent localization theory is given by 
(9).  Substituting this expression into (25), we arrive at the 
coresponding correction to the relaxation kernel, SMos(o) .  

If we compare SMos(u) with M,(w),  we easily see that 
in the metal phase the following qualitative estimate holds in 
the entire frequency range: 

where c is a numerical factor of order unity. 
As detailed analysis shows, such an estimate in the metal 

phase is retained for a self-consistent relaxation kernel that 
allows for the Coulomb interaction in all self-consistency 
schemes. The point is that in all schemes in the metal phase 
the frequency behavior of the diffusion coefficient resembles 
the ordinary self-consistent localization theory: constant at 
low frequencies and D ( o )  - ( - io)'13 at high frequencies. 
Hence instead of (26) we can write 

Using this expression (27), we examine the qualitative 
results to which the different self-consistency schemes in the 
metal phase at w=O lead in the various suggested self- 
consistency schemes. 

Variant I. We examine the metal phase, so that at o = O  
we have D ( w =  0 )  = D # 0 .  Multiplying both sides of Eq. 
(17) by Mo we get 

Employing (27), we obtain 

This yields M = Mol(l  - 3Axo- c p ) ,  or 

where a* = c p .  
Thus, in the presence of the weak Coulomb interaction 

the Anderson transition is retained, the transition index re- 
mains the same, v= 1 (i.e., the diffusion coefficient vanishes 
linearly in the disorder parameter a-a*) ,  and a shift of the 
transition point to the region with weaker disorder, a= a*, is 
observed. The dependence of the diffusion coefficient on dis- 
order is depicted in Fig. 3a. 

Note that the analysis of Eq. (17) with a frequency- 
independent generalized diffusion coefficient yields a transi- 
tion with the lowest possible metallic conductivity. 

Variant 11. Multiplying both sides of Eq. (19) by Mo 
and employing (27), we get 

This yields M = M d ( a -  c p l a 2 ) ,  or 

In this case the Anderson transition is retained, the transition 
index remains the same, v= 1, and a shift of the transition 
point to the region with weaker disorder, a= ( c p )  ' I 3 ,  is ob- 
served. The dependence of the diffusion coefficient on disor- 
der is depicted in Fig. 3b. 

Variant 111. Multiplying both sides of Eq. (21) by Mo 
and using (27), we get 

Going over to the diffusion coefficient, we get 

In this case we have the lowest possible metallic conductiv- 
ity: 

The dependence of the diffusion coefficient on disorder is 
depicted in Fig. 3c. 

Variant IV. Combining (25) with (27), we arrive at the 
following expression for the diffusion coefficient: 

Substituting (31) into Eq. (23) yields 

We again get the lowest possible metallic conductivity: 

Dmin 3 - - ( ~ c , u ) ~ / ~  for a= a*- -  (2cp)l13. 
Do 2 

The dependence of the diffusion coefficient on disorder is 
depicted in Fig. 3d. 

Qualitatively the results of the self-consistency schemes 
111 and IV qualitatively coincide, and they lead to minimum 
metallic conductivity, which clearly does not agree with most 
of the experimental data in this area.'.2 The schemes I and I1 
lead to similar qualitative behavior of the diffusion coeffi- 
cient; the differences lie only in estimates of the critical dis- 
order determining the transition point. Naturally, in our ap- 
proximations the electron-electron interaction strengthens 
the tendency toward a metal-insulator transition, which oc- 
curs at a lower disorder than without interaction. 
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FIG. 3. The disorder-dependence of the 
d static generalized diffusion coefficient 

(d= D(O)ID,) for different self-consistency 
schemes: (a), variant I; (b), variant 11; (c), 
variant 111; and (d), variant IV. 

In what follows we focus on the first self-consistency 
scheme, in which the Coulomb and localization contributions 
are considered on an equal basis. 

We consider only the three-dimensional case in what fol- 
lows. The diffusion coefficient of the ordinary self-consistent 
localization theory [Eq. (5)] in these variables has the form 

5. THE FREQUENCY DEPENDENCE OF THE DIFFUSION 
COEFFICIENT 

In the first self-consistency scheme I the diffusion coef- 
ficient is determined by the integral equation (17). In this 
equation we go over to dimensionless Matsubara frequen- 
cies, - iwlDoki+w and - iRlDok;+R, and the dimen- 
sionless diffusion coefficient d( w = D (@)IDo). In terms of 
these variables the integral equation (17) assumes the form 

(3 7 2 ~ x ~ / 2 ) ~ ~ w ~ " ,  w s  0, 
d(w) = 

(metal and insulator), 

( 3 . r r ~ x ~ / 2 ) ~ / c u ~ w =  ([ko)2w, w<w,, a<O 

( (insulator), 

where o,= 1 a 1 3 / ( 3 ~ h ~ o / 2 ) 2 ,  and 6 is the localization ra- 
dius. 
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We introduce the function K(o)  = old(w) and analyze 
Eq. (33), assuming that K(o) ,  K(R), and K ( o + R )  41 .  
Expanding the right-hand side of Eq. (33) in a power series 
in these small parameters, we get 

Let us examine the metal phase. We look for the diffusion 
coefficient d(w) in the form 

Substituting (36) into (39,  we find d and o, . This yields the 
following expression for the diffusion coefficient: 

l a- a* ,  o-eo,, 
d(w)= 

(3 T A x ~ ~ ) ~ ~ w ' / ~ ,  o s o c ,  

where o,= la- a*13(3~~xo /2 ) -2 ,  a * = c p ,  and c-0.89. 
Thus, in the metal phase we have found confirmation of 

our qualitative approach (Sec. 4). The Anderson transition is 
retained, the transition index remains the same, v =  1, and the 
transition has shifted to the region of somewhat lower disor- 
der, a = a *  = c p .  Qualitatively the frequency behavior of 
the diffusion coefficient in the metal phase coincides with 
that in the ordinary self-consistent localization theory [Eq. 
(34)l. In the high-frequency range, w% w, , the behavior of 
the diffusion coefficient undergoes no change when interac- 
tion is added to the system. 

Now let us examine the insulator phase. In the high- 
frequency range, w s  w, , the diffusion coefficient is clearly 
frequency-dependent: d(o)m olt3. Assume that in the low- 
frequency range the diffusion coefficient is a power function 
of frequency: 

where S is an unknown exponent. 
Substituting (38) into (35) and examining the case where 

a < O  (the insulator phase in the ordinary self-consistent lo- 
calization theory) and ld%a*, we get 

where w,= I a 1 3 ( 3 ~ ~ ~ 0 1 2 ) 2 ,  and we have introduced a new 
characteristic frequency determined by the interaction, 
o * ~ 0 . 1 p a 2 1 ( 3 ~ h ~ 0 / 2 ) 2 = ~ . 1 p ( ~ k 0 ) 2 .  Note that w*+O as 
the system moves closer to the transition point when (+GO. 

Thus, in the insulator phase quite far from the transition 
point, where a < O  and l a l ~ a *  for o % o * ,  the diffusion 
coefficient remains the same as in the ordinary self- 
consistent localization theory, i.e., at low frequencies it is 
linear in frequency and at high frequencies it is proportional 
to o'm. 

Analysis of Eq. (35) shows unfortunately that for fre- 
quencies o much less than o *  it is impossible to select a 
power dependence for d(o) ,  i.e., the diffusion coefficient in 
the insulator phase cannot, apparently, be represented in the 
form d(w) = d(w*lo,)(olo*)" where 6 iz an unknown ex- 
ponent. This fact makes it impossible to study Eq. (35) ana- 
lytically in the o 4 o *  range in the insulator phase. 

Now let us examine the behavior of the system in the 
insulator phase near the transition point, when we have 
a- a*<O but a > O ,  i.e., when in the absence of impunties 
the system would be in the metal phase. 

We assume once more that the frequency dependence of 
the diffusion coefficient for oeo, is a power function, i.e., 
tlie diffusion coefficient is given by Eq. (38). 

Substituting (38) into (35) yields 6= 113. As a result for 
the diffusion coefficient we have 

where w,= 1 a - a *  1 3/(3 T X X ~ I ~ ) ~ .  Naturally, under exact 
solution the coefficient of 0 ' 1 3  is a ~mooth function of fre- 
quency and ensures a smooth matching in the region 
0- 0,. 

Thus, io the insulator phase in close proximity to the 
transition point, where the system without intcraction would 
still be a metal, the diffusion coefficient behaves in the entire 
frequency range like wl", but at low frequencies the coeffi- 
cient of 0'13 differs from the one in the ordinary self- 
consistent theory and depends on tlie Coulomb interaction. 
Note that if for the interaction we use the dynamically 
screened Coulomb interaction (7) for which p- 1, the range 
of applicability of (40) broadens considerably because 
a * - p  - I. 

We have studied the integral equation (33) numerically 
in a broad frequency range for the metal phase (Fig. 4) and 
the dielectric phase (Fig. 5j. The numerical results for the 
frequency behavior of the diffusion coefficient are in good 
agreement with the results obtained analytically. 

In the high-frequency range, the frequency behavior of 
the diffusion coefficient for both the metal phase and the 
insulator phase differ little from that in ordinary self- 
consistent localization theory. 

In the low-frequency range, d ( o )  for the metal phase is 
observed to decrease as the strength of interaction grows. 
The disorder-dependence of the static generalized diffusion 
coefficient at p=0.24 is practically linear (see the inset in 
Fig. 4). The metal-insulator transition here is observed at 
a= a*=  c p ,  where c-0.5, which agrees rather well with 
our analytical results. 

In the low-frequency range ( o e o * ) ,  d (o )  for the in- 
sulator phase deviates rather strongly from its behavior in the 
ordinary self-consistent localization theory. The behavior of 
the diffusion coefficient in this range is, apparently, nonana- 
lytic in frequency and tends to form a gap at w4w*. 

Note that our numerical study was carried out in terms of 
the Matsubara frequencies, for which Eq. (33) is written. No 
analytic continuation of the numerical results to the range of 
real frequencies was done. 
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FIG. 4. The dimensionless generalized diEusion 
coefficient vs the dimensionless Matsubara fre- 
quency in the metal phase (u=O.S) obtained by 
solving Eq. (33) numerically for different values 
of p: curve 1, 0.24; curve 2 ,  0.6; curve 3, 
0.95; the dashed curve corresponds to the ordi- 
nary self-consistent localization theory with 
p=O. Inset: the disorder-dependence of the 
static diffusion coefficient (d=D(0)IDo)  at 
p = 0.24. 

6. THE DENSITY OF STATES NEAR THE METAL-INSULATOR 
TRANSITION g&,,= 4 ~ ; ' ( 0 )  Im / dq li7$ 03 

Let us examine the effect of electron-electron interac- 
tion on the one-electron ("tunneling") density of states, 1 

X 
[- i ~ + ~ E ( o ) q ~ l ~  ' which is determined by the well-known relation 

1 d3p and G ; ( p , e )  is the advanced Green's function without inter- 
N ( E ) =  - - -T Im G R ( p , e ) ,  

T I  ( 2 ~ )  
(41) action. Here and in what follows No(0)  stands for the den- 

sity of states at the Fermi level in the absence of interaction. 
where E = E - E F  is the electron energy measured from the Substituting the expression (43) for Z t e ( e , p )  into (42), we 
Fermi level, and G ~ ( ~ , E )  is the retarded Green's function: find, as e+O, that 

We examine the "Fock" contribution to the self-energy 
part (Fig. 6): ti+ Y2+ P Y ~ ~ s . ~ ,  

( t i +  i + a ~ ~ g . , 4 ) ' + ( r J f & , , ) ~  

Z : ( e , p ) = i /  &/&'17$ G t ( p - 9 . e  - o ) v ( q ) y 2 ( q . o )  
1 

where the functions f,,,c and gE,,,c are determined by the 
x ( l +  1 + Pg&,wc following relationships: 

J( 1 + ~ g & , , ) ~ + ( r f & , , ~ )  
f,,,,= 4IVo1(0) Re I dq 03 Now let us calculate the functions f  ,,,, and g ,,,c. As 

noted earlier, the frequency behavior of the diffusion coeffi- 
1 

X 
cient in the metal phase qualitatively agree wih the results of 

[ -  ~ ~ J + D E ( w ) ~ ~ ] '  ' (") the ordinary self-consistent theory (with a shifted mobility 
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threshold). In the insulator phase within a narrow frequency 
range w e  o* the frequency dependence of D ( o )  is not 
known. However, if we bear in mind that near the transition 
point w*+O, it is reasonable to use for the generalized dif- 
fusion coefficient D ( o )  the expression (5), which follows 
from the self-consistent localization theory, assuming that the 
role of interaction is reduced to a simple shift of the transi- 
tion point. 

In the metal phase, as 8 4 0 ,  

In the o,<E< 117 range the functions f,,,c and g,,Oc are 

reduced to 

FIG. 5. The dimensionless generalized diffusion 
coefficient vs the dimensionless Matsubara fre- 
quency in the insulator phase (a=-0.5) ob- 
tained by solving Eq. (33) numerically for dif- 
ferent values of p: curve 1, 0.12; curve 2, 0.6; 
curve 3, 1.2; the dashed curve corresponds to 
the ordinary self-consistent localization theoly 
with p=O. 

weak disorder, when f,,wc and gePwc 4 1 ,  for p 4 l  we can 
restrict ourselves to the term linear in p. The result is the 
correction found in Refs. 10 and 1 1 :  

As the system moves toward the mobility threshold 
( y- EF and o,-t 0 ) ,  the function g,,,c becomes logarithmi- 
cally divergent [g , ,wcm ln( 1 l ~ w , ) ]  and the correction (5 1 )  
proves to be insufficient. The density of states must be cal- 
culated by the complete formula (46). Note that neither in 
Ref. 10 nor in Ref. 1 1  was the frequency dependence of the 
diffusion coefficient taken into account. This frequency de- 
pendence, as we will shortly see, plays an important role in 
the movement of the system toward the mobility threshold. 
As w,+O, f E V w c  in Eq. (46) can be neglected in comparison 
to the divergent function gE,wc. We have 

Using Eqs. (47)-(50), we can analyze the expression 
(46) for the density of states N ( E ) .  In the event of fairly FIG. 6. The "Fock" contribution of the interaction to the self-energy part. 
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FIG. 7. The evolution of the density of states in the metal-insulator transi- 
tion for a system with interaction, p=0.2. The conductivity band is infi- 
nitely wide. The curves are given for different values of the disorder paran- 
eter XI&: curve 1.0.5; curve 2,0.7; curve 3, 1.0; curve 4, 1.4; and curve 5, 
1.8. 

Thus, in the case of weak disorder, near the Fermi level the 
well-known square-root dependence of the density of states 
appears.3 As the system moves toward the mobility threshold 
( o C ~ O ) ,  the minimum deepens owing to the divergent term 
ln(l /~o,) ,  and at the mobility threshold ( o c =  0) the density 
of states at the Fermi level vanishes. Note that the square- 
root dependence exists only in the O < E <  O, range, which 
narrows as the system moves toward the mobility threshold. 
In the o,< E < 117 range we have 

while at the mobility threshold (y-EF) we have 

Figure 7 (curves 1-3) depicts the results of numerical 
calculations of the functions f ,,,c and geVwc and the density 
of states by Eq. (46), which demonstrate the formation and 
growth of a pseudogap in the density of states. The diagrams 
are represented for different values of A/A,, where A, is the 
critical order parameter at which the metal-insulator transi- 

tion takes place. The dashed curve shows the behavior of the 
density of states at the mobility threshold (WAC= 1). 

In the insulator phase the functions gEPwc and f,,,c for 
E -+ 0 have the form 

If in (46) g,,,c is ignored in comparison to the function 
fevwc, which becomes divergent as E+O, we obtain 

Thus, in the insulator phase, as E ~ O ,  the square-root depen- 
dence of the density of states remains, broadening as the 
disorder grows. In the wc< E < 117 range the dependence 
specified by Eq. (53) remains valid (Fig. 7, curves 4 and 5). 

Above we considered the case of an infinitely wide con- 
ductivity band. substantial differences emerge if we consider 
a band of finite width 2B in the insulator phase. In the linear- 
spectrum model we have 

Analysis of Eqs. (55) and (58) shows that in the range 
E + ~ w , (  yc/8)' the density of states is a quadratic function 
of E: 

which resembles the well-known behavior of the 
~ f r o s - ~ h k l o v s k i i ~ ~ ~ ' ~  "Coulomb gap" in the insulator phase 
far from the transition point. This fact may be accidental, 
since in the ~fros-Shklovskii scheme the long-range nature 
of the Coulomb interaction plays a decisive role. The results 
of numerical calculation of N(E) are depicted in Fig. 8 
(curves 5 and 6). As numerical calculations have shown, in 
the metal phase with a finite-width band the situation is prac- 
tically the same as with an infinitely wide band considered 
earlier. 

The behavior of the tunneling density of states of the 
type represented by Fig. 8 was observed in experiments in- 
volving a great number of disordered systems near the 
metal-insulator transition from amorphous 
a l l ~ ~ s ' ~ - ' ~  to disordered metal-oxide simple crystals, includ- 
ing high-Tc superconductors.18 We note, however, that al- 
though qualitatively the correspondence of the experimental 
data and this theory is complete, quantitatively there is no 
correspondence: the effective "pseudogap" width near the 
transition point is greater and is described by a power depen- 
dence rather than a logarithmic dependence. On the other 
hand, we find that the density of states over a broad energy 
interval is much lower than that observed in all the experi- 
ments. As far as we know, these equations describe for the 
first time the evolution of the tunneling density of states in 
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FIG. 8. The evolution of the density of states in the metal-insulator transi- 
tion for a system with interaction, ~ " 0 . 3 .  The conductivity band has a 
finite width 2B=4Ep. The curves are given for different values of the 
disorder parameter XIA, : curve 1, 0.5; curve 2, 0.7; curve 3, 0.9; curve 4, 
1 .O; curve 5, 2.0; and curve 6, 2.4. 

the disorder-induced transition from the metal phase to the 
insulator over the entire range of parameters controlling this 
transition. 

7. CONCLUSION 

We have presented a self-consistency scheme for de- 
scribing a disorder-induced metal-insulator transition with 
the electron-electron interaction, which is taken into account 
by first-order perturbation theory. Our approach assumes that 
the transition without interaction is described in a fairly com- 
plete manner by the self-consistent localization theory, while 
the interaction can be taken into account by allowing, on an 
equal basis, for the contributions of the corresponding dia- 
grams in an equation for the generalized diffusion coeffi- 
cient. Such an approach we find, makes it possible to de- 
scribe by unified equations the transition from the metal state 
to the insulator and obtain results that qualitatively agree 
with the experimental data (the tunneling density of states). 
At the same time, the interaction in this approach plays a 
rather moderate role, and within a broad range of parameters 
the self-consistent localization theory provides an adequate 
apparatus for describing the behavior of the diffusion coeffi- 

cient. For one thing, metallic conductivity (at T =  0) vanishes 
linearly at the transition point, which agrees well with the 
experimental data on some systems132 but does not permit 
description of a known class of disordered systems in which 
such behavior tends rather to express a square-root behavior 
in the disorder parameter.'92 

From a purely theoretical standpoint, even when we 
limit ourselves to the first order in the interaction, we must 
still analyze the role of the discarded "Hartree" diagrams, as 
well as that of the screening features in the insulator 

We have also completely ignored spin effects, 
whose important role near the metal-insulator transition 
points has long been known.lv2 

Nevertheless, the suggested scheme does have certain 
merits, since it makes it possible to allow in a certain manner 
for the interaction effects in a broad range of parameters 
controlling the meta!-insulator transition, even including the 
insulator phase, which no single known approach li,m SUC- 

ceeded in doing up to now. 
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