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We derive self-consistent equations that describe the behavior of the superconducting gap (order 
parameter) and chemical potential of metallic two-dimensional (2D) systems as a function 
of external magnetic field H, temperature T ,  and carrier density. For systems with low carrier 
densities, the pairs are localized below Tc ; we show that in such systems the derivative 
dHc2(T)ldT at the point T =  T ,  is considerably smaller than it is for a system in which Cooper 
pairs form. We find that in external fields that satisfy the criterion for the quantum limit, 
these systems are characterized by the appearance of a nontrivial nonuniform order parameter at 
sufficiently high temperatures. O I995 American Institute of Physics. 

1. INTRODUCTION 

Despite the exertion of much effort both in the experi- 
mental and theoretical directions, the nature of high- 
temperature superconductivity remains unknown. However, 
this effort should not be considered fruitless. At the present 
time we can confidently say that a consensus exists with 
regard to the factors that typify high-temperature supercon- 
ductivity in the copper a normal-phase conductiv- 
ity whose behavior is quasi-two-dimensional, and, as a rule, 
unusual from the point of view of the theory of Landau 
Fermi liquids; a density of mobile carriers (primarily associ- 
ated with oxygen) that is rather small (in any case, much 
smaller than in normal metals); and an extraordinarily strong 
interaction of the spins of the latter with primarily localized 
spins of the copper ions, making it necessary to develop a 
representation for the mutual coupling of superconductivity 
and magnetism. A simultaneous and first-principles descrip- 
tion of these features within the framework of a unified theo- 
retical approach is hardly possible; therefore, it is more com- 
mon to investigate their roles separately, in order to ensure 
that the resulting conclusions are as reliable as possible. 
However, the development of approaches and methods that 
allow a more multifaceted study of the nature of high- 
temperature superconductivity remains an important and cur- 
rent problem of theory. 

In this connection it is worth mentioning some recent 
and successful approaches to the modeling of certain features 
of high-temperature superconductivity in these materials, 
among them the 2D character of their conductivity and the 
relatively small1) (in general arbitrarily small) densities of 
fermions n 7 N f I V  (where N f  is the total number of fermi- 
ons and V is the volume) present in them that feel a locally 
attractive p~tent ial .~.~ It has turned out that a very simple but 
at the same general model can be used to derive, with some 
rigor, an effective low-energy Lagrangian for the supercon- 
ducting phase (which can be endowed with an anisotropic 
order parameter7) and to study all the physically interesting 
characteristics of this phase. In particular, it has been shown 
that the equation for the chemical potential p ,  which ordi- 

narily is ignored in the standard theory of superconductivity, 
is no longer given by the trivial relation p =  E F  (where E F  is 
the Fermi energy); rather, it is necessary to derive and solve 
self-consistent equations for the gap A (or, which is the same 
thing, the order parameter) and the chemical potential, which 
can be not only positive but also negative, depending on T 
(including values of T< T,  , where T ,  is the superconducting 
transition temperature). The positive range of values corre- 
sponds to overlapping pairs of bound fermions (Cooper-type 
pairing), while the negative range corresponds to pairs that 
are nonoverlapping in real space (localized pairing). These 
systems can support both types of pairing; which type occurs 
is primarily determined either by the value of the density 
nf  for a given T ,  or (clearly the more interesting situation) 
by the value of T(< T,) for a given value of n f .  In this latter 
case, we can induce a crossover from one type of pairing to 
another by varying T [more precisely, p ( T ) ] ,  which to a 
certain extent (since p(Tc)  =0) explains how the supercon- 
ductivity of high-Tc systems can resemble a superfluid con- 
densate of local pairs which are nevertheless not seen above 

Tc . 
In this work, our goal is to study the behavior of these 

metallic 2D systems, in particular how their superconducting 
phase forms in an external magnetic field H perpendicular to 
the plane of motion of the fermions. The interest in problems 
of this kind has been extraordinarily high recently due to the 
assertion made ingy9 (see, also, the review lo) that a fundamen- 
tally new nontrivial phase (with a finite order parameter) can 
exist in the range of finite T and ultra-strong fields that in- 
duce true Landau quantization, implying new relations be- 
tween the superconducting order parameter and the quantity 
H. However, because the authors of these papers limited 
themselves to the BCS approximation, they did not discuss 
the equation for p ;  thus, they missed the fundamental (in our 
view) fact that the chemical potential of a 2D metal depends 
significantly not only on T but also, as we will show below, 
on H. 

In this paper we will derive a self-consistent set of equa- 
tions for calculating both A and p ,  and analyze its solutions 
in the range of both large and small values of nf and H (the 
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criteria for largeness and smallness will be stated below). We 
will then discuss how the effect of the field on the supercon- 
ducting condensate depends on the cat~ier density, which 
leads us to an expression2) for the critical curve HC2(Tj 
(where Hc2 is the second critical field of the supercotl0ac- 
tor), starting from the assumption that the phase transition 
from the normal state to the superconducting state is 3 *ran- 
sition of second order. Finally, we derive the value of the 
derivative dr-iC2( T)ldT for T= Tc , and clarify the role of 
two-particle bound states for the ranges of large and swall 
values of H, i3om this discussion it will become clear r~*;v 
important 1, .:; to take into account the local constrlucnt. 
bosons, which manifest themselves as fluctuations in tilt: bare 
complex Fer;ni held. 

2. MODEL AND BASIC EQUATIONS 

As a starting point, let us take the Hamiltonian H,f for 
the simplest 2D Fermi system with a loca: attraction between 
particles, which we investigated in detail in? and additional 
terms that take into account the presence of the constant 
magnetic field h = 1 : 

($-+(x), A=A(x), x=r,t, r=(X,Y), a=-a= f ,L). 
(2.1) 

Here A is the vector potential of the field ali, e and m are 
the charge and effective mass of a carrier (electron or hole), 
and g>O is the fermion-fermion interaction constant corre- 
sponding to attraction. It is clear that, by specifying that the 
external magnetic field is given, we are neglecting terms in 
Hf caused by inhomogeneity of this field induced by the 
spatial distribution of the condensate. We do this because, 
these terms turn out to be small," at least for values of the 
field that are not too far from the critical curve. 

Using the Nambu representation12 q = (9; , e l ) ,  we 
transform the Hamiltonian (2.1) to the form 

(2.2) 
(where T are the Pauli matrices), which is convenient for 
calculating the partition function Zf of the Ferrni particles. 
Ths function is associated with the thermodynamic potential 
ClJ of the particles through the standard relation (k, = 1 ): 

Since in this case n f=0(V,T ,p )  and we are interested in 
the dependence of the physical quantities on the concentra- 
tion of bare Fermi particles, let us write here the relation 
between p and n that we will need for further calculations: 

nf= - V-I  anp a,. (2.4) 

tising the Hamiltonian (2.2), Eq. (2.3) can be identically 
represenled by a functional integral over the Grassmann 
\wiai!i.:,'' 1I' a7d qt: 

, er;e variables satisfy the antiperiodic boundary condition 
, - , = - - q ( ~ + p ; r ) .  As usual (see, e.g., Ref. 14), we 

l i ~ w  tntroduce an auxiliary complex Bose field @ =@(r;r)  
'.the Hubbard-Stratonavich method) with the periodic 
bf:ucdary condition 4 ( 7; r )  = @ ( T+ P;  r)  to convert (2.5) to 
the form 

which allows us to carry out the integration over the Fex-mi 
variables. Finally, as in Ref. 5 we are led to an expression for 
the partition function in terms of an effective action 
s e p s e d @ , @ + ) :  

where G= G ( T ~  , T ~  ;rl ,r2), i.e., the Green's function of the 
fermions, is a functional of the field @. Its explicit form is 
determined by the equation 

the boundary conditions for which are supplied by the equa- 
tion G ( T ~  , ~ ~ ; r ~ , r ~ ) =  -G(T~+P,T~;I '~  ,r2). 

If the solution to Eq. (2.8) were known, it could be sub- 
stituted into (2.7), allowing us to find a formally exact ex- 
pression for the partition function and thereby reproduce any 
physical quantity of interest. However, in practice the quan- 
tity Seff, and therefore Zf as well, is impossible to compute 
exactly, so that approximations are necessary. The first, and 
most widely used, approximation is to use the method of 
steepest descent to compute the integral (1.7) near extrema Q, 
of the action Seff; this corresponds to the mean-field (self- 
consistent field) approximation. In this case the saddle point 
is determined from the condition 

which is a direct consequence of our explicit expression for 
Seff. Another assumption is that the system is in "steady 
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state," i.e., that the solution 6 = @(r), from which we derive 
the system order parameter according to the definition 
A= 161, is independent of the "time" T (in general this so- 
lution can be nonuniform and depend on T). In this case, the 
Green's function defined by (2.8) depends only on the differ- 
ence r1 - 72, and admits the following Fourier expansion: 

on= .rrT(2n+ I) .  (2.10) 

Substituting (2.10) into (2.8), we obtain the following equa- 
tion for the coefficients Gn(r,  ,r2): 

By introducing 6 ,  we can find the partition function 
(2.7) in explicit form. This calculation consists of identifying 
those parts of (2.7) that depend only on and are, therefore, 
nonfluctuating, and including the fluctuation-induced correc- 
tions within the Gaussian approximation, i.e.,: 

Here S , p ~ , f ~ 6 , 6 * )  is the effective action in the self- 
consistent field approximation, A@ = @ - 6 is the fluctuat- 
ing component of the constituent Bose field, and is the 
propagator of the latter, which is introduced through the defi- 
nition 

The analytic structure of the function r consists of isolated 
poles that correspond to bound two-ferrnion states (in other 
words, bosons) and branch cuts corresponding to the con- 
tinuum of two-particle Fermi excitations. Note that in writing 
(2.12) we have omitted fluctuations of the field H near its 
value (weakly nonuniform in general). The role of these fluc- 
tuations is primarily to mediate a possible conversion of the 
second-order phase transition between a normal metallic and 
a superconducting phase into a first-order phase transition.15 

Direct integration of expression (2.12) over the fluctua- 
tions of the auxiliary field gives 

from which we eventually find the required thermodynamic 
potential [see (2.3)]: 

(2.14) 

Finally, by substituting (2.14) into (2.4) we can write the 
concentration of Fermi particles in the system as a sum: 

whose terms formally correspond to contributions from par- 
ticles described by the various types of statistics. The first 
term, which we obtain from the representation (2.10) and the 
definition of the Green's function [given by Eq. (2.8)], de- 
scribes the usual fermion density in the mean-field approxi- 
mation. The second term is more interesting and, to some 
extent, unusual; its presence in (2.15) is exclusively due to 
the inclusion of fluctuations A@ and A@* of the constituent 
field in the functional integral (2.7). The presence of this 
term in the expression for nf shows unambiguously that the 
interaction results in dynamic processes that separate the 
original system into two parts (even, generally speaking, in 
the normal phase)-a purely fermionic subsystem and a sub- 
system described by boson degrees of freedom. In this case, 
the partial concentrations of these particles-fermions and 
bosons-in the two subsystems is entirely controlled by the 
terms (2.15), while their total number is determined by the 
density n f .  

In concluding this section, we note that the formalism 
we used above to derive the system of self-consistent equa- 
tions (2.9) and (2.15) directly reproduces several previously- 
known results derived by Gor'kov concerning the behavior 
of a superconductor in a magnetic field.16 These results are 
obtained here even in the zeroth (mean-field) approximation 
if we impose the condition p= EF , i.e., without taking into 
account the self-consistent relation between p and nf. In 
addition, it is worth noting that the importance of this latter 
relation was first pointed out by Leggett ,I7 and that fluctua- 
tions in the boson subsystem were takem into account in the 

However, the authors of these papers discussed 
only 3D systems in the absence of an external magnetic field. 

3. EQUATIONS FOR THE CRITICAL CURVE 

Thus, Eqs. (2.9) and (2.15) completely describe the be- 
havior of the order parameter and chemical potential of a 2D 
system as a function of the "external" parameters T, H, and 
nf. In this case, the most interesting quantities are the criti- 
cal points along the curve HC2(T), which separates the nor- 
mal and superconducting phases (especially near the point 
T= T,). Because our equations are explicit in form, it fol- 
lows that the primary ingredient we need to calculate is the 
Green's function given by Eq. (2.1 1). Let us rewrite the latter 
in an integral form that is more convenient for subsequent 
analysis: 

Here we have used operator notation for brevity, for which 
G?)= G(,')(r,r) is the Green's function of the system in the 
normal state, which can be found in the Appendix. Equation 

1113 JETP 80 (6), June 1995 Gusynin et a/. 1113 



(3.1) possesses the remarkable property of allowing a series 
solution, at least for cases where the order parameter (i.e., the 
value of the energy gap) happens to be small in the immedi- 
ate neighborhood of the critical curve. 

Since the integral Eq. (3.1) has a Dyson structure, the 
most natural method of finding its solution is by iteration. In 
fact, it is not difficult to see that the usual expansion holds: 

By substituting this expansion into (1.9) along with (1.10), 
we are led to the equation 

with the kernel 

which allows us to describe not only the phase transition 
curve but also the value of the order parameter near it. This 
latter fact is because we have kept the lowest nonlinear term 
in (3.3), which, of course, limits the usefulness of this equa- 
tion to the range of rather small values of 6,. This includes 
the critical curve itself, on one side of which 6, # 0, while 
on the other side &=O. If we start from the assumption 
mentioned above, i.e., that the curve HC2(T) of interest rep- 
resents a second-order phase transition (i.e., the order param- 
eter changes continuously across it [for all nf] as the param- 
eters T and H vary), we can assume that the value 6 = 0 also 
characterizes points on the curve itself. This latter assertion 
implies that the critical parameters are none other than those 
for which the equation 

has a nonzero solution. 
In order to find this solution in explicit form, we note 

that the kernel (3.4) of this equation is completely deter- 
mined by the free Green's functions given in the Appendix. 
These expressions allow us to rewrite Eq. (3.5) in the form 
[see ( ~ 7 1 1  

where 1 [see (A6)] is a magnetic length proportional to the 
period of the hexagonal Abrikosov lattice of the supercon- 
ductor in the magnetic field1'; the kernel 

is the spatially uniform part of the full kernel Kl(r , r l )  speci- 
fied by the Green's function (A8). It was shown in Ref. 21 
that Eq. (3.6) has an exact and nontrivially nonuniform so- 
lution 

whose "amplitude" A= A(T) gives the maximum value of 
the system order parameter (corresponding to H=O) for 
T S T , .  We may say that this expression describes a super- 
conducting vortex because, in contrast to a magnetic vortex, 
it describes an order parameter that is nonzero in a certain 
region and decays rapidly towards the periphery of the 
latter.3) 

The final form of the first of two equations we need to 
determine the critical curve is obtained from (2.6) by substi- 
tuting Eq. (3.8) into it and going to the momentum represen- 
tation; doing so, we find after integrating over r 

Here it is clear that nonconservation of the total momentum 
of a pair is wholly due to the external magnetic field. 

The quantity ,u enters into Eq. (A.ll) by way of the 
Green's function. Its connection with nf on the critical curve 
follows from Eq. (2.15) if we also use the expansion (2.2) in 
the latter, which eventually gives 

where T i 1  is defined by Eq. (2.13). The second term on the 
right side of this equation contains the free Green's function 
~ ( " ( 7 1  - q;rl ,r2), which is subject to Eq. (Al). 

We now can obtain an explicit expression for Tr lnr;', 
and from it the corresponding contribution Anf to (3.10). 
Although these calculations apply to the weak-field range, in 
the opposite case the correction Anf is not very important. 

First of all, let us separate out the coordinate- 
independent portion of the propagator T i  ', using the defini- 
tion (2.13) and the explicit form (A7) for the free Green's 
functions that appears in it. Then 

where obviously [compare (2.13)], 
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-r1)r+l;9=~. (3.12) 

If the Fourier series (2.10) is used to expand (3.1 1) and 
(3.12) in terms of harmonics with the boson frequencies 
an = 2 .rr Tn , the following expressions for the corresponding 
Fourier coefficients result: 

the last of which can also be derived in the momentum rep- 
resentation by analogy with (A10): 

Note that the vector X, in contrast to the vector k of the 
fermion Green's function, here corresponds to the total mo- 
mentum of a pair of particles. 

Since the propagator r enters into Eqs. (2.14) and (3.10) 
through the operation 

it is clear that its computation requires the calculation of 
matrix elements of the complete inverse propagator, not just 
its spatially uniform part. In this case, when H=O we clearly 
have 

from which it follows directly that the following relations 
hold in the absence of a field: 

(33ILn r i l l%)=ln  rh,rn(n,m, 

1 (3.17) 
TrLn ~ - '=vTZ d%ln r;:rn(n;m. 

Inclusion of the external field leads to the appearance of 
spatial nonuniformity and, consequently, to violation of the 
conservation of momentum law expressed by (3.16) and 
(3.17). Thus, a first-principles calculation requires knowl- 
edge of all the matrix elements, including the nondiagonal 
ones. However, when the field is small ( 1 4  w) the expansion 
(3.17) is correct up to terms of order o (H~) .*~  

In other words, since ours is a theory that describes 
weak-field effects and includes terms no higher than qua- 
dratic, we may limit ourselves to the uniform part of the 
two-particle propagator r in the matrix elements (3.15). 
Since an expansion of the function r;;,!(n;.%) itself in pow- 
ers of I-' does not contain any terms o: lP2[see the definition 
(3.12), and also (A13)], the representation (3.14) will be ac- 

curate to this order if we substitute the Green's function of 
the system in the absence of a field into it, i.e., 

Standard summation of the series (3.14) (see, e.g., Ref. 24) 
over the fermion frequencies using the Green's function 
(3.18) gives 

1 
horn 

where nF(k)=[exp &k)/T+ I]-' is the Fermi distribution 
function. 

Formally, the integral in (3.19) diverges if the width of 
the conduction band of the 2D metal W + m .  However, it is 
easy to avoid this divergence if we anticipate Sec. 3 and use 
the regularization W+ ,g+ 0, which enters into the theory 
of the energy of the two-particle bound state:'6 which equals 

It is clear from the derivation given above that this quantity 
is independent of the magnitude of the magnetic field to 
order a L - ~ .  

Thus, for weak external fields the propagator of the con- 
stituent bosons can be described by the following expression: 

x2 
r h O L ( n ; m  = lim - In - - du u + - - 2p  

W-00 4:[ IaZW ( In 

which can be used in concrete calculations. 
We will find Anf from the corresponding correction to 

the thermodynamic potential (2.14): 

which takes the following form when we pass from summa- 
tion to integration in the complex plane of the variable w: 

here nB(w) = (exp w/T- 1)-' is the Bose distribution func- 
tion. The contour C for integration with respect to w is 
shown in Fig. 1. Let us deform this contour into the contour 
C1 (see Fig. l), and, following Ref. 18 define the phase 

This lets us write the expression under the logarithm sign in 
(3.23) in the form Ir;Olmlexp(-ib). Then the integral contain- 
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ing rh,; turns out to equal zero because the integrations over 
the upper and lower branches of the contour C1 along the 
real axis mutually compensate, which converts the fluctua- 
tion part of R f  to the form 

the last equation is derived by deforming the integration con- 
tour C, into an integration over the real o axis. This can be 
done by adding the contour Co (see Fig. 1) around the point 
w = 0 to the contour C1 and then subtracting the contribution 
arising from the quantity &Om. However, this latter quan- 
tity is annihilated by the condition that the ground state of 
the system as a whole be stable, which takes the formi8 

Re r i k ( m ; . % ) > ~ ,  Im I',m(~;.%)=~, 

which necessarily implies that S ( O m  = 0. 
In accordance with (2.15), (3.24) leads to the required 

fluctuation correction to the particle concentration in the sys- 
tem 

In particular, we can restrict the discussion to values of this 
quantity on the critical curve for Iyc(%Tc, i.e., the region of 
most interest to us. Then in this region, where pair formation 
is most advantageous, we can obtain for rh,;(o;%) [see 
(3.21)] the expression 

which shows that ~ ; ~ ~ ( % / 4 m  - 2 p +  eb ;35) = 0. In this 
case, the phase (3.23) develops a discontinuity of the form 

By substituting this function into (3.25), we eventually find 
the correction: 

to the fermion number caused by fluctuations of the auxiliary 
field. In this limit, the correction is expressed entirely in 
terms of a Bose distribution function of particles with mass 
2m and chemical potential 2 y ,  as should be the case in 
principle; the energy origin used here is the quantity ~b from 
(3.20). Consequently, as we said in Sec. 1, the constituent 
field and its fluctuations actually are responsible for the for- 
mation of a subsystem of new and relatively stable particles 
in the original system of attracting Fenni particles-bosons 
made up of bound states of pairs of fennions in real space. 
Nevertheless, we can show that the next correction to (3.27) 
[which has the same order of smallness as in (3.26)] turns out 
to be negative, i.e., it indicates that the constituent bosons 
have a finite lifetime due to decay processes. 

If, however, y Z+ Tc , then an analysis analogous to that 
given above for the case p < O  is not feasible. However, 
physical considerations clearly indicate that the positiveness 
of p is a direct consequence of the small role played by 
stable localized pairs. Consequently, the inclusion of their 
fluctuations is not very important along the critical curve, 
implying that Anf=O (for 3D and quasi-2D systems at 
least). 

Thus, the system (3.9)-(3.10) including the contribution 
(3.27) from boson fluctuations describes the critical param- 
eters y(T) ,Hc2(T) self-consistently for I T- Tc( % T, and a 
given value of nf. The zero-field limit in this case corre- 
sponds to 1 = m; then, taking into account that 

it is easy t~ use (3.9) to obtain relation (45) of Ref. 6 where 
the model (2.1) was discussed for H=O. In what follows we 
will treat the cases of small and large magnetic fields sepa- 
rately. 

4. WEAK MAGNETIC FIELD 

This case is realized if the cyclotron frequency o@T, 
[see (A6)] and if it is possible to expand Eq. (2.9) with re- 
spect to 1- ', using the explicit form of the Green's function 
(A13). After making the necessary transformations, we ob- 
tain the equation 

The second term in the right-hand side of this equation is 
entirely due to the presence of the field; W as above, is the 
width of the conduction band. 

It is not difficult to see that the value of T ,  for H=O is 
given by the relation 
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which was analyzed in Ref. 6. Assuming that the external 
field causes only rather small changes in the parameters re- 
quired for the critical curve, let us substitute (4.2) into Eq. 
(4.1). After a regularization of the form W+w, g-0, (4.1) 1 

acquires the form 

th(u -p ) /2T  th (u- p,)/2TC - 
U - P ,  

00 =gc. [ 1 r p  p arctg(plwn) 
7+7+ n=O 0" 20, 0: 

(where 5( v) is the Riemann zeta function). This allows us to 
with a left side that is is convenient for computation in the quickly find the general expression for the slope of the criti- 
range of small T- T, . The summation over frequencies in cal curve in he vicinity of T, : 
the right side of (4.3) can also be carried out if we make use 
of the expressions25 

A number of experimental facts suggest that the value of this 
derivative in high-temperature superconductors is very small 
(or even zero)?6727 However, when we attempt to discuss the 
shape of the H-T phase diagram theoretically in these com- 
pounds, we find that deviations from the predictions of the 
BCS theory appear only if it is assumed that the supercon- 
ductivity of these compounds is superfluidlike in character, 
with the role of the bosons played, e.g., by heavy small- 
radius bipolarons?' 

As we pointed out above, although the slope in question 
is still given by Eq. (4.4), this is no longer a "closed form" 
expression in our case because it includes the unknown value 
p, ,  whose connection with nf is given by a separate equa- 
tion. Furthermore, this equation is also needed to determine 
the value of dp, ldT,= (dpldT) Tc,  which also contributes to 
the slope of the critical curve. It turns out that numerical 
methods are needed to find the slope over the entire range of 
variation of p ;  however, as we are interested only in the 
qualitative properties of the model, we will limit ourselves to 
an analysis of limiting cases. 

Localized pairs. These states correspond to the condition 
p < O  or sp91ebl[where E B  is defined in (2.20)].~,~.~~ If, in 
this case, we assume that Ip,l S T, , then Eq. (3.27) can be 
used for (3.10). After integrating it, we find 

in which we have omitted exponentially small terms, so that 
the second equation we need is simple in form. 

In principle, the system (4.4) and (4.5) completely de- 
scribes a 2D metal and its critical curve near T, if we assume 
that the critical temperature introduced in (4.2) is itself finite 
for any value of n f. However, it is easy to establish that Eqs. 
(4.2) and (4.5) are mutually consistent only at the point 
T,=O. This we find to be in complete agreement with gen- 
eral and well-known conclusions about the ability of fluctua- 
tions to destroy order parameters in isotropic spaces with 
dimensions smaller than three. 

It is necessary to ensure that T, is stable against fluctua- 
tions and nonzero, which must be the case if the quantity 
(4.4) is to be meaningful. One way to do this is to take into 
account 3D (or quasi-2D) effects, which change things in a 
radical way. In this case, Eq. (4.5) is modified so that it leads 
to the condition l9 p,= ~ ~ 1 2 ,  which imposes no limitation on 
T,  . The expression for the critical value of the concentration 
n3D= 3D , - nf (T) has the form 

2mT 
nf= nrT in[ 1 + exp( - y ) ] - 7 in[ 1 where M(Srn) is the fermion mass in the z direction. In a 

'n- certain sense, we can introduce quasi-two-dimensionality 
into a strictly 2D system if, following Part 1 of Ref. 29 we 
expand the phase-space volume of the latter by allowing the 
particles to displace perpendicular to the plane with an aver- 

- - '"' - e x p ( v ) ] ,  
age energy given by the condition %~/~M.JT .  Then the 2D 

7~ 
(4'5) concentration at finite T (including T,) can be defined as 
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nf= n ; D K  ' . If we then take into account (4.6) and the 
presumed relation between T, and Sz, we are led to the 
relation 

which correctly describes the relation between the particle 
density and temperature in a 2D system. More importantly, it 
predicts a finite value of T, at finite values of nf.  Here it is 
appropriate to note that the use of the equation EF= mnf /m 
in (4.7), which is standard for 2D conductors, gives 
T , = 0 . 6 8 ~ ~ ,  which is close to the value obtained for local- 
ized pairs in 3D space.19 

These discussions allow us to transform Eq. (4.6) into a 
form that is convenient for treating the 2D case with arbitrary 
p and T by writing 

from which it follows that dp,/dT,= 0. From this we even- 
tually find: 

This expression indicates that the slope of the critical curve 
at the point T, for the constituent bosons is exponentially 
small; this conclusion corresponds qualitatively, but is not 
identical to, the case of Bose condensation, where the critical 

312 14 curve has power-law behavior ( (T- T,) ). 
Cooper pairs. These form if p > O  and p,S-T, .5,20 Fur- 

thermore, in this case fluctuations of the auxiliary field are 
suppressed, and we can neglect all but the first term in (3.10) 
[compare (4.91: 

which immediately gives the derivative 

Substituting it into ( 4 3 ,  we find the required slope: 

(where y is the Euler constant), which has only algebraic 
smallness. Recall that (4.9) practically coincides with the 
well known expression for 3D metals (up to a numerical 
factor; see part 5 of Ref. 30). 

Thus, the results we have obtained show that the behav- 
ior of the phase diagram of a metal, and in particular the 
slope of its critical curve, depend significantly on the original 
carrier density. If the latter is such that ~ ~ 4 1 ~ ~ 1  (the regime 
of localized pairs), then this derivative turns out to be much 
smaller than for the case E ~ s I E ~ J  (Cooper pairs). BY vary- 

ing the number of carriers, we can track the dependence of 
dHC2(T)ldT on this quantity. In the BCS regime [see (4.9)] 
the slope of the critical curve is a nJ ln, i.e., it can even 
increase as nf decreases. However, once it has attained its 
maximum value, it begins to decrease (probably as the num- 
ber of constituent local bosons and the importance of their 
role increase) down to practically zero [see (4.8)]. In this 
case, neither the slope of the critical curve nor the H-T 
phase diagram as a whole can be described by a single equa- 
tion supplemented by the condition p = E F .  

5. STRONG MAGNETIC FIELDS 

In order to estimate the limit of strong magnetic fields, it 
is convenient to write the expression for the critical curve 
using the representation (A12) for the Green's function in the 
form of a sum over Landau levels31 

[for nF see (3.19)]. In this case, the second equation, which 
relates p to nF , takes the form 

We will limit ourselves to the mean-field approximation 
here, since, on the one hand, no self-consistent description of 
a 2D system with arbitrary density nf in a strong magnetic 
field H is available, while on the other hand, the considerable 
nondiagonal character of the propagator r in both the coor- 
dinate and momentum space representations makes the prob- 
lem of including fluctuation-induced corrections intractable 
even in the most natural basis to represent them, i.e., the 
Landau states. 

In the limit E ~ / W ~ = ~ C C ~ ~ / ~ H ~  1, we find from (5.2) 

=ln OH, 
T 2  E F 

consequently, it is sufficient to limit ourselves to the asymp- 
totic expression nF(en)=exp(-~,lT) in Eq. (5.1). If we now 
renormalize the constant g in the same way as we did in 
(3.20) for the bound states, we reduce Eq. (5.1) to the form 

OH 
@ 1- - +ln-=-2 exp ( 2) lEb1 

where 
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FIG. 2. Form of the critical curve in the strong-field limit. For comparison 
we show the form of the critical curve taken from Ref. 10 with a dashed 
curve. 

In the region 1 -2ploH%-1, we can use the asymptotic 
forms of the function +(z),,, cx In z-(2z2)-' in (5.3) and 
@ (z, 1 ,v ),,,+ v - ' to find the solution (under the condition 
E F + ~ H ~ I & ~ I )  

(compare with the critical temperature 
T,= ( I~~1/2) ln- ' ( l8~1/2~~)  in the mean-field 
approximation6). 

In the other limit 1-2pIoH+ 1 (where we must use 
@(z),+o a -  Z-', ~ ( ~ , l , v ) , , ~ - - v - ' ) ,  we are led to a 
curve on the phase diagram given by the equation 

which is correct for EF , I E ~ I + O ~  and arbitrary ratios of EF 

to 1 ~ ~ 1  (the binding energy eb(H) for two charged fennions 
in the presence on a magnetic field was calculated in23: 

Sb(H)= - ~ ~ l n - ' ( @ $ l ~ ~ l ) .  

Thus, at sufficiently high fields (oH+eF) and temperatures, 
a 2D metal actually possesses a nontrivial (6 # 0) phase, 
with a nonuniform order parameter, which appears under 
conditions of complete penetration of the field into the 
sample. We will not attempt to discuss the nature of this new 
phase (to do so we must calculate the value of the current, 
which is an independent problem); we will, however, note 
that, in contrast to,'' the critical curve will be a complicated 
function that remains nonlinear even in the large-field limit 
(see Fig. 2). 

6. CONCLUSIONS 

To summarize our investigation, we have obtained a 
completely self-consistent system of equations for a 2D su- 
perconductor in an external magnetic field. We have shown 
that when the density of bare carriers is low, one of the 
equations, specifically the one that relates the carrier density 
to the chemical potential of the system, gives a nontrivial 
contribution that determines the behavior of the critical 
curve. In the opposite case of high densities, this equation is 
almost trivial, and in principle the system can be described 
by the BCS approximation. The dependence of the behavior 

of the critical curve on concentration mentioned above in the 
region of small fields should be verifiable experimentally for 
high-Tc superconductor systems, where the carrier density is 
an "external" parameter that is relatively easy to control. 

Finally, we may perhaps have a new "high-field" 
(H>(.rrcle)nf) ordered phase to study in these systems, if 
we also choose high-Tc superconducting compounds with a 
sufficiently small carrier density that the required values of 
field become realistically attainable, as we discussed above. 
However, in view of the extreme simplicity of the model we 
have chosen to investigate these questions, we did not at- 
tempt to compare these functions with the available experi- 
ments, which up to now are not sufficiently diverse. 
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APPENDIX 

The Green's Function for Free Fermlons in an External 
Magnetic Fleld 

The equation for the Green's function has the form (1.7), 
in which <P=@*=O: 

where D is defined in (2.2) with the symmetric gauge 
A = ( 1/2)( - Y ,X) . The boundary condition for this equation 
is given in (2.8). Accordingly, the equations of type (Al) for 
the coefficients of the Fourier expansion of ~;')(r' ,r2), i.e., 
(2.10), have the form (2.11) for the free Green's function, 
where we have also set @ = @ * = 0. Abstracting from any 
concrete representation, we can write this expression in op- 
erator form 

where %$;) corresponds to the Hamiltonian density (2.2) in 
the Nambu representation with g = 0, and I is a unit matrix. 
Following Schwinger's con~ention;~ let us rewrite (A2) us- 
ing an integration over "proper" time such that 

from which we obtain 
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The matrix elements that enter into (A3) are easily rewritten 
in terms of path integrals: 

(A4) 

where A is the normalization co~~s:~ant determined from the 
equation 

(rllexp(+i @ ; ) T ) I P ~ ) I ~ = ~ = ~ ( ( ~ ; - ~ ~ ) .  
In the vector potential gauge we hrive chosen, the integral 
(A4) turns out to be Gaussian; after identifying a completed 
square in its exponential, it can be cajculiited to the end. In 
particular, the integration over momentum leads to the ex- 
pression 

('llexp( --5$f")7)lr2) 

= A  dr(t)exp i d t  T, T - ij?(t) I [I,' I:: 
in which the constant A is renormalized, while 

r(0) = r2,r(r) =rl 

can be used as boundary  condition^.^ 
Integrating (A5), we eventually find that 

(rl (exp(? i d ' ) r )  Ir2) 

where, as in (A5), the notation l = ( c l e ~ ) " ~  has been used 
for the magnetic length, and wH=eHlcm for the cyclotron 
frequency. Eventually, after substituting (A6) into (A3), we 
are led to the final expression for the Green's function: 

i (horn)( 
G ' ~ ' ( r ~ . s ) = e x P ( -  g rz[r1r21z) Gn r1 - r~ ) .  

(A71 
in which the spatially uniform portion is identified to be: 

At first glance, it may seem that the representation (A8) 
is not entirely convenient, because the denominator of the 
expression under the integral sign reduces to zero at points 
T= 2 7 r j w ~  (where j is a non-negative integer). However, in 
fact the strong oscillations of the exponentials in the curly 
brackets regulate the behavior of the integral in the vicinity 
of these poles. We can demonstrate this by writing (A8) in 
another form, using the identity 

i ctg u = 1 - 2 exp(2iu)l[exp(2iu) - 11, 

and also the generating function for the Laguerre 

These expressions allow us to express the Green's function 
(A8) in the form 

After the analytic continuation iw,-+o, the function 
GPm)(r)  becomes the Green's function ~(~ '")(w;r)  for free 
fermions in a magnetic field when T=O. The poles of the 
latter correspond to the Landau equation for values of the 
frequency wj= TZ[wH(j+ 112) - p] ,  as it should be. 

The coordinate dependence of the Green's function 
GYm)(r) also shows that it is most natural and convenient to 
write it in the momentum representation: 

GLbm)(k) = I d r  exp( - i k r ) G P ) ( r ) .  

Substituting (A8) and (A9) into (A10) give respectively 

These representations are equivalent; however, the first is 
more convenient to use in the range of small magnetic fields, 
while the second is better for large magnetic fields. In par- 
ticular, from (All) we can show that if H-tO (i.e., l h w ) ,  to 
within terms of order r4 the Green's function has the form 
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~(",h""'(k) = [ I -  (4m2l4j-' 
imn-7z5(k) [ i ~ n - ~ z 5 ( k ) 1 2  

in which [(k)=k2/2m - p. 

' b e  problem of the transition from an insulating state to a metallic state 
due to doping of the originally insulating high-Tc superconducting com- 
pounds, and the minimal canier concentration corresponding to this wan- 
sition, below which they turn out to entirely localized, in thlis type of 
problem has not been addressed. The distinctive feahves of such a 2D 
metal-insulator transition were studied, e.g.. in Ref. 4. 

')AS we are interested only in the transition between the superconducting 
and normal phases, we will not discuss the other critical curve, namely 
HCI(T). 

3)The authors of the recent papep have noted that the general solution to 
?his equation is given by the same expression (3.8) with the replacement 
A+ f(Z) with Z=X+ iY, where f(Z) is the derivative of a holomorphic 
function. The zeroes of this function coincide with the positions of the 
centers of Abrikosov vortices, whose mutual spacings are not fixed by the 
linearized equation (3.5) and must be found by solving Eq. (3.3). 

4 ) ~ s  a check, we write the "classic_al" trajectory that arises in computing 
(A5): X(r)=a cos w t f b  sin at-X- AY ctg (q, 77'2), Y(t)=a sin wt- b 
cos wt+Y+AX ctg (+d2), a=-M+AY ctg +d2), b-AX ctg 
(q,d2)+AY, i=(r, + r2)/2.Ar = ( r l  - r2)/2. 
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