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The low-temperature conductivity of doped semiconductors near the metal-insulator transition 
point is described by a model of percolation of electrons in mixed impurity states. The 
transition point coincides with the percolation threshold of the classically accessible spheres of 
the impurity states. At this point the energy distribution of the electrons in the impurity 
band obeys Boltzmann statistics, and the conductivity can be arbitrarily small. The electron 
degeneracy that sets in just above the transition point makes the conductivity equal to the minimum 
metallic conductivity, which increases as n2I3 as the impurity density n increases. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

The metal-insulator transition in randomly inhomoge- 
neous media, including doped semiconductors, has long been 
at the center of interest in the physics of disordered media.lv2 
Metallic conduction in a semiconductor appears or disap- 
pears when a threshold donor-impurity density is reached (in 
the simplest case, in the absence of compensation). The main 
investigations of this transition have been on silicon doped 
with phosphorus. Detailed data on the conductivity near the 
metal-insulator transition point, down to liquid-helium tem- 
peratures, had already been obtained at the end of the 
~ixt ies .~ In much later experiments the temperature was low- 
ered to 1 rnK and the conductivity was observed to undergo 
an almost discontinuous change at the transition point.4 This 
behavior, in general, corresponds to the Mott concept accord- 
ing to which, at T=O, the conductivity changes discontinu- 
ously at the transition point from the minimum metallic con- 
ductivity to zero.' However, conductivity values 
considerably smaller (by three orders of magnitude) than the 
Mott minimum metallic conductivity were also observed. 
Thus, the experiment points to a very sharp, but continuous, 
change of the conductivity at the transition point. 

The most popular interpretation of the metal-insulator 
transition is based on the scaling theory of localization, ac- 
cording to which, at T=O, the conductivity vanishes at the 
transition point as the inverse correlation length. However, 
the experimental value of the conductivity critical index in 
Si:P, equal to 0.5 (Ref. 4), is considerably smaller than the 
theoretical estimates. Extrapolations from opposite sides of 
the transition point, based on the theories of weak localiza- 
tion and hopping conductivity, give a conductivity critical 
index close to unity? while numerical analysis of the Ander- 
son model gives 1.5 (Ref. 6). As noted in Ref. 6, the differ- 
ence between the experimental and theoretical critical indi- 
ces may be due to the model dependence of this index.') 
Another possibility is that the observed behavior is not re- 
lated directly to scaling, since we do not know beforehand in 
which region of the parameters the correlation length is 
large. 

Usually, the electron gas is assumed to be degenerate up 
to the metal-insulator transition point, at which the Fermi 

level intersects the electron-mobility threshold. However, 
this is not necessarily so if the Fermi energy depends on the 
proximity to the transition point. For example, in the perco- 
lation model of overlapping atoms in gaseous metals, Boltz- 
mann statistics is applicable to the mixed quasiatomic states 
near the transition point.8 In this case, the conductivity is 
determined by the weakly excited electrons near the ground 
level of the quasiatoms. Although the mobility as a function 
of the energy of the weakly excited electrons is described in 
the framework of scaling theory, the energy-averaged con- 
ductivity does not have a singularity at the transition point. 
When, at a somewhat higher density, electron degeneracy 
sets in, the conductivity becomes equal to the minimum me- 
tallic conductivity. Thus, in the percolation model of over- 
lapping atoms, two concepts regarded as alternatives (scaling 
and minimum metallic conductivity) are combined. By com- 
parison with the scaling theory of the metal-insulator transi- 
tion, this model is closer to a microscopic model and pos- 
sesses the advantage of describing the temperature 
dependence. 

In doped semiconductors the analog of the overlapping 
atoms is the impurity states of the electrons. The fundamen- 
tal role of percolation in this system and the relation of per- 
colation to the metal-insulator transition are well known.' 
However, the standard analysis is limited to the determina- 
tion of the transition point, and does not touch upon the 
problem of mixing of the electron impurity states. 

The aim of this article is to apply the percolation model 
to impurity states in semiconductors in order to describe the 
low-temperature conductivity in a wide neighborhood of the 
metal-insulator transition point. Attention is paid principally 
to the role of electron degeneracy in the mixed impurity 
states at temperatures close to absolute zero. A simple expla- 
nation is given of the well known fact that, irrespective of 
the degeneracy, the conductivity can sometimes be described 
approximately by the same formulas as in the Boltzmann 
case. 9 

The plan of the article is as follows. In Sec. 2 we con- 
sider mixed states of impurity-band electrons that are almost 
coupled to local levels below the bottom of the conduction 
band of the semiconductor. In Sec. 3 we describe the perco- 
lation mobility of electrons in these states, which depends on 
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their excitation energy. In Sec. 4 we analyze the dependence 
of the energy-averaged conductivity on the density of impu- 
rity centers and the temperature. 

2. MIXED IMPURITY STATES 

In a silicon matrix phosphorus forms shallow impurity 
levels with ionization potential 12.45.5 meV (Ref. 9). The 
electron wave function corresponding to such a level is con- 
centrated mainly within a classically accessible sphere of ra- 
dius e2/&1, where e is the electron charge and E= 11.5 is the 
dielectric permittivity of the silicon matrix. The metal- 
insulator transition occurs at phosphorus density 
n =3.8X lo'* cm-3 (Ref. 4). As is easily verified, this point 
coincides with the result found by the Monte Carlo method 
for the percolation threshold of randomly distributed over- 
lapping spheres1 playing the role of the classically accessible 
spheres for the electrons in the impurity levels: 

Since the overlapping impurity states virtually screen 
each other, the localized states are mixed with free-motion 
states above the screened potential well. The free-motion en- 
ergy rp is determined by the asymptotic momentum p. By 
the variational principle of quantum mechanics, as a result of 
excitation the internal energy of an impurity is always above 
the isolated-impurity level. Therefore, the minimum internal 
energy of a screened impurity is 

E,=-Z+E,. (2) 

On the other hand, the internal energy of an impurity can be 
expressed in terms of the energy representation a,, of the 
density matrix: 

where the diagonal matrix elements am and a,, correspond 
to the probabilities of the ground state and of free motion, 
normalized by the condition 

aoo+app= 1. (4) 

Equations (2)-(4) are compatible if the matrix elements a,, 
and a m  are in the same ratio as the energy of free motion and 
the binding energy: 

applaoo=ep 11. (5) 

Hence, weakly excited mixed states, for which &,GI, are 
basically similar to the state of an isolated impurity (except 
for the asymptotic behavior at large distances, which is de- 
termined by the small admixture of free motion). 

The energy spectrum of the free motion is determined by 
the structure of the conduction band of the semiconductor. In 
particular, in the Brillouin zone of silicon there are six 
equivalent valleys. Near the bottom of a valley the spectrum 
has the form 

where p ,  and p, are, respectively, the longitudinal and trans- 
verse components of the momentum, reckoned from the bot- 
tom of the valley, and m, and m, are the effective electron 

masses. Applying a frequently used simplification, we shall 
consider spherical valleys with an effective mass correspond- 
ing to the electron density of states: m = mj'3m:'3 = 0.32me, 
where me is the free-electron mass.'' 

Since the electrons remain almost localized, they can 
pass only between neighboring impurities (from an occupied 
state to a virtual hole). The diffusion coefficient resulting 
from these random walks is 

where la= (4rrn13)-'" is the average spacing between im- 
purities and d is the average electron-transition time deter- 
mining the diffusion coefficient. 

We shall also express the diffusion coefficient in terms 
of characteristics of the free motion: 

where v is the asymptotic speed of free motion of an electron 
and 7=lalv is the time of free flight between neighboring 
impurities. The factor 6<1 appearing in (8) in a product 
with the minimum gas-kinetic diffusion coefficient deter- 
mines the degree of localization of the electrons. 

Note that, because of the finite transition time, the free 
motion admixed into the ground state of the impurity is re- 
stricted to a certain sphere. The radius of the sphere that can 
be filled by a diverging wave in the transition time is equal to 

Since the electron-transition time is greater than the mean 
free time, 1' is greater than the distance between neighboring 
impurities. The volume of the localization sphere is equal to 

\n=n-'6-3. (10) 

The smaller is 6, the stronger is the localization, but the 
volume of the localization sphere is greater as well. This 
implies that strong localization makes it possible to distin- 
guish impurity states on different centers, even if their local- 
ization spheres overlap strongly. 

Since the potential of an impurity ion is screened over 
distances of order l', the density of mixed states corresponds 
to free motion in the volume \n. Thus, in comparison with 
free electrons, the density of electron states per impurity ion 
increases by a factor of F3. It follows from this that the 
Fermi energy is renormalized as follows: 

where EF is the Fermi energy of the free electrons in the 
conduction band. 

3. PERCOLATION MOBILITY 

As follows from the Einstein relation between the diffu- 
sion coefficient and the mobility, the localization factor 6 
renormalizes the average mobility in the same way: 

To determine this factor we shall consider transitions of elec- 
trons (to virtual holes) between overlapping classically ac- 
cessible spheres of impurity states. It is obvious that the 
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probability of such transitions depends on the fraction of the 
volume that is classically accessible at the given energy: 

In particular, the mobility should vanish below the energy 
level determined by the percolation condition 

Using (13) and the condition (14), we easily obtain an ex- 
pression for the mobility threshold: 

According to the scaling theory of localization, near the 
threshold the mobility varies as the inverse correlation 
length, i.e., 

where v is the critical index of the correlation length. In the 
case of localization in percolation clusters the index v is 
slightly less than 0.9 (Ref. 11), i.e., differs little from unity. 

After an almost linear increase above threshold, the de- 
pendence of the mobility on the energy saturates (when the 
larger part of the volume becomes accessible, and the mobil- 
ity reaches the minimum gas-kinetic value). A characteristic 
of the corresponding accessible-volume fraction is provided 
by the packing fraction for random close packing of spheres, 
approximately equal to 1 3 .  Thus, saturation occurs near the 
energy level 

For the calculations below we use the following schematic 
representation of the mobility as a function of the energy: 

where p,= e d m  is the minimum gas-kinetic mobility, and 
A, and A, are the characteristic excitation energies, defined 
by the expression 

The averaging over the energy should be performed with 
a Fermi weight function (which determines the probability 
that the initial state is occupied and the final state is free) 

where f(sp) is the Fermi distribution (which makes the sec- 
ond equation in (20) an identity) 

in which p is the chemical potential of the electrons. Below 
the metal-insulator transition point, for A,ST, the average 
mobility depends exponentially on the temperature, i.e., cor- 
responds to the Boltzmann limit. Direct calculation gives the 
localization factor 

where the functions F ,  (i= c, g )  are combinations of incom- 
plete r-functions: 

Above the transition point the mobility threshold appears 
only as a virtual threshold (A,<O). In the Boltzmann ap- 
proximation we have 

In the general case the averaging in (18) gives 

where (ep) is the energy averaged with the Fenni weight 
function (20). In the limiting cases this energy is equal to 
E; if E; S T, or 3T/2 if e; 4 T. In the intermediate case 
we use the interpolation formula 

Substituting Eq. (25) into (24) and taking Eq. (11) into ac- 
count, we obtain for the localization factor an implicit ex- 
pression that is essentially an equation: 

( E , ~ ~ + ~ T / ~ - A , ) / ( A ~ - A ~ )  if this i s < l ,  { 1,  otherwise. 
(26) 

The case 6 + O  corresponds to the Boltzmann limit (23). We 
note that at the metal-insulator transition point the Boltz- 
mann limit exists even for T+ 0. In fact, at this point 
(A,=O) it follows from (23) that 6~ TIAg, and, conse- 
quently, the ratio of the renormalized Fermi energy to the 
temperature tends to zero: 

which is the condition for the applicability of Boltzmann 
statistics. 

In general, Eq. (26) can have three roots, of which only 
one has the indicated Boltzmann limit as the density is de- 
creased. Of the other two roots, one is unstable and the sec- 
ond is 6 = 1. Above a certain density the root that has the 
Boltzmann limit vanishes, and a discontinuous transition to 
the point 6 = 1 occurs. This density above which the elec- 
trons are always degenerate at low temperatures is deter- 
mined by the condition 
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We note that the localization-factor discontinuity associated 
with the electron degeneracy is not reflected in the conduc- 
tivity, since this factor cancels (see below). For the same 
reason, there is no need here to write out the explicit solution 
of Eq. (26) for the case of degeneracy. 

4. THE CONDUCTIVITY 

In the metallic state, one electron per impurity atom 
gives a contribution to the conductivity, and, therefore, 

a= en&) = e2r8n/m. (29) 

This expression is none other than a modified Dmde for- 
mula, including an extra factor that takes the electron local- 
ization into account. In the Boltzmann case the minimum 
mean free time is equal to 

T = I ~ I v ~ ,  (30) 

where V T  = ./- is the thermal average speed of the 
electrons. Note that in the presence of the localization factor 
the conductivity has no lower bound; in other words, a mini- 
mum metallic conductivity does not exist. 

In the case of degeneracy, however, the collision time is 
inversely proportional to the (renormalized) Fermi velocity: 

Consequently, the factor 6 in the Drude formula (29) can- 
cels, so that the conductivity is equal to the minimum con- 
ductivity with a mean free path coinciding with the spacing 
between impurities: 

We recall that, by virtue of the relation (27), degeneracy is 
possible not at the metal-insulator transition point itself but 
only on the metallic side of this transition. 

However, the range of applicability of Eq. (32) is found 
to be limited, because with increasing impurity density, when 
the localization factor tends to unity, the electrons become 
almost free. In this case the mean free path can exceed the 
spacing between the impurities. In fact, the minimum mean 
free path is limited by the uncertainty principle:'2 

where Ap is the uncertainty of the electron momentum. At 
sufficiently high temperatures we have Ap- mv T ,  so that the 
minimum mean free path of an electron is of the order of its 
thermal wavelength. In the case of degeneracy, taking as the 
energy uncertainty the geometric mean of the Fermi energy 
and the temperature, we have 

As-pFAplm- 6, (34) 

whence we again obtain Ap - (this estimate makes 
sense if the ratio of the Fenni momentum to the thermal 
momentum is not too large-say, not greater than 10). Thus, 
in the case of not too low temperatures, the minimum elec- 
tron mean free path is give by the thermal wavelength: 

while for sufficiently low temperatures it is determined by 
the inverse Fermi wave vector: 

FIG. I .  Metal-insulator transition in Si:P. The solid curve is the theoretical 
calculation for T-tO; the points are experimental data from Ref. 4. 

Here, y - 0.1 is a small parameter that corresponds to 
matching of Eqs. (35) and (36) at vT= yvF. At not too low 
temperatures (v T> yvF), the collision time amounts to 

In this equality the inverse Fermi wave vector can be ex- 
pressed in terms of the spacing between impurities by means 
of the formula (which takes into account the presence of six 
valleys) 

? i l r n ~ ~ = ( . r r ~ n / 2 ) - " ~ .  (38) 

Equation (37) can be understood as suggesting the pos- 
sibility of applying Boltzmann statistics, in which case the 
mean free time has the same form [in fact, this possibility is 
well known in the case of pure metals when the ratio of the 
Fenni energy to the temperature is of the order of lo2 (Ref. 
9)]. Because of this coincidence, the modified Drude formula 
in the Boltzmann approximation can be used as an interpo- 
lation formula in the case of electron degeneracy as well. In 
this case, not to close to the transition point, the conductivity 
has a power dependence: 

In the case of very low temperatures the minimum mean 
free path is determined by the inverse Fermi wave vector in 
accordance with Eq. (36), and the dependence of the conduc- 
tivity on the density far from the transition point is then 
weaker: 

The conductivity calculations (Figs. 1-3) were carried 
out using the modified Drude formula with the Boltzmann 
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FIG. 2. Dependence of the conductivity of Si:P at T=4.2 K on the density 
of phosphorus. The metal-insulator transition point is indicated by an arrow. 
The solid curve is from the theory, and the points are from the experiment of 
Ref. 3. 

localization factor (22), (23), expressed in terms of incom- 
plete r-functions, and the mean free time was estimated with 
allowance for the degeneracy. The effective mass was taken 
equal to the free-electron mass. To match the different ex- 
pressions for the minimum mean free path the parameter 
value y = 0.1 was used. 

For T+O (Fig. 1) the conductivity below the metal- 
insulator transition point (and at this point) vanishes, while 
above this point (on a logarithmic scale) the conductivity 
increases practically discontinuously, in agreement with the 
experimental data of Ref. 4. We note that the critical index of 

FIG. 3. The same as in Fig. 2, but at T=77 K (the solid curve) and T=300 
K (the dashed curve). 

the conductivity in the model under consideration is equal to 
unity, since a linear dependence of the percolation mobility 
on the energy above threshold is assumed. A more detailed 
description of the percolation mobility requires a consider- 
ably deeper analysis. 

The dependence of the conductivity on the density at 
higher temperatures is shown in Figs. 2 and 3. At liquid- 
helium temperature and above, in almost the entire range of 
phosphorus densities of interest, the electron mean free path 
is given by the thermal wavelength, so that the mean free 
time coincides with the Boltzmann formula (37). We note 
that the theory agrees qualitatively with the experimental 
data even when the density dependence of the conductivity is 
very strong. 

5. CONCLUSION 

In doped semiconductors the metal-insulator transition 
associated with the percolation of electrons in shallow impu- 
rity levels has the same nature as the corresponding transi- 
tion in gaseous metals. Despite the large differences between 
these systems, at temperatures differing by a factor of a thou- 
sand, their conductivity is qualitatively described by univer- 
sal formulas. The distinctive features of the electronic prop- 
erties near the metal-insulator transition are due to mixing of 
states as a consequence of mutual screening of impurities. 
Degeneracy of the electrons in the mixed states is possible 
only above the percolation threshold, and near the threshold 
Boltzmann statistics is always applicable. For T+ 0, averag- 
ing of the scaling dependence of the electron mobility on the 
excitation energy over the Boltzmann distribution gives a 
practically discontinuous change of the logarithm of the con- 
ductivity at the metal-insulator transition point, and this tran- 
sition becomes more and more smeared out with increase of 
temperature. 

For the degenerate electron gas above the metal- 
insulator transition point a Mott minimum metallic conduc- 
tivity exists. In the case when the electron mean free path is 
determined by the thermal wavelength, the minimum con- 
ductivity increases with impurity density as n2I3. Near abso- 
lute zero temperature the minimum electron mean free path 
is a multiple of the inverse Fermi wave vector, and the mini- 
mum conductivity is proportional to n'I3. 

In contrast to gaseous metals in the vicinity of the liquid- 
gas critical point, in the impurity subsystem of a semicon- 
ductor there is no phase transition, and this makes it possible 
to study the metal-insulator transition at very low tempera- 
tures. The importance of these investigations is considerably 
enhanced because of the universal percolation mechanism of 
this transition. 
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