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The problem of resonant tunneling of electrons in the field of a strong electromagnetic wave is 
solved by diagonalizing the Harniltonian of the electron system, which includes the 
Coulomb interaction between free and localized electrons, with a unitary transformation. The 
solution obtained is asymptotically exact in the limit of weak electron-electron 
interactions. A distinctive feature of this problem is the fact that the "electron-electron" and 
"electron-hole" singularities that appear in the amplitude for scattering of electrons by 
a resonance level are separated in frequency; therefore, there is no linkage of "ladder" diagrams 
for the Green's function into a "parquet." This makes it possible to describe the 
electron-electron correlations correctly by means of the generalized self-consistent field 
approximation. Matrix elements are calculated that correspond to various types of tunneling 
transitions. It is found that the strong electromagnetic field mediates a renormalization 
of the matrix elements for direct tunneling of electrons through the barrier by the processes of 
inelastic resonant tunneling, which leads to important changes in the probabilities for 
these tunneling processes. A closed expression is obtained for the tunneling current. 
O 1995 American Institute of Physics. 

1. INTRODUCTION 

There are a number of practical applications of the tun- 
neling effect whose analysis involves the resonant tunneling 
of electrons in the field of a strong electromagnetic wave. 
These applications range from investigating solid surfaces by 
scanning tunneling microscopy to designing new quantum 
semiconductor devices based on heterostructures, in particu- 
lar optoelectronic devices. 

The combined use of lasers and scanning tunneling mi- 
croscopy (STM) to investigate semiconductors and metals, 
and also to probe the semiconductor surface locally, has 
opened up new perspectives in the physics of surfaces. The 
resonant character of electron tunneling in STM is due to the 
presence within the tunneling barrier of quasilocalized elec- 
tronic states of various kinds. In particular, these states can 
be associated with atoms or molecules that are adsorbed at 
the surface. However, from a practical point of view the 
more important situation is one where a thin film of insulator 
(e.g., a polymer or Langmuir-Blodgett film) is deposited on 
the surface of the semiconductor artificially. In this case, 
some of the quasilocalized surface states belong to bonding 
and antibonding orbitals of the polymer molecules. If this is 
the case, it should be possible to modify the properties of the 
film in a purposeful way by using a laser to change the de- 
gree of occupation of these states. However, in order to ac- 
complish this goal it is necessary to have an adequate theo- 
retical description of tunneling processes in the presence of a 
strong electromagnetic field. The author has reported certain 
results in this direction in a previous publication (see Ref. 1). 
In recent years, numerous experimental investigations have 
stimulated further developments in the theory. Thus, 
~ o l o t k o v ~  developed a theory of resonance spectroscopy of 
adsorbates exposed to electromagnetic radiation in order to 
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explain the experimental measurements of steady-state pho- 
tocurrents in STM by Volcker et ~ 1 . ~  

There are many potential applications of the phenom- 
enon of resonant tunneling in the presence of a strong elec- 
tromagnetic field in the design of quantum devices, including 
those based on new physical principles.4-6 In Ref. 6, for 
example, Kopaev et al. discussed the possibility of using 
light to induce switching between various quantized states in 
a tunneling quantum nanostructure. In this case a relocation 
of the electron wave function occurs in space with a corre- 
sponding change in the system conductivity. Since the tun- 
neling probability for penetration of a tunnel-coupled system 
of quantum wells depends resonantly on the position of the 
energy levels in the quantum wells, it becomes possible to 
develop quantum optoelectronic devices that are switched by 
optical pulses from one logic state to another. 

In a recent paper: Inarrea et al. discuss the effect of 
resonant tunneling in a heterostructure with one quantum 
well (a type of resonant tunnel diode) under the action of 
laser illumination within the context of the experimental 
infrared-absorption measurements of Chitta et a1.' 

2. HAMILTONIAN OF THE PROBLEM 

The complete Hamiltonian of the problem is a sum of 
the electron Hamiltonian He and a term H, that describes 
the interaction of the electrons with the field of the strong 
electromagnetic wave. Let us write the electron Hamiltonian 
in the form: 

H ~ = H ~ + H ~ + H ~ + H ~ ~ .  (1) 

Here fro describes electronic states in the separate parts of 
the tunnel contact; H, and HR give rise to the processes of 
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direct tunneling of electrons through the barrier and of elastic localized state. For simplicity let us consider the symmetric 
resonant tunneling; and fie, describes the Coulomb interac- case: Vl ( p) = V2(p), g (p) = g2(p). Then the Hamiltonian 
tion between free and localized electrons. (1) takes the form 

Usually there is a whole set of localized states within the 
tunnel barrier with various energies; however, only a small 
portion of them will turn out to be in resonance with the field fie= Z E (  P) (ciUcpu+ tiutpu) 

a.p 
of the electromagnetic wave. Therefore, for simplicity we 
will investigate a case where the tunneling barrier contains 
only one localized state with energy Eo: + Z u (EOd:du+ wd:d&f ,d-,) 

(3) 
According to Eqs. (6), the wave functions of quasiparti- 

cles described by the operators c& and EL are, respectively, 
in-phase and out-of-phase superpositions of the wave func- 

fi,= Z [vl(~)a,+,d~+vz(~)b,+,d~+h.c. l ,  
'J,P 

(4) tions for electrons on the right and left sides of the tunnel 
contact. Therefore, we may use the operator for interaction 
with an electromagnetic field in its usual form for the c&, 

fie,= Z [g~(q)ai+~ud:d&pu quasiparticles. However, the terms that contain the operator 
P.P,U will be discarded in what follows. 

Here a&, b& , d: , are, respectively, operators that create 
an electron with spin a tunneling through the barrier from 
the left, tunneling from the right, or resident in the localized 
state; ~ ( p )  is the energy dispersion law for the electrons, 
which for simplicity we will assume is the same on both 
sides of the barrier; W is the Coulomb interaction energy 
between two electrons on the same center; T(p,pl) is the 
matrix element for direct tunneling of an electron through the 
barrier; V1,2(p) are matrix elements for tunneling transitions 
between localized states and the corresponding band states; 
and g1,,(p) are constants for the electron-electron interac- 
tion. 

3. INTERACTION WITH THE FIELD OF A STRONG 
ELECTROMAGNETIC WAVE 

The interaction of electrons with the electromagnetic 
field is taken into account by introducing the following term 
into the Hamiltonian: 

Here fi is the frequency of the electromagnetic field, while 
h(p) is the matrix element for the corresponding transition 
( n = ~ =  1): 

The overlap of the wave functions for band and localized e 
states, expressed here by the appearance of the nonzero ma- UP)=- / # z ( r ) ~ ( r ) r ~ ( r ) d ~ r ,  (10) 
trix elements Vl(p) and V2(p) for elastic tunneling, also al- 
lows the electrons to make inelastic radiative transitions be- e and mo are the charge and mass of a free electron, E(r) is 
tween these same states. the field intensity of the electromagnetic wave, qo(r) are the 

In order to correctly describe the interaction of tunneling wave functions of electrons in the localized states, and the 
electrons with the field of an electromagnetic wave, it is wave functions $p(r) are represented in  dance with (6) 
necessary to transform the Hamiltonian (1). By introducing as linear combinations 
new Ferrni operators via the relations9 *p(r)=u*lp(r)+v*2;?p(r) 

cpU= uapU+ vbp,, Cpa= ubpU- vapu. (6) of band wave functions 

@jP(r)=Cjp(r)exp(iPr), j=1 ,2  
u=Vl(P)fV(P), v=Vz(p)lV(p), on the right and left sides of the contact; here tjp(r) are 

Bloch amplitudes. Furthermore, Eq. (10) can be transformed 
v(P)=Jv:(P)+v~(P), u2+v2=1, (7) to the form 

we can change to a representation in which only those qua- e 
siparticles described by the operators c& interact with the UP)=- (E(P)PO). 
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FIG. 1. 

The term IjeA in the Hamiltonian (12) contains an ex- 
plicit dependence on time. By using the unitary transforma- 
tion 

we can eliminate this dependence. However, when we do 
this, a time-dependent factor appears in the term connected 
with elastic tunneling: 

where E(p) = J ~ ( r ) e x ~ ( i p r ) d ~ r  and po = J $ ( r )  H,= u tH( t )u+  ~ + ( i d l d t ) U =  2 [s(p) - plcf cpu 
(- iv )q~( r )d~r  are, respectively, the Fourier transform of the a. P 

electromagnetic wave electric field intensity and the matrix 
element of the momentum operator between the correspond- + C [(E0- po)d:du+ wd,fd,d?,d-,] 
ing states. u 

Thus, Eqs. (8) and (9) specify the Hamiltonian of the 
problem: + 2 ~ ( q ) ~ ~ + , ~ d + d ~ c p +  2 [h(P)c;dU+ h.c.1 

".P,'I @.P 

+ h.c.1. (14) 

Nevertheless, since the elastic processes take place far from 
resonance, the Harniltonian (14) can be diagonalized by 
dropping the last two terms. In what follows, we will take the 
process of elastic tunneling into account by perturbation 
theory. Note that without the last two terms, Eq. (14) is for- 
mally equivalent to the Anderson Harniltonian, which de- 
scribes anomalies in the resistance of metals with magnetic 
impurities. This allows us to solve the problem of resonant 
tunneling by making use of methods developed in the theory 
of metals to investigate impurity states. 

+C [~(~)c;~uex~(-ifit)+h-~.]. (12) 4. THE ROLE OF ELECTRON-ELECTRON INTERACTIONS 
P. 

In general, the quasilocalized state is located far from the 
Fermi surface and the contribution of resonant processes to 
the tunneling current is insignificant. However, in the pres- 
ence of a strong electromagnetic field with frequency 
R >  IEo- EFI (where EF is the Fermi energy) a coherent 
state of band and localized electrons can appear.'' This cre- 
ates conditions that allow inelastic resonant tunneling transi- 
tions of electrons through the barrier. The character of the 
elastic tunneling will also change in this case. 

The electromagnetic field is considered to be strong if 
the electron-hole pair creation rate exceeds the pair recom- 
bination rate, i.e., a "saturation effect" occurs. In the satu- 
rated state, the distribution functions of electrons in the band 
and localized states may be considered to be quasi-Fermilike, 
with quasi-Fermi levels p and po,  respectively, where 
R = po- p. In order to define the values of the parameters 
p and po ,  we must use the equation for conservation of 
particle number. However, under conditions of exact reso- 
nance, i.e., a= Eo- EF (for definiteness we take Eo>EF), 
then p = E F ,  while po=EF+fl .  

In the steady coherent state, a primary role is played by 
the Coulomb interaction Z?,, between free and localized 
electrons. This assertion is supported by the results of recent 
experiments" on resonant tunneling in heterostructures. Al- 
though this interaction cannot mediate transitions of elec- 
trons through the tunnel barrier by itself, in what follows we 
will show that it changes the probability of inelastic tunnel- 
ing by interfering with the interaction heA. 

Let us compute the amplitude r (p,q) for scattering of a 
free electron described by the operators c& by the localized 
state d: to second order in perturbation theory with respect 
to the electron-electron interaction. Graphically, this expres- 
sion can be represented by the diagram of Fig. 1, where the 
upper line corresponds to a free electron and a bottom line to 
an electron in the localized state; the dashed line denotes the 
Coulomb interaction. Here we have adopted the notation 
P={P ,~} ,  pr={pr,o'}, k={k,o~}, q={q,o~}. 

Assuming that the dispersion law for free electrons is 
isotropic with an effective mass m, and replacing the magni- 
tude of the density of states by the quantity vo= m p ~  /r2, 
for E = EF we obtain: 
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where wo is a cutoff energy for the integral. This expression 
is singular when fl = EO - EF . The pole of the scattering 
amplitude reveals the existence of a bound state, analogous 
to the Cooper-pairing state for electrons in superconductors. 
In order to take this feature into account, let us introduce 
anomalous averages into the discussion of the form 
(c,+,d,+). 

Meanwhile, the amplitude r2(p,q) for scattering of a 
free electron by a localized hole characterized by the opera- 
tor d also has a (logarithmic) singularity. Graphically, the 
corresponding process is represented by the diagram of Fig. 
2; the analytic expression has the form 

The pole of the scattering amplitude T2(p,q), which corre- 
sponds to a bound state of an electron and hole analogous to 
the excitonic-insulator pairing state in semimetals,12 is char- 
acterized by anomalous nonzero averages of the form 

(c;J,'). 
The presence of two types of singularity in the scattering 

amplitude significantly complicates the situation, since it be- 
comes necessary to discuss diagrams of the parquet type in 
addition to the ordinary ladder diagrams,13 which corn- 
sponds to going beyond the self-consistent field approxima- 
tion. A distinctive feature of the problem under study here, 
i.e., pairing of quasiparticles in the field of a strong electro- 
magnetic wave, is the fact that these singularities of the scat- 

tering amplitude are separated in frequency14; therefore, a 
meshing of the ladder diagrams into a parquet does not take 
place. This makes it possible to describe electron correlations 
correctly by means of a generalized self-consistent-field ap- 
proximation. 

An additional simplification is available if one of the 
following strong inequalities holds: A (p) W or A( p) W. 
For tunneling contacts both cases are possible (depending on 
the nature of the localized state), and a solution exists for 
both. We will consider the first case, because it allows a 
simpler mathematical description. However, we should keep 
in mind that in this case we lose a solution that corresponds 
to the triplet type of electron-hole pairing. Nevertheless, this 
does not lead to any serious consequences, since singlet pair- 
ing is ordinarily more favorable energetically.15 

In our case, the energy of the localized state does not 
depend on the electron spin, so that the spin indices on the 
operator need not be written; a summation over the spin 
variables is taken in the final answer. In what follows, we 
will assume that the interaction takes the form of an 
electron-electron repulsion; then, the "superconducting" av- 
erage (cid') equals zero. Let us decouple the electron- 
electron interaction Hamiltonian as follows: 

where 

A ( ~ ) = g ( ~ ) ( c ; d ) .  (18) 

From Eq. (17) it is clear that the Coulomb interaction 
between free and localized electrons leads to a renormaliza- 
tion of the matrix element A(p) for inelastic tunneling in the 
Hamiltonian (1 4): 

We now diagonalize the Hamiltonian with the following 
canonical transformation: 

d = P  cos y+C P gPaP sin y,  (20) 

where a, and f3 are new quasiparticle operators. The param- 
eters of the transformation are as follows: 
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In this case, the parameter A(p) is determined from the self- 
consistency equation 

where the renormalized position of the energy level EA for 
the localized state is determined from the expression 

Analogous transformations were used previously in Refs. 14 
and 16 to describe impurity states in semiconductors. 

Thus, the Hamiltonian for the problem of resonant tun- 
neling of electrons in the field of a strong electromagnetic 
wave can be diagonalized by the unitary transformations (6), 
(13), and (19), (20) if we make two basic assumptions: that 
the interaction of two electrons at the same resonance level is 
weak, and that we are allowed to neglect elastic tunneling 
processes compared to inelastic processes. The Coulomb in- 
teraction between free and localized electrons is taken into 
account. Our solution is asymptotically exact in the limit of 
weak electron-electron interactions. 

In what follows, we will include elastic processes via 
perturbation theory and compute the tunneling current. 

5. MATRIX ELEMENTS FOR TUNNELING TRANSITIONS 

The coherent nature of the interaction of tunneling elec- 
trons with the electromagnetic field leads to the appearance 
of so-called "coherence factors" in the matrix elements for 
elastic processes after the transformations (19), (20). which 
we neglected previously and will now take into account via 
perturbation theory. Doing so transforms the Hamiltonian 
(14) as follows: 

+ C [ ~ " ( p , ~ ' ) c u ~ a ~  exp( -ifit)+ h.c.1. (24) 
P.PI 

The matrix elements in (24) are not all the same order of 
magnitude. The dominant matrix element is 

where the terms are defined by the expressions 

From (25) it is clear that the matrix element Tf(p,p') 
can be interpreted physically as a sum of two terms, one due 
to elastic tunneling processes To(p,pl) (including scattering 
by the resonant state) and the other due to inelastic resonant 
tunneling T,(p,pl). This latter term arises from the interac- 
tion of the electrons with the electromagnetic field. 

Since vp= 1, while s i n y ~ c o s  y near resonance, the re- 
maining matrix elements in the Hamiltonian (24) can be 
grouped as follows: 

V' (p) = [ vpT- T(p)]sin y - vpT sin y cos y 

T1'(p,p')= vp[V(pl)- vptV] sin y+ vpvptV sin y cos y 

The matrix element V(p), which must be included to 
second order of perturbation theory in calculating the tunnel- 
ing current, has a further exponential smallness compared to 
T1(p,p'), and can be discarded. The remaining matrix ele- 
ment T1'(p,p') corresponds to processes that take electrons 
far from the Fermi surface. In order of magnitude we have 
T"(p,pl)=(=Slfi)V, that is, it also can be neglected. 

Thus, after weighting the matrix elements that corre- 
spond to various types of elastic and inelastic tunnel transi- 
tions, we can assert that a strong electromagnetic field causes 
important changes in the probability of tunneling processes, 
which is expressed by renormalization (25) of the original 
matrix elements for direct electron tunneling through the bar- 
rier by the processes of inelastic resonant tunneling. 

6. TUNNELING CURRENT 

The tunneling current density, according to (25)-(27), 
consists of two components: 

arising from the matrix elements To(p,pl) for elastic non- 
resonant processes and the matrix elements T,(p,pl) for in- 
elastic resonant processes. The first term is the simplest to 
write down: 
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FIG. 3. Current-voltage characteristics of a tun- 
neling contact in the field of a strong electm- 
magnetic wave for two characteristic cases: ( I )  
approximate resonance [ a  > Eo- EF , 
a / ( E 0 - E F )  = 1 1, and (2) exact resonance 
( a = E , - E , ) .  

Replacing the parameter Z(p) by its value 8 0  for E=EF ,  
j o = 2 w e C  ITO(P,P')~~[~(P)-~(P')~~~~(P)-~(P')+~U] we obtain: 

P.P' 

where U is the applied voltage and vo = mpF 1 .rr2 is the den- 
sity of states at the Fermi level. We have taken into account 
the fact that for small applied voltages U 4 E F  the distribu- 
tion function of electrons depends only on energy, i.e., 
f (p) = B(E - EF). In addition, near resonance we may set 
T =  T(p) = T(p,pl). 

The expression in (32) enclosed by curly brackets is a 
coefficient that reflects the change in the contribution to the 
tunneling current from elastic nonresonant processes. Be- 
cause the scattering of electrons by the impurity state and by 
one another decreases the electron tunneling probability, this 
coefficient is always smaller than unity. Since the renormal- 
ization of the tunneling probability takes place primarily near 
the Fermi surface, it plays an important role only for small 
voltages U S Z ,  and can be included by introducing an ef- 
fective tunneling probability into the usual expression for the 
tunneling current (i.e., in the absence of a resonant electro- 
magnetic field). 

The contribution to the tunneling current (31) from the 
second term, which is connected with inelastic resonant tun- 
neling, is considerably more important. It is purely a conse- 
quence of the interaction between the electrons and the elec- 
tromagnetic field, and has the following form: 

,I;," 1 ( E ~ - E ~ - R - ~ u  
=S.rrev - arctan 

O I; I: 

- arctan ( EO-EFia+eu 11- (34) 

This expression has singularities when R + eU 
= Eo - EF , when the electromagnetic wave frequency equals 
the distance from the resonance level to the Fermi level of 
one of the contacts. If there is an exact correspondence 

= Eo - EF , then both singularities coincide, and a resonant 
situation arises even when U=O. In the opposite case, a reso- 
nance is possible only for nonzero applied voltage, which 
causes a shift of the Fermi level with respect to its equilib- 
rium position. In this case a resonance occurs when 
eU= +2(Eo- EF- R) ,  which leads to an increase in the 
tunneling current and to the appearance of two steps in the 
current-voltage characteristic. The current-voltage charac- 
teristic of a tunnel contact in the field of a strong electromag- 
netic wave is shown schematically in Fig. 3 for two charac- 
teristic cases: exact resonance ( a  = Eo - EF) , and 
approximate resonance ( R  > Eo-EF , (Eo- EF)Ia= 1 ). As 
the voltage is increased further up to values comparable to 
the Fermi energy, the discrete level moves out of resonance. 
This effect should manifest itself in the appearance of a de- 
creasing segment of the current-voltage characteristic (this 
decreasing segment is not shown in Fig. 3). 

In order to compare (32) and (34), let us also calculate 
the contribution to the current associated with elastic reso- 
nant tunneling. The question of how to correctly write down 
an expression for the current cannot be answered without 
further analysis using the kinetic equation. However, when 
R S e  U we may use the expression 
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In contrast to (32), (33), the argument of the S-function here 
contains an additional frequency term. This is connected 
with the fact that the initial electron transition is a coherent 
one from the left side of the contact to the localized state; 
from there, the electron tunnels elastically to the right side of 
the contact. Electrons that have tunneled in this manner pos- 
sess energies E  = E , + a ,  and their distribution function for 
this energy has a local maximum. This makes it possible to 
observe this effect experimentally by spectroscopic methods, 
despite its smallness. After the transformations, (35) takes 
the following form: 

Comparing with (34), we see that while (36) also pos- 
sesses singularities at the resonant frequencies, their contri- 
bution to the density of tunneling current has an additional 
factor of smallness ( v / R ) ~ .  

7. CONCLUSIONS 

By reducing the problem of resonant tunneling of elec- 
trons in the field of a strong electromagnetic wave to the 
exactly solvable problem of scattering of electrons by a reso- 
nant impurity in a metal, we not only improve our under- 
standing of the deep analogy between the descriptions of 
equilibrium and nonequilibrium stationary processes, but 
also observe explicit features of the latter that do not reduce 
to a simple transposition of known effects to a new area. In 
particular, in contrast to the equilibrium case? the specifics 
of the nonequilibrium situation allow us to include the Cou- 
lomb interaction of free and localized charged carriers within 
the self-consistent field approximation to logarithmic accu- 
racy. 

Another feature of our solution is the presence of a local 
maximum in the distribution function of electrons that have 
tunneled at the energy E =E,+ a .  The cause of this feature 
is the electromagnetic field, which launches electrons into 
the high-energy region. 

Meanwhile, the approach of Ref. 9, which uses the for- 
mal correspondence between the tunneling Hamiltonian and 
the Anderson Harniltonian for the problem of resonant scat- 
tering in metals, itself requires more detailed justification if 
the principal assumptions of this paper are to remain in force. 

There are many problems with investigating resonant 
tunneling effects in a strong electromagnetic field from the 
point of view of experimental feasibility, associated prima- 
rily with the strong heating of the sample surface by the 
laser. Nevertheless, the considerable progress made in nano- 
electronics and scanning tunneling microscopy in recent 
years allows us to hope not only that these effects may be 
observed, but also that they may be put to practical use. 
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