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For a two-dimensional nearly ideal Fermi gas in weak magnetic fields, for which the chemical 
potential corresponds to a large Landau-level index, the question of the correctness of 
the Fermi-liquid description of the system is investigated by a diagram-technique method. The 
interaction between the particles is assumed to be short-range. Because the spectrum of 
two-dimensional particles in a magnetic field is discrete, the quasiparticles are undamped and the 
bare Landau levels are split. For the self-energy part of the one-particle Green's function 
the class of diagrams that describes the resulting splitting of the Landau levels is identified. The 
results are compared with the classic Landau Fermi-liquid theory. O 1995 American 
Institute of Physics. 

I. INTRODUCTION 

The investigation of the thermodynamic properties of a 
system in a magnetic field H (in particular, the oscillations of 
the magnetic susceptibility') is based on certain ideas about 
the energy spectrum of the electrons in a magnetic field. 
Here, the question of the character of this spectrum in the 
presence of interaction between the particles is of fundarnen- 
tal significance. A pertinent investigation of this problem in 
the model of an isotropic Fermi liquid was carried out in 
Refs. 2 and 3 for a three-dimensional system. The results 
obtained in these papers show that in a sufficiently weak 
magnetic field the spectrum of the quasiparticles near the 
Fermi surface coincides with the spectrum of free electrons 
with a mass renormalized on account of the interaction. 

In view of the great interest in the investigation of the 
properties of a system of interacting two-dimensional elec- 
trons in a magnetic field, the question arises as to whether 
the results obtained in Refs. 2 and 3 are valid when applied 
to this system. The fundamental difference between the self- 
energy part in a system of two-dimensional electrons and in 
the three-dimensional case was first noted in Ref. 2. In this 
paper it was shown that in the general case the dependence 
of the self-energy part I: of the one-particle Green's function 
on the magnetic field depends not only on the operator 
6 - ( e l c ) A ,  but also explicitly on the magnetic-field intensity 
H. In weak magnetic fields, when the cyclotron energy is 
small compared with the chemical potential, for a three- 
dimensional system the explicit dependence on the magnetic- 
field intensity can be neglected. This is what permitted the 
energy spectrum of a three-dimensional system in a weak 
magnetic field to be investigated in Ref. 3 using the general 
Landau Fermi-liquid theory. 

The aim of the present paper is to investigate the char- 
acter of the energy spectrum of a system of two-dimensional 
particles in a magnetic field in the model of a nearly ideal 
Fermi gas. It is well known that for a three-dimensional sys- 
tem this model corresponds completely to Landau Fermi- 
liquid theory, and makes it possible to find the characteristic 
quantities of this theory in explicit form.4p5 In particular, in 
Ref. 5 it was established which class of diagrams describes 

the Fermi-liquid properties in the model of a nearly ideal gas. 
At the same time, in Ref. 6, this model was used to study the 
properties of a three-dimensional system in the presence of a 
weak magnetic field and it was shown that the results corre- 
spond completely to ideas of the system as a Fermi liquid. 

In a previous paper? we obtained the first results char- 
acterizing the behavior of a two-dimensional system in a 
weak magnetic field in the model of an almost ideal gas. We 
investigated the character of the self-energy part of the one- 
particle Green's function to second order of perturbation 
theory. In the present paper we perform a systematic analysis 
of the energy spectrum of the system for the case when, in 
the absence of interaction, all Landau levels up to the Fermi 
energy are completely filled. The latter circumstance makes 
it possible to investigate vigorously the character of the split- 
ting of the Landau levels and to find the particle occupation 
numbers. The results obtained show that the behavior of a 
nearly ideal two-dimensional Fermi gas in a weak magnetic 
field corresponds, to a certain extent, to Landau Fermi-liquid 
theory. 

2. ENERGY SPECTRUM 

In the approximation to be considered it is assumed that 
the magnetic field is weak in the sense that the condition 

fi0,lp-e 1,  (1) 

is fulfilled, where the cyclotron frequency is o,=eHlmc 
and p is the chemical potential of the system. 

The interaction between the particles is short-range: 

a k F 4  1, (2) 

where a is the characteristic range of the interaction and kF 
is the wave vector of the particles on the Fermi surface. The 
interaction is repulsive in character, and for the scattering of 
two particles by each other we can confine ourselves to the 
Born approximation, the condition for which is the inequality 
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where m  is the unrenormalized particle mass and U ( r )  is the 
short-range pair-interaction potential. 

The Hamiltonian of the interaction has the form 

where the indices u,d give the spin projection. 
Below, we shall investigate the properties of the self- 

energy part of the one-particle Green's function. We use stan- 
dard notation, and therefore we refer the reader to the mono- 
graph Ref. 8 for all the details. We should draw attention, 
however, to one very important aspect. In view of the degen- 
eracy of the Landau levels, it is necessary, generally speak- 
ing, to use the temperature diagram technique and make the 
transition to zero temperature (with the aim of determining 
the quasiparticle spectrum) by means of analytic 
continuati~n.~ In this paper we confine ourselves to the situ- 
ation when, in the absence of the magnetic field, all Landau 
levels are completely filled (up to the Fermi energy) or 
empty. This condition makes the ground state of the system 
nondegenerate, and, in principle, makes it possible to use the 
zero-temperature diagram technique from the outset. 

The following remark pertains to the calculation of dia- 
grams in the two-dimensional case in the presence of a weak 
magnetic field. The corresponding expressions are most sim- 
ply obtained as follows. In the absence of the magnetic field 
each vertex appearing in the expression for the self-energy 
part of the Green's function is proportional to the quantity 

where f is a certain function that depends on the energies 
epi of the interacting particles. The transition to the discrete 
particle spectrum in a magnetic field reduces to the follow- 
ing. The Sfunction appearing in the expression (5) should be 
represented in the form of the standard integral of a expo- 
nential, after which one must integrate over all angles. The 
integration over the variables p? is replaced by summation 
over the Landau-level indices by means of the relation 
p ? = 2 m f i w c ( ~ i +  1 / 2 ) ,  where Ni is the level index: 

Finally, we obtain the following expression for the 
second-order correction to the self-energy part of the Green's 
function in a weak magnetic field: 

where n ( N )  is the Fermi distribution function. The quantity 
I ( N , N ,  ,N2 ,N3)  is an integral of Bessel functions: 

where ai = J-I~, ,  and the magnetic length is 
l H = ( c f i / e ~ ) ' " .  The appearance of Bessel functions in the 
expression (8) is not accidental, but reflects the fact that in a 
magnetic field the one-particle Green's function is deter- 
mined by means of Laguerre polynomials (see Ref. 3), 
whose asymptotic forms for large values of the index are 
Bessel functions. 

The integral (5) can be calculated (see Ref. 9), and is 
equal to 

where 

and K ( x )  is a complete elliptic integral of the second kind. 
In order that the integral (8) be nonzero, it is necessary 

that certain inequalities be fulfilled. In particular, the follow- 
ing conditions should be fulfilled: 

These inequalities are related to the conditions imposed on 
the magnitudes of the momenta that appear in the Sfunction 
in the expression (5). 

It follows from the expressions (8)-(9) that, in the range 
of values of N i  that lies near the Landau-level index No 
corresponding to the Fermi level, the quantity 
I (N ,NI  ,Nz ,N3) is 

Taking this result into account, we can estimate as follows 
the value of the self-energy part of the Green's function in 
the second order of perturbation theory: 

where the notation { N }  refers to the set of Landau levels that 
appears in the expression (7), and the quantities A ( { N ) )  are 
of order unity. 

The characteristic energy is 

An important feature of the expression (7) for the self- 
energy part of the Green's function is the summation (not 
integration) over the values of the intermediate energies ap- 
pearing in it. This is connected with the discrete character of 
the energy spectrum of a two-dimensional system in a mag- 
netic field. In the three-dimensional case, in the model of a 
weakly nonideal gas, the expression (7) describes effective- 
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FIG. 1 .  Resonance states for a particle in the Landau level with index 
N,+2. The state (a) corresponds to an initial state with one particle above 
the Fermi level. The state (b) contains an extra electron-hole pair. The levels 
depicted by the solid line and dashed line take into account the spin splitting 
in the magnetic field. The symbols - and + describe a particle and a hole, 
respectively. 

mass renormalization and quasiparticle damping. This also 
applies to a two-dimensional system in the absence of a mag- 
netic field. The situation changes radically for a two- 
dimensional system in a magnetic field. In the summation 
over the numbers Ni in the expression (7) there can be terms 
for which the condition 

is fulfilled, i.e., 8(2) can contain a resonance contribution of 
the form 

The presence in x ( ~ )  of a term of the form (13) corre- 
sponds to resonance between different states of the system, 
while for a particle situated in a Landau level higher than the 
chemical potential the resonance state corresponds to two 
particles and one hole (see Fig. 1). An analogous situation 
also arises for a hole. Thus, in the case of a continuous spec- 
trum the poles of the expression (7) describe the damping of 
the quasiparticles, while for a discrete spectrum they corre- 
spond to resonance between different states of the system. 

In the general case, the expression for the self-energy 
part has, obviously, the following form: 

In the model of a nearly ideal Fermi gas, for the nonreso- 
nance term C,,, we can confine ourselves to the contribution 
in second order of perturbation theory. 

We now discuss the resonance term Z,, in more detail. It 
is easy to see that the situations for the cases when the Lan- 
dau level with index No corresponding to the Fermi energy is 
completely and incompletely filled differ sharply. We shall 
consider first the case in which the level with the Fermi 
energy is incompletely filled, when a situation is possible in 
which the resonating state corresponds to the condition 

Thus, an extra particle at the Fermi level decays into two 
particles and a hole with the same energies. An analogous 
situation is valid for a hole. It is entirely obvious that each of 
the particles and holes that arise can decay again, and the 

system passes, e.g., into a state with three particles and two 
holes, and so on. Thus, the number of resonating particles 
becomes infinite. 

An analogous process is also possible for an arbitrary 
particle or hole. This implies that it is necessary to take into 
account the contribution to the self-energy part from reso- 
nance terms arising from all orders of perturbation theory. 
Our analysis has shown that in the case of an incompletely 
filled Fermi level it is necessary to take a very wide class of 
diagrams into account, and we have not yet succeeded in 
obtaining a closed expression for the self-energy part, since 
the vertex part that appears in the expression requires the 
inclusion of diagrams that lie outside the framework even of 
the "parquet" approximation. 

The situation changes radically in the case of a com- 
pletely filled Landau level. To see this, we shall consider the 
expression under the summation in Eq. (7), and rewrite it in 
the following form: 

Here, the first term describes the possible decay of a particle 
above the Landau level, while the second describes the same 
for a hole. It follows from the expression (15) that in the case 
when all the occupation numbers n(Ni) are equal to zero or 
unity the decay of a particle is possible only when the par- 
ticle energy corresponds to a Landau level whose index is 
greater than the index of the Fermi level by at least two. For 
a hole, decay is possible beginning from the first Landau 
level lying below the Fermi energy. 

The simplest resonance for a particle is shown in Fig. 1. 
For a particle with Landau-level index N=No+3 (the index 
No corresponds to the Fermi energy) the number of resonat- 
ing states is equal to 4. The corresponding states are shown 
in Fig. 2. The number of resonating states increases very 
rapidly with increase of the quantity k, which is defined by 
the relation 

where N is the index of the Landau level occupied by the 
particle. The number of resonating states determines the 
number of sublevels into which the bare level with index N 
will split. Of great importance is the fact that, in the case of 
a completely filled Fermi surface [n(N)= 1,N9No], the 
number of resonating states is finite. 

Because the resonating states include some in which 
there are more than two particles (e.g., as in the situation 
represented in Fig. 2), in the determination of the self-energy 
part C it is not possible to confine oneself to second order of 
perturbation theory. The simplest insertions in 8 are depicted 
in Fig. 3. An insertion of type (a) (whether it is of the zero- 
sound or Cooper type) describes the interaction of particles 
and holes in states resonating with the initial states. Inser- 
tions of type (b) involve replacing the bare one-particle 
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y)+I --------, ---+-- - FIG. 2. Resonance states for the initial state 
with a particle in the Landau level with index 
N=N,+3 .  The notation corresponds to that in 
Fig. 1: 

N,, - - - - - - - - - -----@-- --------- 

Green's function by the exact Green's function. An important 
point is that these insertions have entirely different orders of 
magnitude. 

Indeed, it is not difficult to convince oneself that pro- 
cesses describing the interaction of particles and holes [in- 
sertions of type (a)] make a contribution to the self-energy 
part of order 

This implies that, as a result of the interaction, the energy of 
a three-particle resonating state acquires a correction of order 

This is much smaller than the splitting of the bare level, 
which, as follows from the expression (7), is of order 

The contribution of the insertion describing the renor- 
malization of the one-particle Green's function has the form 

The splitting of the levels is such that 

so corrections of the form (19) must be taken into account, 
since their contribution is comparable with the magnitude of 
the splitting of the Landau level on account of the resonances 
(18). 

Thus, the analysis shows that in the case of a very weak 
magnetic field it is possible to disregard the interaction of 
particles and holes in states resonating with a bare one- 
particle (one-hole) state. On the other hand, in the calculation 
of the self-energy part it is possible to confine oneself to the 
"skeleton" diagram of second order of perturbation theory, 
having inserted the exact one-particle Green's functions into 
the internal lines. A very important point here is that, in 
resonance conditions, the Green's functions that appear in 
the internal lines are those of particles with energy smaller 
than the energy of the initial state. Thus, a fairly simple 
scheme arises for calculating the splitting of the Landau lev- 
els. The level corresponding to the Fermi energy, and the first 
level above this level, remain unsplit. The levels with indices 
No+2 and No- 1 are split into two sublevels; the order of 
magnitude of the splitting energy is described by the expres- 
sion (18), and its exact expression is described by the self- 
energy part calculated in second order of perturbation theory 
with the use of the bare Green's functions. In the calculation 
of the (fourfold) splitting of the Landau levels with index 
No+3, etc., for the Green's functions corresponding to the 
lower-lying levels it is necessary to use the Green's functions 
calculated in the previous stage. 

Here, the order of magnitude of the spacing between the 
sublevels (near the Fermi level) corresponds to the expres- 
sion (18) with a certain numerical coefficient. We must draw 
attention to the following extremely important fact. If we are 
considering the Landau level with index No+ k ,  the number 
of states containing two particles and one hole and resonat- 
ing with the initial state (so that the condition 

is valid) increases with k as k ( k -  1) /2 .  Thus, the expression 
FIG. 3. The simplest insertions into the self-energy part. Diagram (a) takes 
into account the interaction between particles in a state resonating with the 

(18) must be multiplied by this number. In the approach un- 

initial state, and diagram (b) corresponds to renormalization of a bare one- der consideration, we should to val- 
electron Green's function. ues of k 9 l  for which the inequality 
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is fulfilled, i.e., for which the splitting of the levels is much 
smaller than the spacing between the bare Landau levels. In 
classic Landau Fermi-liquid theory this circumstance corre- 
sponds to increase of the damping of the quasiparticles with 
increase of the distance from the Fermi level. This implies 
that as the number k increases both the multiplicity of the 
splitting and its absolute value increase. At the present stage 
we have not succeeded in obtaining a general expression 
describing the dependence of the multiplicity of the splitting 
on the index k. 

3. PARTICLE OCCUPATION NUMBERS 

By virtue of the existence of resonances in a two- 
dimensional system in a magnetic field, the classic derivation 
of the expression for the difference between the particle- 
number and quasiparticle-number distributions1° becomes in- 
valid. In this paper we shall give a derivation of the corre- 
sponding expression, starting from the one-particle Green's 
function. In the presence of resonances it has the following 
form: 

In the model under consideration, of a nearly ideal Fermi 
gas, in the calculation of the nonresonance contribution 
Zn,, we can confine ourselves to second order of perturba- 
tion theory. The quasiparticle spectrum E is determined from 
the equation 

E = E ( N ) + ~ , , ( N , E - p ) + X i z s ( ~ , ~ ( ~ ) - p ) .  (22) 

The Green's function (21) can be represented in the follow- 
ing approximate form: 

where tN= E(N) -p. 
The second term in the expression (23) describes the 

difference of the particle and quasiparticle distributions (after 
integration over the frequency o). It follows from this for- 
mula that the amounts by which the distribution differs from 
unity (below and up to the Fermi level) and from zero (above 
the Fermi level) are of order ( ~ ~ r n l h ~ ) ~ ~ l .  It should be 
emphasized, especially, that the discontinuity of the distribu- 
tion function at the Fermi level in this case is conventional in 
character, by virtue of the discreteness of the spectrum of a 
two-dimensional system in a magnetic field. The distribution 
function now has the following form: 

where the subscript i corresponds to the index of a sublevel 
of the given Landau level with index N. Unfortunately, even 
in the absence of a magnetic field, because of the nontrivial 
nature of the integrals that arise it has not been possible to 
obtain an analytic expression for the f-functions. 

The discontinuity in the particle distribution could have 
been represented as 

Z =  I - J (1 ) (~o ) - f (2 ) (~o+  1). (25) 

In Eq. (25) the sublevel index has been omitted, since for 
the model under consideration, of a nearly ideal Fermi gas, 
the function fi) varies appreciably only over a distance of 
the order of the Fermi energy. 

4. CONCLUSION 

In this paper we have investigated the one-particle spec- 
trum of a two-dimensional nearly ideal Fermi gas in the case 
of very weak magnetic fields. The principal feature of the 
system under consideration is the appearance of resonances 
corresponding to the formation of electron-hole pairs. This 
effect is due to the discrete character of the spectrum of 
two-dimensional particles in a magnetic field. In the case of 
a continuous spectrum the particle-decay process considered 
describes the damping of quasiparticles. In the case of an 
incompletely filled Fermi level we are concerned with an 
infinite number of resonating states, and come up against the 
problem of taking account of a very wide class of diagrams 
describing the self-energy part of the one-particle Green's 
function. The situation is substantially simpler for a com- 
pletely filled Fermi level, i.e., with an integer filling factor. In 
this case it is necessary to take into account only a finite 
number of resonances. The calculations are further simplified 
because we are considering a weak magnetic field. This al- 
lows us to disregard the interaction between the electron- 
hole pairs that arise. Because of the presence of resonances, 
a bare Landau level splits into a finite number of sublevels, 
which depends on the energy difference between the level 
under consideration and the Fermi energy. The number of 
sublevels increases rapidly with distance from the Fenni 
level. 

It is natural to ask how the energy spectrum changes as 
the filling factor moves away from an integer value. There is 
every reason to assert that, when the filling factor differs 
very little from an integer, there is no radical change in the 
spectrum. The point is that the probability of creation of 
electron-hole pairs at the Fermi level is proportional to the 
product vF(l - vF), where vF is the filling factor of this 
level. It follows from this that when the condition 1 - vF4 1 
is fulfilled the corresponding processes are of low probabil- 
ity, and the principal contribution to the splitting of the Lan- 
dau levels will be given by processes arising from the ap- 
pearance of additional particles in empty Landau levels. This 
idea can also be used to treat the change in the particle dis- 
tribution over the levels caused by the interaction, so that the 
filling factor ceases to be zero or unity in each level. As a 
result, the transition amplitudes between different resonance 
states is renormalized, but the corresponding corrections are 
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small by virtue of the smallness of the parameter ( ~ ~ r n l h ~ ) ~  
that determines the deviation of the filling factors from the 
bare filling factors. 

In conclusion, the authors wish to note that this work 
was carried out with partial financial support obtained under 
grant M48000 of the International Scientific Fund. 
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