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We show that it follows from the BBGKY hierarchy and the Gibbs definition of the entropy of a 
closed isolated system that the local entropy can increase, in full agreement with the 
second law of thermodynamics, and that this does not contradict the Liouville theorem. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

The problem of a statistical justification of the second 
law of thermodynamics arose at the same time as the formu- 
lation of the law itself, i.e., in the middle of the last century. 
For equilibrium systems the determination of entropy was 
given by Gibbs, but for nonequilibrium systems it still re- 
mains unknown up to now. The reason for this is that it is not 
clear how to reconcile the condition that the statistical en- 
tropy must be constant, as follows from Liouville's theorem, 
with the increase of the thermodynamic entropy. It has not 
been possible to remove this contradiction, although during 
the last hundred years there has been great interest in the 
problem of the increase of the entropy. 

It is well known that the increase SS in the entropy in 
thermodynamic is determined by the relation 

in which SQ is the amount of heat received by the system, 
O=kBT is the temperature, and kB is Boltzmann's constant. 
Since this definition presupposes an exchange of heat with 
the surrounding medium, in this case we are dealing with an 
open system. On the other hand, Gibbs defined the entropy 
of a closed isolated system consisting of N particles and oc- 
cupying a volume V as the logarithm of the phase volume I?: 

where Tmi, is the minimum phase volume occupied by the 
system at the absolute zero of the temperature, 8=0. It is not 
clear to me how one can show that these two definitions are 
identical. Nonetheless they are most likely identical, since in 
the case of thermodynamic equilibrium they lead to h e  same 
expression for the first law of thermodynamics: 

(here E is the energy of the system and P the pressure). 
However, when the equilibrium is broken it looks as if their 
identity disappears since it follows from (1) that for nonequi- 
librium systems the equal sign in (3) must in accordance 
with the second law of thermodynamics be replaced by an 
inequality sign 

whereas according to Liouville's theorem the statistical en- 
tropy S defined by Eq. (2) must remain the same as in equi- 
librium. Apparently the reason for this is that in the first case 
we are dealing with an open system and in the second case 
with a closed one. We shall try to prove that in nonequilib- 
rium systems in the thermodynamic limit, 

N 
N,V-+CO, no = 7 = const., (5) 

the local entropy of a physically infinitesimal volume which 
forms an open system must change with time; the problem of 
whether it increases or decreases in this case remains open, 
since an answer to that question can be obtaincd only after 
one has developed a method for solving the BBGKY hierar- 
chy. 

The proof assumes a certain broadening of the base on 
which the Gibbs theory is constructed. On the basis of the 
latter we have the concept of a global description of the 
system by means of an N-particle distribution function F&). 
In the case of equilibrium this approach is fully justified, 
since the spatial homogeneity of equilibrium systems implies 
that one can always change from global to local quantities 
simply by splitting off the first of the total number N of 
particles in the system (e.g., for the local entropy we have 
s = SIN). 

The global approach becomes inadequate in nonequilib- 
rium systems, because one and the same value of the global 
characteristics may correspond to an infinite variety of local 
nonequilibrium states. In this case it is necessary to change 
to a local description of the system which, by the way, has 
always been done in the thermodynamics of nonequilibrium 
processes and in the macroscopic theory of transport pro- 
cesses. However, in the framework of the Gibbs theory it is 
impossible to cany out such a change. The step to resolve 
this dilemma was taken by Bogolyubov, Born, Green, Kirk- 
wood, and Yvon, who introduced into the argument the 
I-particle distribution functions F(?(I) , 1 < 1 6  N and con- 
structed a set of equations to determine them (the so-called 
BBGKY hierarchy). In accordance with their scheme one 
must also analyze the concept of the global Gibbs entropy 
(2), which automatically splits into a sum of I-particle entro- 
pies after one makes the change to the 1-particle distribution 
functions F(,) : 
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It is then found that in nonequilibrium systems entropy can 
pass from one correlation to another which, however, does 
not mix the global entropy: S = Z ~ = ~ S ( ' )  remains constant 
completely in agreement with Liouville's theorem (see Ref. 
1). This result already shows that a more detailed description 
of the system through the 1-particle distribution functions 
enables us to discover motion there where the Gibbs global 
approach predicts no time dependence. 

The main idea of our paper is thus a replacement of the 
global description of the system by means of an N-particle 
distribution function by a more detailed local description 
through 1-particle distribution functions F ( l , ,  1 S 1SN. As a 
final result it led to the creation of an up-to-date theory of 
liquids by means of which it has been possible to calculate 
very different material parameters with high precision (see 
Ref. 1). However, the author is not aware that this idea has 
been applied so far to the problem of the increase in entropy. 
I am therefore unable to refer here to work by any predeces- 
sors. 

The paper consists of seven sections. In the second one 
we formulate the basic equations of the theory (i.e., the 
BBGKY hierarchy), in the third one we consider the conser- 
vation law for the global entropy of the whole system, in the 
fourth one we introduce the concept of a local entropy and 
formulate its balance equation, in the fifth one we analyze 
the consequences of taking the thermodynamic limit and 
show that in that limit the global characteristics (the entropy 
S, the energy E, and so on) become infinite and lose their 
physical meaning; the only parameters which determine the 
state of the system turn out to be the local values of the 
entropy, the density, the energy, and so on. Finally, in the 
sixth section we discuss the problem of the increase of the 
local entropy and in the last, the seventh, section we give a 
general discussion of the results obtained. 

2. BASIC RELATIONS 

It is well known that the BBGKY hierarchy is simply 
another way to write down the equations of motion of clas- 
sical mechanics. It determines the 1-particle distribution 
functions (see Ref. 1) 

through an infinite set of equations which are coupled with 
one another: 

Here t is the time, ri and p are the coordinate and momen- 
tum of the ith particle, m is its mass, n,=NIV is the mean 
density in the system, 9 = d m  is a normalization mo- 
mentum, d(1 + 1) = d 3 r l + l d 3 p l + l ,  

is the configurational energy of a group of I particles, 
a i j = @ ( r i j )  is the potential energy of the pair interaction of 
the particles i and j, and rij=lri - rjl. For the sake of 
simplicity we have put the energy of the particles in the 
external field equal to zero. 

As is done in Refs. 1 and 2,') in (7) it is convenient to 
change from the distribution functions F(l) to the thermal 
potential u ( ~ ,  , putting 

1 

. , i j + + .  1 -  (9) 
1=1 1 J  

[In Ref. 2 (see also footnote l)] we worked with potentials 
a,,) which are connected with the potential a(,, through the 
simple relation 

3. GLOBAL ENTROPY 

Here and henceforth we shall consider closed isolated 
systems of N particles occupying a fixed volume V. One can 
characterize the state of such systems by global quantities 
which determine the state of the complete system as a whole 
(its total energy E, total entropy S, and so on) and by local 
quantities which determine the state of the matter at a given 
point r  of the system (e.g., the energy density e in that point, 
the entropy density s, and so on). We start with a discussion 
of the global entropy. 

Gibbs has shown (see, e.g., Ref. 3) that the definition (2) 
of the global entropy implies that it can be written in the 
form 

where the N-particle distribution function F(N, is defined by 
Eq. 9 with 1 = N. As the entropy has the meaning of a loga- 
rithm of the phase volume which, according to Liouville's 
theorem, must always be constant, Eq. (10) must determine a 
value of S independent of the time t. We show using the 
BBGKY hierarchy that this is, in fact, the case (as far as the 
author is aware such a proof cannot be found in the litera- 
ture). 

Substituting in (10) for its value from (9) we get 
after some simple transformations 

where the global correlation entropy is 
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Consider the derivative which is in complete agreement with the requirement of me- 
chanics. However, it does in no way follow from (18) that 
the correlation entropies s(') as well as the global entropy of 
the systems must be constant. In nonequilibrium systems 
they can change but, of course, in such a way that their sum 
remains constant. And this clearly does not contradict the 
Liouville theorem. 

Since we have 

4. LOCAL ENTROPY 

We define the local entropy using the obvious relations 

the first integral on the right-hand side of (13) vanishes be- 
cause of the normalization condition 

Using (9) to replace f i ( N )  in the second integral by we 
find 

where in accordance with (12) the local correlation entropy 
is 

and substituting for dF(l)ldt from the BBGKY hierarchy we 
are led after some simple transformations to the balance 
equation for the global correlational entropy (see Ref. 1) 

We find the derivative 
Here 

We can use Eqs. (7) of the BBGKY hierarchy to transform 
the expression within the square brackets appears in the in- 
tegrand. It then follows from those for 1 = 1 that is the flow of entropy from the group of 1 particles to the 

group of 1 + 1 particles, averaged over the whole system. It 
propagates through the hierarchy: from the single-particle to 
the two-particle correlation, from the two-particle to the 
three-particle correlation, and so on. 

It follows from (11) and (15) that 

Multiplying the first of these equations by ol and the second 
one by F l ,  adding the two expressions thus obtained, and 
integrating them over pl we get 

ds(,') aJp(") 
n = - -  

d  t  dr1 
However, J(')=o holds since we have under the integral sign 

dw, d F ]  - F 1 = - .  
dP1 dPl 

The quantity J ( ~ )  is also zero because it is defined by Eq. 
(16) in which the correlation O1, . . .N+l  stands in the position 
of the N + 1 st particle, and this vanishes because the system 
consists of only N particles. As a result (17) reduces to 

," N 

(23) 

where the total time derivative is 

ds( ' )  as(') as(')  d(ns( ' ) )  a ( n d l ) c )  
n - = n ( -  d  t at + c - ) = T  ar + d r  

(24) 
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(in writing down the last Eq. (24) we have used the continu- 
ity equation) and the single-particle entropy flux is 

We transform the interior integral on the right-hand side of 
(23) as follows: 

(bear in mind that thanks to the condition F121p= =O we 
have 

and by definition h 1 2 = ( u 1 + ~  2 + ~ 1 2 ) .  Putting 

we can write down the conservation equation for the local 
single-particle entropy in the form 

Using the second equation of the BBGKY hierarchy we 
similarly get for the local two-particle correlational entropy 
(see Appendix) 

where the flux of the two-particle entropy is 

and the power of its source is 

(30) 

Extending this operation we are led to the conservation law 
for the I-particle entropy 

Summing these expressions we get a formula for the local 
conservation law of the total entropy: 

in which we clearly have 

Equation (32) differs from the analogous conservation equa- 
tion of, say, the internal energy (see footnote l )  

because it contains not only the flux term dJl& describing 
the redistribution of entropy in space but also the entropy 
source w characterizing the intensity of the local entropy 
production. 

5. THERMODYNAMIC LIMIT 

It follows from the definition (19) of the local entropy 
that it includes all 1-particle entropies s(') starting with num- 
ber I= 1 and ending with I= N. However, the correlation with 
number N is determined by the simultaneous contribution of 
all N= particles of the system and hence it is not at all 
local. One can only remove this contradiction by assuming 
that only those 3 = 1 0 3  particles which form the correlation 
sphere2) with its center in a given point r, make a real con- 
tribution to the sum s = z;= ,dl), while the remaining N-23 
particles in the system essentially do not interact with par- 
ticle 1 at the point r,, so that their contribution to any local 
quantity must be put equal to zero. The absence of particle 
correlations of order 1>23 means that for them we have 

w(,)=O when 1 > 3 .  (35) 

And since we have 

s(I), 

[see (20)] it follows from (35) that 

s(I) = 0 J(s(") = o, w(')=o when 1 (36) 
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We can use (24) to write Eq. (31) for the 1-particle local 
entropy in the form 

If we now integrate (37) over the volume V of the whole 
system the term with the divergence of the total entropy flux 
f l )=  ~s(~)c+J(s(')) vanishes and we get 

Since we have w(')=o for l > Z ,  the integral on the right- 
hand side of (38) will also vanish for the leading correla- 
tions. Hence, for them we have for the increase in the en- 
tropy satisfies ds(')ldt = 0 and 

s(')(t) = const. when l > Z  (39) 

As a result of this the flux J(') of the global entropy is no 
longer dependent on the number 1 since J('-') - J(') = 0 
and 

J=J('-')=J(') when I>%. (40) 

However, the condition J('-') - J(') = 0 can certainly not 
hold for l = N  since, on the one hand?) we have J ( ~ - ' )  

= J # O  and, on the other hand, we have J ( ~ ) = o  because 
there is no thermal potential ql) with number 1 = N+ 1 [see 
(16)l. The increase of the latter, the N-particle entropy, must 
therefore be nonvanishing: 

In order to understand better the physical meaning of this 
statement we recall that the total global entropy of the sys- 
tem is 

N- 1 

S= C s(')+ s ( ~ ) =  const.. 
I= 1 

Therefore we have 

The N-particle correlation thus absorbs the whole entropy 
created for small correlations with I<Z .  The source of the 
entropy (i.e., the correlations with small 1) then is seen to be 
transferred from the sink (represented by the N-particle cor- 
relation) over a huge distance since Z S 1 0 3  and N= 
All intermediate correlations with orders satisfying Z < I <  N 
play the role of entropy conductors transferring it without 
loss from the source to the sink. 

The entropy source and sink are different in nature: the 
power of the source is determined by local processes taking 
place in the system and the power of the sink by its global 
reactions. It is natural to assume that thermodynamics deals 
only with local effects. In this way we can remove the con- 
tradiction between the fact that the statistical entropy is con- 
stant, whereas the thermodynamic entropy increases. How- 
ever, one can resort to a purely formal point of view. 

The BBGKY hierarchy (like, by the way, the whole of 
statistical mechanics) is valid only in the thermodynamic 
limit (see Ref. 1) 

In that limit the sink of the global entropy goes to infinity 
and vanishes. At the same time the global entropy itself in- 
creases without bound: 

and thereby loses its physical meaning (we used here in the 
transformations the theorem about averages). The local en- 
tropy therefore becomes the only entropic characteristic of 
the system. However, whereas the global entropy character- 
ized the state of a closed isolated system, for which the Liou- 
ville theorem holds, the local entropy characterizes the state 
of an open system (the number of particles forming the cor- 
relation sphere is not fixed). However, for an open system 
the phase volume conservation law does not hold. Thus, the 
transition to the thermodynamic limit automatically removes 
the contradiction between mechanics and thermodynamics. 
However, in this treatment we are also led to the conclusion 
that only the local entropy has a physical meaning. 

It is clear that taking the thermodynamic limit assumes 
replacing the sums which defined S,J(~) ,  and w by the series 

These series must necessarily converge; otherwise the whole 
theory loses its meaning. And if the series converge the con- 
ditions (35) and (36) which we postulated earlier on physical 
grounds are automatically satisfied. 

In the thermodynamic limit Eq. (20) for the 1-particle 
entropy takes the form 

The integrals are here taken over the infinite volume V and 
over the momenta from IpI=-w to IpI=+w. Since we have 
d(k)=d3rkd3pk-r2drp2dp, it is necessary that, in order 
that the local entropy have a finite value, all ql) satisfy the 
inequalities 

const. 
v v . when rijtCOt 

rf2 ...r f-1,lPl --.PI 
[pit+ 

where p,v > 3. The thermodynamic potentials 

must also satisfy the same inequalities; in Ref. 2 we assumed 
that these potentials are short-ranged. The inequalities (47) 
confirm this assumption. 
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The BBGKY hierarchy thus becomes free of internal 
contradictions only in the thermodynamic limit. And in this 
limit it determines the local entropy, the magnitude of which 
can change not only because it flows from neighboring re- 
gions but also due to internal processes leading to its genera- 
tion. We also emphasize once again that now there is no 
contradiction whatever with the Liouville theorem. 

6. INCREASE OF THE ENTROPY 

We must still prove that in accordance with the second 
law of thermodynamics the entropy determined by the for- 
mulas obtained above necessarily increases. Since the in- 
crease in the global entropy is 

SS- w(r,t)d3r, (49) 

it is sufficient for a proof of the inequality SSaO that the 
condition 

is satisfied [we understand here by the global entropy the 
entropy produced by the correlations with low orders, S 
= x:,s(')(~)]. The most direct way to check that waO 
holds consists in evaluating it using Eqs. (26), (30), and so 
on. However, this requires developing methods for solving 
the BBGKY hierarchy, which up to now has not been done. 
We are therefore forced to restrict ourselves to qualitative 
discussions. 

It follows from the definition (2) of the global entropy 
that it is always positive and that it vanishes only at the 
absolute zero of the temperature, 8=0, because there 
I'=Tmh. For sufficiently low temperatures the entropy must 
therefore increase: the path in the opposite direction is for- 
bidden for it. Correspondingly, at low temperatures w must 
be positive. We start now to increase the temperature and 
thereby change the quantity w. There are then two possibili- 
ties: either with increasing temperature w will as before re- 
main positive (and, hence, as before the entropy will in- 
crease), or when reaching some value 8= 8' the function w 
will become zero and after that change its sign. However, the 
vanishing of w means that at the temperature 8' the increase 
SS in the entropy will be equal to zero independent of the 
processes taking place in the system. This contradicts the 
first law of thermodynamics (3), according to which the 
quantity SS must be nonvanishing in any quasistatic process, 
provided this process is accompanied by a change in E or V. 
We now recall that Eq. (3) can be obtained from the Gibbs 
distribution and this distribution itself is a consequence of 
the BBGKY hierarchy (see Ref. 1). It is thus impossible for 
w to become equal to zero, since that would mean that there 
is an internal contradiction in the BBGKY hierarchy. 

7. DISCUSSION 

We briefly summarize the results obtained above. Work- 
ing with the BBGKY hierarchy and using a definition of the 
entropy given by Gibbs we have shown that, on the one 
hand, it follows from these assumptions that the global en- 
tropy of the system is constant, S(t)=const, and, on the 

other hand, that they define a local entropy s(r,t) such that its 
change is described by the balance equation (32), which con- 
tains not only a flux term, d ~ ( ~ ) l d r ,  characterizing the rate at 
which the entropy is redistributed over the volume of the 
system, but also an entropy source w(r,t) which determines 
the rate at which it is produced at a given point r of the 
system at a given time t. Simple physical considerations then 
show that the function w most likely must be positive and, 
hence, classical mechanics shows that the entropy increases, 
but only the local and not the global entropy. 

Equation (18) showing that the global entropy is con- 
stant and Eq. (32) for the local entropy were obtained for a 
finite-size system. If one then takes the thermodynamic limit 
(43)-and this step is necessary since the BBGKY hierarchy 
itself is valid only in the thermodynamic limit-the global 
entropy Sa N tends to infinity and loses its physical meaning. 
After this the only entropic characteristic of the system be- 
comes the local entropy s(r,t) which, clearly, must be iden- 
tified with the thermodynamic entropy. 

It would appear that the divergence of the global entropy 
in the thermodynamic limit implies the failure of Gibbs's 
theory. However, this is in fact not the case. One must intro- 
duce the concept of a local entropy s = SIN only before tak- 
ing the limit and afterwards let N and V tend to infinity. Of 
course, after that the global energy vanishes, but the local 
entropy retains its value. And it is important that from this 
follows as before the same formulation of the first law of 
thermodynamics as from Gibbs's global definition. Gibbs's 
formula, like the balance equation (32), therefore in fact de- 
termines the local entropy. In this respect there is no differ- 
ence whatever between the equilibrium and the nonequilib- 
rium theory; both are dealing only with the local entropy. 

We have seen that the local entropy can increase. This 
dose not contradict Liouville's theorem at all, since the latter 
is valid only in the case of closed isolated systems. On the 
other hand, the local entropy characterizes the state of a 
physically infinitesimal volume of matter which can ex- 
change particles, momentum, and energy with the surround- 
ing medium. For such systems Liouville's theorem does not 
hold. 

And, finally, a last remark. The balance equation (32) we 
have obtained for the local entropy has been well known for 
a long time in the thermodynamics of nonequilibrium sys- 
tems (see Ref. 4). However, in that case it was simply pos- 
tulated, whereas we have obtained it from first principles 
which made it possible better to elucidate its physical mean- 
ing. 

The present publication would have been impossible 
without the support from the Soros International Scientific 
Fund (Grant MFL 000) and the Russian Fund for Fundamen- 
tal Research (Grant 94-02-05366). 

APPENDIX 

Here we derive Eqs. (28)-(30). According to (21) the 
increase in the two-particle local entropy is equal to 
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To find the derivatives which here occur under the integral 
sign we use the second equation from the BBGKY hierarchy 
(7): 

We now divide (A2) by Fl2=exp(o1+clq?+ol2) and after- 
wards subtract from the expression obtained in that way the 
equations for dqldt and dozldt [see (22)l. As a result we get 
an equation for 

 PI^ 3012 +--)+(- P Z ~  a 0 1 2  J ( ~ I + ~ I z )  

dt m drla m d r ~ a  drla 3P1a 

1 

592 
(A3) 

We then multiply (A2) by o12 and (A3) by F12,  integrate the 
expressions thus obtained over d3p1d(2) ,  and after that add 
them. This gives 

d(nd2) )  d 
-- - -- 

dt a r k  ( n ~ ( ~ ) c , + ~ f ' ' )  

d@13 d ~ 1 2  - ~ ~ 1 2 3  
drla J P l a  

a @ 2 3  d012 +- d@13 a5913 y12 y +--- 
dr2a J P Z ~  

123 
drla d ~ ~ a  FI 

d@23 a5923 y 1 2  d3pl d ( 2 ) d ( 3 )  ---) 
dr2a J P Z ~  592 F T '  (A4) 

where the flux of the two-particle entropy is given by (29). 
Since 

after integrating by parts the third integral on the right-hand 
side of (A4) takes the form 

+md5913 y12 3 I-. ap, T q d  P I  

Similarly we get for the fourth integral 

Substituting these expressions into (A4) we get Eq. (29) in 
which w ( ~ )  is given by Eq. (30). 

')see also G. A. Martynov, Theory of Nonequilibriwn Effects, Based on the 
BBGKY Hierarchy, submitted for publication to Teor. Mat. Fiz. 
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3 ) ~ n  exception is the state of thermodynamic equilibrium for which all J(') 
vanish (see Ref. 2). However, we are just now not interested in equilibrium 
states. 
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