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A theoretical model is developed which explains the mechanism for the propagation of pressure 
through a porous sample filled with foam. On the basis of our considerations we propose 
a one-dimensional model of foam: a chain of bubbles in a channel with corrugated walls. We use 
a mean field theory to analyze two possible mechanisms for the flow of the foam: by 
transport of the bubbles and by slipping of individual layers. In the latter case the mathematical 
model of the effect is the same as the Frenkel-Kontorova model for the flow of dislocations 
in crystals. We show that in stationary regimes the two mechanisms lead to the same flow 
curves. O 1995 American Institute of Physics. 

I. INTRODUCTION 

The main feature of the flow of gas in porous media in 
the presence of foam is the fact that its mobility is lowered 
by several orders of magnitude.' This is caused both by the 
blocking of the paths for the gas by individual layers of foam 
(i.e., by thin films intersecting the pore channel) and by the 
friction of the layers or bubbles on the wall of the effective 
channel. 

In Ref. 2 we constructed a phenomenological theory of 
the motion of the foam based upon the concept of the flow as 
the motion of an ensemble of bubbles bound together in a 
chain: strings of bubbles. We suggested treating the simulta- 
neous flow of the chains along a system of self-organized 
active channels as the flow of the foam. In the present paper 
we consider a microscopic theory of such a flow. In Sec. 2 
we are mainly concerned with an explanation of the mecha- 
nism by which a pressure gradient penetrates a sample fully 
saturated by foam. Observations show that even when there 
is no flow the pressure gradient in a sample that has practi- 
cally no free gas channels is nonvanishing (see the survey of 
Ref. 3). If we neglect the compressibility of the gas, to 
change the pressure by an amount Ap in a sample with a 
macroscale L we need to overcome a huge capillary barrier 
A p - a ~ l r ~ ,  where a is the surface tension coefficient and r 
is the size of the pore. The experimental values are signifi- 
cantly lower than the estimate we have just given. It is found 
that when we take the compressibility into account we are 
able to resolve this problem. The mathematical problem is 
close to the problem of determining the critical field for vor- 
tex formation in Josephson and similar 

The explanation for the appear,mce of a mean field in a 
sample makes it possible to study possible mechanisms for 
the flow of the foam from the standpoint of an effective field 
theory. For instance, in Sec. 3 we consider the flow of the 
foam in which the bubbles are forced through the pore chan- 
nels. We propose a new soliton mechanism for the flow in 
Sec. 4; this is reminiscent of the Frenkel-Kontorova model7 
of the flow of dislocations in cqstals. We show that one can 
derive the phenomenologicai equations of Ref. 2 from the 
equations of the original microscopic process. 

2. STRING OF BUBBLES IN A BLOCKED CHANNEL WITH 
RIGID WALLS; CAPILLARY EFFECTS 

To construct a microscopic theory for the flow of foam 
we must specify the picture of the flow at the microlevel. We 
first dwell on the description of a model of an active channel 
which was introduced earlier. Let us recall the basic experi- 
mental facts. 

It has been shown9-" by direct observations that the 
active channels along which the layers of foam primarily 
flow are effectively smooth. These channels may be either 
strictly pore channels or channels with walls which are par- 
tially formed by jammed layers of foam. Moreover, the 
cross-sectional area of an active channel is practically con- 
stant. Reaching individual pore channels, which have a 
cross-section with a large oscillation amplitude, a layer either 
disappears due to purely mechanical (stability) reasons, or it 
sticks in the entrance. Another part of the pore channels with 
cross-sections which have a large oscillation amplitude 
forms the active channels by filling the large pores with foam 
with a characteristic cell size of order the diameter of the 
entrance of the narrow part of the channel." The layers move 
along such a channel practically uninterruptedly. 

Using these facts we shall model an active channel by a 
capillary with a variable cross section of radius 

where S is the amplitude of the oscillations and A is the 
period of the channel. The condition for the blocking of the 
channel means that the leading layer of the string is in the 
channel with the smallest radius. When we apply a load the 
capillary forces try to contain the layers in the entrances of 
the channel, whereas the elastic forces caused by the com- 
pression of the gas in the bubbles force the layers to move to 
a new equilibrium position. The competition between these 
forces leads to a new nontrivial equilibrium state of the 
bubble chain in a blocked channel which, in turn, signifi- 
cantly affects the hydrodynamics of the flow of the foam. For 
clarity we consider possible equilibrium structures for a 
string of bubbles confined to a channel with rigid walls. 
~ r e v i o u s l ~ ~  we studied the action of the elastic forces, so 
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FIG. 1. Sketch illustrating the action of capillary forces on the various 
sections of a cormgated channel. 

here we confine ourselves to the action of the capillary ef- 
fects. One usually assumes1 that the drop in pressure Ap 
across a layer is completely determined by Laplace's law 
(Fig. 1) 

where a is the surface tension coefficient of the lamina. One 
also assumes that the layer intersects the wetted walls at a 
right angle. Using Eq. (I), Laplace's law, and the formula for 
the elastic force from Ref. 2 we get the equation for the 
equilibrium of a string of bubbles in a blocked channel 

The left-hand side is determined here by the nonlinear equa- 
tion of state of the bubble chain, and the right-hand side up 
to terms of order o(s~/A*) is an expression for the capillary 
force acting on the layer when it is displaced over a distance 
p from its equilibrium position. The Lagrangian coordinate 
s ' and displacement p' are normalized using the period A of 
the channel, as follows, 

where pg is the pressure of the gas in an individual bubble 
before it is deformed. Unless otherwise specified, primes in- 
dicate dimensional variables in what follows. 

The appearance of nontrivial equilibrium shapes of the 
bubble string is clearly demonstrated in the language of dy- 
namical systems. We rewrite Eq. (2) in the form of the set 

- u  = p  sin p.  (5) 

Equations (4) and (5) have a first integral 

where E is a constant which is to be determined. From an 
analysis of Eq. (6) we can, depending on the value of the 
total energy E, elucidate the features of the internal structure 
of a blocked string (Fig. 2). Independent of whether the 
string spreads or contracts, the layer tries to leave the broad 
parts of the channel (the singular points p= 0 ,  p= 2 m ,  
n = 0, + 1 ,+2  on the phase portrait). At the same time 
there are narrow parts of the channel, p=0, p= m(2n+ I ) ,  
which are stable equilibrium states for the layers of the 
string. Let us consider the case of compression, i.e., let us 

FIG. 2. Characteristic shape of the phase portrait of the set (4). (5) (p=0.1) 
and various values of E:l-E=-1.4; 2--E=-1.2; 3 4 -  1.1; 4-3 
=-1.04; 5-E=-1.01. 

imagine that at a point infinitely far to the right there is a 
layer blocking the string, while one applies a pressure drop 
on the left. If in that case the energy lies in the range 

the gradient of the shift will always be nonvanishing, which 
causes an infinite displacement of the layers of the foam: 
"laminar condensation." This effect is clearly demonstrated 
by the example of a string of finite length L. In the situation 
we have described one can neglect the right-hand side of Eq. 
(2). Using the equation of state 

we arrive at the conclusion that the solution of the problem 
corresponds to a string with a uniform distribution of the 
pressure p, equal to the load pressure. The layers in such a 
string are distributed according to a linear law 

It is clear from this equation that for p S p g  the layer with a 
Lagrangian coordinate s = 0 tends to occupy the same pore 
as the blocking layer, i.e., it tends to shift over a distance of 
the order L. All intermediate layers also shift into this pore. It 
is just in that sense that one can speak of a laminar conden- 
sation. 

When the energy lies in the range 

the shift of the layers is limited by the capillary forces and, 
generally speaking, is not uniform along the length of the 
channel: the set (4) and (5) allows solutions with a period 
2T, of the form 
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In other words, in this case a periodic chain of domains 
appears along the string with a period which is different from 
the period of the channel. If, on the other hand, we have 

then the shift of the layers is described by the separatrix and 
the period of the structure which then occurs is infinite. Al- 
though the problem (4), (5) can be solved in the parametric 
form 

In u( t ) -u( t )=E+p cos p, 

it is difficult to use Eq. (7) to analyze the physical situation. 
However, when the parameter p is much smaller than unity 
one can cany out a rather complete asymptotic study of the 
problem. It is just this case which is the most interesting one 
for the majority of applications. For instance, for foams 
which are stabilized by a surface-active substance12 we have 
p,-1 bar, ro=10-3 cm, 0-10 dynelcm and hence 
p= 10-~6ilh9 1. To determine the threshold for the formation 
of a modulated structure along the string up to terms of order 
0 (&) we can therefore use the approximate equation 

In this formulation the problem becomes equivalent to 
the problem of determining the critical field for vortex for- 
mation in Josephson contacts>75 the problem of the pinning 
of a charge density wave? or the problem of the phase tran- 
sition in elastic chains described by the Frenkel-Kontorova 

Without giving the detailed calculations we merely 
present the solution of the problem corresponding to a single 
domain wall 

p = 4  arctg exp[-(x-xo)]. (9) 

Here we have p = 2 ~  as x-1-  03, i.e., under the action of the 
applied pressure drop all layers behind the wall shift by a 
period, whereas in front of the wall we have p=O as X + W ,  

i.e., the layers remain in the unperturbed state. To determine 
the critical pressure drop we must equate the change in the 
internal energy of the string to the work done by the external 
forces. To form a chain of domains with period T requires an 
amount of work 

to be performed, where A1 is the average change in the 
length of the string 

1 
Al= - I T  * ds. 

2T - T  ds 

The change in the internal energy of the domain can be writ- 
ten in the obvious form 

where p,=p,p. Letting the period T tend to infinity and 
using Eqs. (9)-(12) we find for the critical pressure drop the 
value 

For pressure drops below the critical one the laminas 
therefore remain in the unperturbed state and the field does 
not penetrate into the channel. In that case one can talk about 
an effective screening of the applied pressure drop by the 
foam. Above the critical pressure drop the bubble string 
splits up into a set of regions bounded by domain walls. 
Further increase in the pressure leads to an increase in the 
number of domain walls, which ultimately leads to laminar 
condensation when they overlap. 

Concluding this section, we note that the results we have 
obtained are not restricted to channels with the shape (1). 
The phase portrait has the same qualitative structure for any 
capillary with a periodically changing cross-sectional area. 
The domain formation effect must therefore also occur. Only 
the estimate (13) can change. However, it is extremely im- 
portant for further applications that the domain formation 
effect allows the field to penetrate into the channel for sig- 
nificantly lower pressure drops than one expects at first sight, 
Ap*eAp-u~lr$.  Turning to a porous medium, one may 
conclude that above the threshold Ap* each string feels the 
action of the mean field, independent of whether it moves or 
is pinned. The critical pressure drop necessary for the forma- 
tion of domain walls is much smaller than the one observed 
for a foam stabilized by a surface-active substance 
( 4 ~ l ~ , r ~ - 1 0 - ~ ;  see Ref. 12) and we can neglect it. How- 
ever, for a foam appearing as the result of the boiling of a 
liquid we have ulp,ro- 1 and the capillary threshold may 
be quite appreciable. In what follows we consider only the 
first case and carry out our analysis using mean field theory. 
The introduction of a mean field enables us to distinguish 
hydrodynamic mechanisms for the flow of foam which differ 
in their character, depending on whether the bubbles or the 
layers move. In the first case, when all bubbles in the string 
move simultaneously, elastic effects are insignificant. This 
appears to be so since it is as if the whole string is forced like 
a single bubble through the porous channel under the action 
of the applied pressure drop.13 In the opposite case, when the 
layers move, collective effects play a basic role and the dis- 
placement of the string takes place in the form of travelling 
waves. The next section is devoted to a study of the macro- 
effects following from the mechanism of the motion of foam 
through the transport of bubbles. 

3. FOAM HYDRODYNAMICS: BUBBLE TRANSPORT 

We consider a porous medium, completely filled with 
foam, consisting of a system of active channels-capillaries 
with a variable cross-section of the form (1) with some dis- 
tribution law for their radii. If randomly connected they are 
able to form a connected system of channels for the transport 
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of foam: an infinite cluster. One does not observe, as a rule, 
the flow of a free gas for small pressure gradients. We shall 
therefore assume that in this limit the gas is transferred only 
through the motion of the bubbles. Moreover, we shall as- 
sume that all bubbles move along the channels with a con- 
stant velocity. The ability of a separate "infinite" channel 
connecting opposite boundaries of the macrosample to con- 
duct is then determined by the element with the smallest 
radius, more precisely, by the connecting section from a wide 
to a narrow capillary in which the action of the capillary 
forces is a maximum. If the walls of the infinite channel were 
rigid the flow rate of the foam through it would be deter- 
mined by the difference in pressure at the entrance and the 
exit of the capillary. However, in reality the walls of an ac- 
tive channel consist partially of pinned layers of the foam, 
i.e, they are able to transfer the load. Each layer in the chan- 
nel is thus subject to the mean field of the surroundings. 

We can estimate the critical pressure gradient required 
for starting the flow of the foam. Neglecting hysteresis 
effects14 we shall assume that the smallest pressure gradient 
necessary for sustaining a stationary flow is the same as the 
critical one. To obtain the required estimate it is sufficient to 
study the behavior of the system near the percolation thresh- 
old. 

Near the percolation threshold an infinite cluster can be 
viewed as a grid of channels with an average distance be- 
tween the nodes equal to the correlation radius (! of the con- 
ducting chains 

Here f is the fraction of the conducting channels, f, is its 
threshold value, and ~ 0 . 9  is15 the critical index. Hence we 
can estimate the effective force exerted on a bubble by its 
surroundings to be 

where Vp is the pressure gradient applied to the sample, u is 
a unit vector directed along the element, and A is the cross- 
sectional area of the channel. 

Near the percolation threshold the main contribution to 
the flow rate of the foam comes only from the chains which 
are oriented along the applied pressure gradient.16 In this 
limit one can also neglect their topological transformations. 
The flow rate Q of the foam averaged over all elements of 
the sample is then determined by the bubble velocity aver- 
aged over the elements of those capillary chains which are 
parallel to the applied pressure gradient 

The average bubble velocity in an infinite channel is 
completely determined by those elements for which the re- 
sistance to the motion of the layers is the largest. Since the 
capillary force acting on a layer depends significantly on the 
shape of the capillary one can hardly claim universality for 
the capillaries used in the model. Moreover, the law for the 
resistance to the motion of a layer along a channel with a 
different geometry is also not ~niversal. '~ We must therefore 
restrict ourselves merely to a qualitative study of the prob- 

lem. In the limiting case of an absolutely rigid bubble the 
law for the resistance for a layer is linear for slow flows and 
the friction constant y can be estimated to be ~ 2 . r r v j ,  
where v, is the viscosity of the film wetting the pore and r is 
the channel radius.' Using as a model for the connecting 
section a conical capillary we can write down the equation 
for the motion of a layer in the form 

dp' 
2vw7=-4asina+(rW-p'  tan a ) ~ .  

dt 

Here r, , is the radius of the wide connected channel and a is 
the angle of the cone. Integrating Eq. (17) we get the average 
velocity of the layer along a conical capillary of length 15,: 

dp' Lr -=- 
dt' T c o s a  

- - 15''' [In T' - 4 a  sin alr,  
2vw cos a r f ( l  - r,/r,) - 4 a  sin a / r w  I-' ' 

where r, is the radius of the narrow channel. 

If the resistance law is nonlinear, F =  y(dp'ld,t')K, the 
time spent by a layer in squeezing through the narrowing 
section is determined by the integral 

4 a  sin a 
b=  1 - 

rWr1  

Equations (18) and (19) together with Eq. (16) give us 
the equation of motion for the foam near the percolation 
threshold. It is clear from these solutions that the flow of the 
foam occurs only when the pressure gradient exceeds the 
threshold value 

4 a  sin a 
IVp*l= (rw-rn)(!. 

Since the correlation radius (! can be several orders of mag- 
nitude larger than the pore radius [see Eq. (14)] the estimate 
(20) looks very reasonable. The flow of the foam in a porous 
medium can thus be blocked by an insignificant number of 
small pores of size rw-r, distributed with a frequency 115. 
This idea has been expressed several times before3.'* and a 
relation similar to (20) has been suggested3 without any ex- 
planation of the appearance of a mean field in a sample satu- 
rated by foam. 

We now turn to an analysis of the law for the flow of 
foam near the percolation threshold. We first consider the 
linear case. It follows from Eq. (18) that near the critical 
pressure gradient the velocity increases logarithmically, i.e., 
its derivative is infinite near the threshold. Such a behavior 
of the foam has so far not been observed, which speaks in 
favor of a nonlinear friction law with index ~ < 1 / 2 .  Under 
this condition the derivative of the velocity tends to zero, 
which is characteristic for flows known up to the present.' 
The reason for the appearance of small indices ~<112, may 
be that in the flow both the film wetting the surface of the 
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pore and the layers involved.'-' In this case it makes sense to 
speak of the forcing of the bubble as a whole through the 
porous channel rather than the slipping of separate layers of 
the foam. The interaction between surface and viscous forces 
then leads to a nonlinear friction law with the necessary 

This mechanism looks rather plausible far from 
the threshold for the capillary coupling to the liquid phase. 
However, near the threshold the wetting liquid is retained 
rather efiiciently by the capillary forces, so that the foam is 
most probably transferred because the layers slip. Just this 
situation was considered earlier phenomenologically.2 In the 
next section we analyze the mechanism for such a flow using 
a specific microscopic model. 

4. FOAM HYDRODYNAMICS: LAMINAR TRANSPORT 

We remind ourselves that under normal conditions sepa- 
rate bubbles appear as the structural elements of the foam. In 
a porous medium one can use a coarse description of the 
hydrodynamics and a string of bubbles can be used for such 
an element. We verified earlier that it is just the internal 
properties of the bubble strings which are responsible for the 
penetration of the field into a sample. However, the success- 
ful explanation by Hirasaki and ~ a w s o n ' ~  of the law for the 
flow of foam when a gas and a liquid are simultaneously 
present was responsible for the broad acceptance of the 
string model. In Hirasaki and Lawson's treatment all bubbles 
in the string moved simultaneously, and it follows from the 
results of Sec. 3 that the structural organization of the foam 
is unimportant: the string flow as a single bubble in the mean 
field. 

Nonetheless, another mechanism for the flow of a string 
is also possible which takes into account its internal struc- 
ture. In its general features this mechanism reminds one of 
the Frenkel-Kontorova model for the flow of dislocations in 
crystals? In this approach the layers move along an active 
channel one after the other so that each layer "jumps" over a 
period of the channel from one equilibrium position to an- 
other and lies dormant until a new displacement wave 
catches up with it. In such a motion practically no energy is 
spent, so that the capillary forces are directed in opposite 
directions in the expansion and the contraction of the channel 
(see Fig. 1) while their action averaged over a period is com- 
pensated by the corresponding change in the elastic forces. 
Hydrodynamically the situation looks as if the shift of each 
layer involves only the surface layer of the wetting film. In 
fact, the formation of a new surface behind the moving layer 
requires exactly as many molecules of the wetting liquid as 
are freed when the surface in front of the layer is com- 
pressed. The molecules of the surface-active substance re- 
main during the flow pinned behind a definite bubble. The 
layer thus slips along the film which is wetting the pore 
surface, and the depth to which the hydrodynamic perturba- 
tion penetrates is comparable to the thickness of the layer, 
i.e., much larger than molecular dimensions. In this case we 
can therefore use a macroscopic description for the mass 
exchange processes between the surfaces, and to a first ap- 
proximation the resistance force can be estimated to be 
~ = 2 ~ v , , , r d p ' l d r ' . ~  ') 

When writing down the equation of motion for the foam 
layers we take into account that in the range of energies 
E=E**,  i.e., up to the onset of the laminar condensation, 
the shifts of the layers are limited by the action of the cap- 
illary forces. In that case we can neglect the nonlinear elas- 
ticity. In the situation considered here it is just that range of 
energies which if of most interest, so we can write down the 
equation of motion in the form 

JP d2P 
-= 7 - p  sin p+Y.  
dr ds 

Here Y is the dimensionless external force, the dimension- 
less variables correspond to the set (3), and we have also 

In accordance with the proposed mechanism the dis- 
placement wave caused by the external force Y propagates 
along the section under consideration and shifts the layers by 
a period. We shall assume in what follows that the section of 
the active channel which is oriented along the direction u(s) 
contains at most one domain wall, which separates the 
bubbles shifted by a period from the elements of the string 
that are in the unperturbed state. Assuming that the charac- 
teristic length a of a separate element of the active channel 
lies in the range r o 4 a 4 [  (5 is the length of the string) we 
can describe the profile of the laminar displacement by Eqs. 
(8) and (9) with x=&(s - v r ) .  

In the limits as Y t O  the propagation speed v of the 
displacement wave can be found from the condition that Eq. 
(21) has a solution 

Substituting expression (9) into Eq. (22) we find 

The motion of the domain walls can thus be treated as 
the slipping of effective layers along the active channel. It is 
just this kind of model of the string with the period of the 
chain being somewhat larger than the pore radius which was 
phenomenologically considered earlier.2 In the proposed ap- 
proach the period a of the chain is determined by the history 
of the loading and it depends, generally speaking, on the 
applied pressure drop.5 It is sufficient for a justification of the 
phenomenological approach to check the formula for the 
foam flow postulated in Ref. 2. In the external force Y we 
split off the term connected with the applied pressure gradi- 
ent and the oscillating part caused both by the inhomogeneity 
of the porous space and by the contribution from the capil- 
lary forces. We then get the following formula for the force 
density 

where 
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here /3 is a constant mean field and the averaging is carried 
out over the realizations of the forces @. Using (24) and 
changing to dimensional variables we find the foam flux in 
the sample, 

where c is the concentration of the bubble strings. Apart 
from a constant factor, expression (25) is the same as the 
corresponding phenomenological definiti~n.~ Introducing as 
before2 a tensor order parameter 

we can write the flux in the form 

The first term in Eq. (26) can be related to the corresponding 
term in Darcy's law, while the second term is specific for the 
flow of gas in the presence of foam: the flux of the foam 
depends significantly on the orientation of the active chan- 
nels. A change in the ordering occurs, firstly, as the result of 
the deformation of the channels in the flow and, secondly, as 
the result of diffusive motion of the strings-reptations. Both 
mechanisms have been analyzed before2 using a model of the 
string in which the characteristic distance between the layers 
is substantially larger than the size of a pore. Since in this 
context one can treat a domain wall as an effective layer all 
results can automatically be taken over in the case consid- 
ered here. Note that in this mechanism, in contrast to the 
previous one, the specific features of the porous medium 
manifest themselves through the hydrodynamics: the forma- 
tion of active channels in the framework of the proposed 
flow mechanism occurs under the action of the hydrody- 
namic field? The order parameter S in Eq. (26) is thus a 
functional of the velocity and of the pressure gradient. For 
small pressure gradients the number of elements of the chan- 
nel oriented along the field is small, S+O, so that the foam 
flow rate also tends to zero; when we exceed a certain pres- 
sure gradient practically all elements of the channel are on- 
ented along the field, and the order parameter S tends to 2/3, 
so that the foam flow rate is significantly increased. As a 
result the dependence of the filtration rate of the gas on the 
applied pressure gradient becomes nonlinear and reminds 
one of the law for the flow of a pseudoplastic? 

5. CONCLUSION 

The analysis of the behavior of a one-dimensional chain 
of bubbles placed in a channel with a periodically changing 
cross-sectional area thus enables us to elucidate the mecha- 
nism for overcoming a capillary barrier by applying pressure. 
Thanks to the compressibility of the gas the effective screen- 
ing by the foam of the applied pressure drop Ap is possible 

only under the restricted conditions Ap<Ap* [see Eq. (13)l. 
Above the threshold Ap* the chain is split into a set of 
macroregions such that the shift of the layers in neighboring 
domains differs by the period of the channel. In the connect- 
ing sections4omain walls-the shift of the laminas is non- 
uniform, so that the pressure gradient is also nonvanishing. 
This is just in this way, i.e., through overlap of the domain 
walls, that the field penetrates into the channel. A similar 
situation arises also, in all probability, in a porous medium 
filled with foam; otherwise it is impossible to explain the 
existence of small pressure gradients A ~ I L  4 a1 r2 in macro- 
samples of size L. At the same time the critical pressure 
drops which have been observed in practice, above which 
foam flow starts, are appreciably higher than the threshold 
Ap*. In this paper we have given an analysis of two possible 
hydrodynamic mechanisms explaining such a behavior. 

The first one treats the foam flow as the forcing of indi- 
vidual bubbles or of bubbles bound together in a chain 
through a porous channel. Although just this mechanism 
served as the impetus for studying the bubble string modelI3 
the nature of the structural organization of the foam is unim- 
portant in this case. The introduction of a mean field makes it 
possible to show that the law for the foam flow is completely 
determined by the friction law for an individual bubble at the 
wall of the channel. The minimum critical pressure gradient 
required to sustain the flow is determined by merely an in- 
significant number of small pores in which the action of the 
capillary forces is maximal. The number of such "danger- 
ous" pores is determined solely by the structure of the con- 
ducting cluster near the percolation threshold and is indepen- 
dent of the hydrodynamics. 

According to the second mechanism the foam flow can 
be treated as the motion of domain walls along a set of 
bubble strings. The particular features of the porous medium 
in this case show up both at the structural and at the hydro- 
dynamical level: moving with the flux the string cannot un- 
impededly surmount the porous space. Its contour becomes 
entangled as the number of "collisions" between the domain 
walls and the porous matrix increases and also due to their 
random motions in response to pulsations of the effective 
force? As a result the flow rate of the gas (of the bubbles) 
decreases. Although in this case the resulting flow curve is 
smooth, one can distinguish on it a section with an almost 
zero velocity while the pressure drop is nonzero. The appar- 
ent critical pressure drop in actual fact divides the diffusive 
regime of the motion of the domain walls from the convec- 
tive one. 

In both cases the shape of the flow curves is close to the 
one observed experimentally, so that to explain the actual 
flow mechanism one must analyze nonstationary experi- 
ments in which the mechanisms discussed here show up dif- 
ferently. 

The author is grateful to A. N. Rozhkov for many useful 
discussions and also to G. A. Shugai for carrying out the 
calculations. 
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