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Dissipative relativistic hydrodynamic equations are derived from the linearized kinetic equation 
for a gas with internal parameters. The method does not depend on any a priori assumptions 
about the relative size of dissipative terms, spatial gradients, or the collision integral. It is shown 
that the transition from the kinetic to the hydrodynamic description is reversible. The 
hydrodynamic model is nonlocal. This makes the dissipation compatible with causality. For a 
multicomponent mixture without reactions it is shown how this theory helps to describe 
viscosity, thermal conductivity, and diffusion. Relations between the nonlocal kernels and the 
classic transport coefficients are obtained. O 1995 American Institute of Physics. 

1. INTRODUCTION 

A consistent description of dissipative processes (such as 
viscosity, thermal conductivity, diffusion, etc.) in a relativis- 
tic theory involves considerable complications. Specifically, 
in nonrelativistic mechanics these phenomena are described 
by parabolic equations, which give rise to an infinite signal 
velocity. This is not permitted in a systematic relativistic 
theory. 

In the first relativistic model of a nonideal gas (~ckart '  
and Landau and ~ i f s h i t z ~ )  a covariant theory was derived 
including dissipativity. Then it was shown3 that both these 
models are special cases of a broader class of models derived 
using the Chapman-Enskog method from the relativistic ki- 
netic equation and differing in the definition of the local 
Cvelocity of the medium. All these models suffer from a 
shortcoming inherent in the parabolic Navier-Stokes- 
Fourier model of a nonrelativistic viscous thermally conduc- 
tive gas: the signal velocity in the comoving inertial coordi- 
nate frame is infinite. 

In Ref. 4 it was shown that the finite signal velocity is a 
result of taking into account the dispersion in the transport 
coefficients, that is, in a model with legacy. For a relativistic 
gas consisting of structureless massive particles a method 
was proposed for going from the kinetic equation to the 
equations of nonlocal hydrodynamics.5 The hydrodynamic 
model consistently combines the properties of dissipativity 
and causality. The hydrodynamic kernels are expressed in 
terms of collision operators. The nonrelativistic version of 
the method has been described in Ref. 6. 

In the present work the results obtained in Ref. 5 are 
extended to the case of a relativistic gas with internal degrees 
of freedom. It is shown that for a certain class of sources the 
kinetic equation is equivalent to a system of nonlocal hydro- 
dynamic equations. The present technique for deriving the 
equations of dissipative relativistic hydrodynamics differs 
from the methods of Chapman and Enskog, Grad, and 
~ilbert.'-" It is assumed that the gas can contain particles 
with internal structure (i.e., with vibrational and rotational 
degrees of freedom), and it can also be a mixture of different 

components. This latter assumption allows us to consider the 
phenomenon of diffusion. 

The technique used here requires no a priori assump- 
tions about the magnitude of the dissipative terms, the spatial 
gradients, or the collision integral. It also requires no infor- 
mation about the explicit functional form of the collision 
integral. The method is based on introducing hydrodynamic 
sources into the kinetic equation and projecting the distribu- 
tion functions onto the space of hydrodynamic variables. 
Previously similar projection operations were used for equa- 
tions without sources in Refs. 11 and 12. However, in the 
systematic passage from kinetic theory to nonlocal hydrody- 
namics the use of sources is essential. In fact, operations with 
homogeneous equations implicitly presuppose the imposition 
of a Cauchy problem, which is dubious in a theory with 
temporal nonlocality. 

Section 2 gives a systematic account of the properties of 
the relativistic equation needed in the subsequent exposition. 
In Sec. 3 we present a derivation of the equations of nonlocal 
hydrodynamics and show that the hydrodynamic model is 
equivalent to the original linearized kinetic equation. In Sec. 
4 the properties of the nonlocal kernels arising in the consti- 
tutive relations of the hydrodynamic model are analyzed. In 
particular, we derive relations associated with dissipativity 
and time reversibility at the microscopic level (analogous to 
the Onsager relations). Section 5 treats a multicomponent 
relativistic gas and shows that the phenomena of viscosity, 
thermal conductivity, and diffusion can be described without 
violating causality. In Sec. 6 the results of the work are dis- 
cussed. 

We use a system of units in which Planck's constant h, 
the velocity of light in vacuum c ,  and the Boltzmann con- 
stant k are equal to unity. Greek subscripts run through the 
values 0,1,2,3 corresponding to some inertial space-time co- 
ordinate system x", where x0 is time; roman subscripts 
a,b,c ,d run through the values 1,2,3, corresponding to the 
spatial Cartesian coordinates xa; and we write da=dldxa. The 
space-time subscripts are raised and lowered using the 
Minkowsky metric rl,p=diag(l,- 1,- 1,- 1). The roman sub- 
scripts A ,B ,C run through the values 0, ..., N - 1, where N is 
the number of quantities given in Eq. (1.3) below which are 
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conserved in particle collisions. Summation over repeated 
indices is assumed unless otherwise specified. 

2. PROPERTIES OF THE RELATIVISTIC KINETIC EQUATION 

In formulating the relativistic kinetic theory we will on 
the whole follow the approach and notation of Refs. 3 and 5. 
Consider a gas whose molecules are characterized by the 
coordinates X" and 4-momenta pb and by some collective 
parameter r associated with the other degrees of freedom. 
The parameter r can run through discrete or continuous val- 
ues. Thus, r parameters can include the number of compo- 
nents in the case of a mixture of gases, the rotational angular 
momentum of a molecule, the label of the vibrational mode 
of a polyatornic molecule, etc. 

A state of the system is described by the one-particle 
distribution function f = f(xa,pb,r). For a given value of the 
parameter r the 4-momentum pb  satisfies the condition 

g,ppffp~=m2(r), pO>O. (1.1) 

Here m(r) is the rest mass of the gas particles charac- 
terized by the parameter r. The relation (1.1) is an equation 
on the mass surface for particles with positive mass and on 
the future light cone when the mass is equal to zero. The 
Lorentz-invariant measure on the surface (1.1) is 

dvr=(p0)-1dp'dp2dp3. 

Let dp( r )  be the measure in the space of the parameters 
r. In the state space of a gas particle, i.e., in the space of the 
parameter p" and r associated with the condition (1.1), we 
define the measure 

The distribution function satisfies the dynamic equation 

Here Stlf] is the so-called collision integral; in the gen- 
eral case it is a nonlinear operator in the space of functions of 
p" and r. The function S= ~ ( x " , ~ ~ , r )  describes the inter- 
change of material, heat, etc., between the gas and an exter- 
nal medium. The use of the kinetic equation (1.2) without a 
source term implies that the macroscopic fields produced by 
the gas (electromagnetic, gravitational, etc.) are negligibly 
small. The introduction of a source S in the kinetic equation 
enables us to rigorously treat nonequilibrium distributions 
defined globally in time. 

We assume that the particle collision dynamics admits N 
integrals 

JA=JA(P",~). (1.3) 

Then the operator S t m  satisfies N relations 

for an arbitrary distribution function f. We will assume that 
the set of constants of motion (1.3) is complete in the sense 
that in the absence of sources the equilibrium state is fully 
characterized by the values (J,). The distribution function 
corresponding to equilibrium takes the form 

where FA are constants. For an arbitrary distribution function 
(1.5) we have identically 

Relations (1.2) and (1.4) yield the relativistic hydrody- 
namic equations with sources, 

where we have used the following definitions for the 
Ccurrents Q; and sources SA : 

)S(xff,p r SA=SA(X")= 1 JA(P .r P, )d l .  (1.8) 

We now investigate the dynamics of linear perturbations 
about some equilibrium distribution f o  of the form (1.5) in- 
duced by weak sources S. Let F; be parameters correspond- 
ing to fo  in expression (1.5). We will use the customary form 
of the distribution function subjected to lineari~ation:~ 
f = fo(l + 9). Then Eq. (1.2) is transformed into 

where L is a linear operator defined through functional 
differentiation of the collision integral: Lq  
= fi ID St[ fo] (foq). The functions q, regarded from the 
standpoint of their dependence on the arguments pa  and r ,  
belong to a space H  which can conveniently be taken to be a 
Hilbert space with the scalar product 

By H h  we denote the subspace spanned by the family of 
vectors J A ,  and by H a  the orthogonal complement of 
H h  : H =  H h @ H a .  In the subspace H h  the metric tensor 
yAB=(JA, JB) is defined, by means of which we can raise 
and lower the subscripts A,B,C.  In particular, a family of 
vectors JA is defined such that g= (JA , JB). 

The sources sA can be regarded as weak if for the char- 
acteristic time scale T ,  of the problem in question (e.g., for 
a wave period) we have the set of inequalities 

Without specifying the form of the collision integral we 
can assert that the operator L satisfies a number of condi- 
tions. Thus, by differentiating Eq. (1.6) with respect to FA 
we find the relations 

Then we have relations associated with reality, 

dissipativity, 

and the conservation laws (1.4), 
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In the subspace Ha the inequality (1.12) becomes strict. 
We assume that the interaction of the gas particles is 

time-reversible on the microscopic level (T-invariance in 
quantum theoryI3). In the function space H we define the 
time inversion operation I. Thus, the operator I changes the 
sign of the spatial components of the 4-momenta, but leaves 
the helicity unchanged if it enters into the set of parameters 
r. The operator I is self-adjoint and satisfies 12= 1. The inte- 
grals (1.3) can be chosen to be eigenfunctions of the operator 
I with eigenvalues t 1 : 

Let the perturbed equilibrium distribution be invariant 
under time reversal, 

Then reversibility on the microscopic level imposes a restric- 
tion on L: 

In many situations the operator L commutes with the 
operator I ,  and so in place of (1.16) a stronger condition 
L + = L holds. 

We will use the following notation: for the function 
g = g ( x a )  the Fourier transform g F ( k a )  is defined by 

Fourier-transforming Eq. (1.9), we find the linear opera- 
tor equation 

By using Eq. (1.17) we can investigate the rate at which 
a signal propagates from the point source S= fob* S(xa) ,  
h ,  E H. From (1.17) we find the equation 

Consider Eq. (1.18) for complex values k , ,  such that the 
imaginary parts of the wave 4-vector K,=Im k a  satisfl the 
conditions 

Then using (1.12) we obtain the inequality 

Together with the conditions (1.1) this inequality ensures 
that the vector function rp,= G -  ' h ,  is defined and holomor- 
phic in the complex tube (1.19). By following Ref. 14 we 
can use this together with some readily verified asymptotic 
expressions to show that the function cp  in real space-time 
vanishes outside the future light cone, 

Hence the kinetic equation (1.2) satisfies the causality 
principle of the special theory of relativity. 

3. DERIVATION OF THE EQUATIONS OF LINEAR 
RELATIVISTIC DISSIPATIVE HYDRODYNAMICS 

We introduce some notation. Let Ph :H-+Hh,  
Pa : H - +  Ha be projection operators and let Ih : Hh-+ H, 
1, : Ha-+H be injection operators, Ghh= PhGIh, 
Gah= PaGI,,  Gha= PhGIa , Gaa= PaGI,. Note that ac- 
cording to Eqs. (1.10) and (1.13) we have LHh=O, 
LHaCHa. We split the distribution function cp into two 
parts, h=Phcp, a=Pacp=cp-h. 

We define the hydrodynamic Ccurrents as linear pertur- 
bations of the Ccurrents Qz [cf. Eq. (1.18)], 

From Eq. (1.9) together with (1.13) we find the hydro- 
dynamic equations with sources, 

In order to solve these equations with given right-hand 
sides, we need to know the constitutive relations, i.e., expres- 
sions for the components g z  of the Ccurrents in terms of the 
given set of hydrodynamic variables. Specification of the 
constitutive relations together with the dynamic equations 
(2.1) closes the hydrodynamic model. 

In Ref. 5 we follow approach (A), in which the 
Ccurrents gz are expressed in terms of the components 
hA = (JA, cp) = (JA ,h). An explicit physical meaning can be 
ascribed to the quantities hA. To see this we find the equilib- 
rium distribution (1.5) with parameters FA = F; + A F ~  such 
that at a given point x u  it coincides with the distribution 
fo( 1 + h )  . Then we find the relation 

A second approach (B) is possible, in which the spatial 
components g i  are expressed in terms of g 2 .  Below we 
consider both approaches. 

In order to find the constitutive relations we assume that 
the source term in Eq. (1.9) as a function of p a  and r belongs 
to the space H h .  Then the "nonhydrodynamic" part of the 
distribution function a can be expressed according to (1.17) 
in terms of h,  

We express the hydrodynamic Ccurrents in terms of the 
components hA= (h,JA). If we use relation (2.3) it is not 
difficult to calculate the constitutive relations in form A: 

By virtue of relations (1.11) for real k p  we have 

We write 

Then from (2.4) we find the constitutive relations in the form 
B: 
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In analogy to (2.5) we have 

C i B ( k a ) * = c i B ( -  k,) .  (2.8) 

It is clear that the possibility of rigorously specifying the 
constitutive relations in the form B is directly related to the 
determinability of the matrix wAB in Eq. (2.6). Let us study 
this question in more detail. We define the matrices 

It is easy to see that there is a representation 

which yields an alternative representation for the coefficients 
in relation (2.7), 

Thus, the question reduces to the determinability of the 
matrix hAB. It turns out that for this a sufficient condition is 
that the inequalities that supplement the dissipativity condi- 
tion (1.12) hold: 

where the inequality becomes strict on H a .  Then the revers- 
ibility of the matrix L:, follows from the chain of conditions 

We will further assume that when we treat the constitu- 
tive relations in the form B given by Eq. (2.7), condition 
(2.9) is satisfied. It is noteworthy that in nonrelativistic ki- 
netic theory in the analogous derivation for the determinabil- 
ity of the constitutive relations in form B the usual dissipa- 
tivity condition (1.12) is sufficient. 

If we go over to real space-time, the constitutive rela- 
tions in the form A of Eq. (2.4) assume the form of a sum of 
convolutions with real kernels characterizing the nonlocality 
of the theory. By virtue of (1.20) the functions U i B  are ana- 
lytic in the complex tube (1.19) and can only have algebraic 
singularities at its boundary. From this it follows that in real 
space-time the hydrodynamic nonlocality kernels vanish out- 
side the future light cone.I4 Thus, the constitutive relations in 
form A are causal. 

In similar fashion we can prove the same assertion for 
the constitutive relations in form B as well. 

4. PROPERTIES OF THE HYDRODYNAMIC KERNELS 

We obtain restrictions on the coefficient functions in the 
constitutive relations, derived from covariance, dissipativity, 
and reversibility on the microscopic level. Where feasible we 
will omit the subscripts A,B, ..., associated with the labels of 
the conserved quantities (1.3) and use the matrix formalism. 

We begin with the constitutive relations in the form A of 
Eq. (2.4). The nonlocal nature of the theory is connected 
with the matrices 'A:, . 

Let the equilibrium state fo be invariant under the spatial 
rotation group SO(3). The requirement of invariance under 
the action of this group imposes restrictions on the functional 
form of the matrices 'Aa: 

for arbitrary g E S O ( 3 ) .  Here Ro is a representation of the 
rotation group in the linear space a. of quantities of the form 
' A H ,  , and R ,  is a representation of the rotation group in the 
linear space <PI of quantities of the form 'A;, . We recall 
that the subscripts A,B can also be transformed under the 
group SO(3). In the spaces ao, we identify a maximal set 
of linearly independent invariants with respect to the sub- 
group of rotations that preserve the vector k a :  1: 
= I;fAB(kb), 1; = I l iB(kb) .  These invariants can be chosen 
in the form of polynomials of k,  such that 

Then we can display the most general functional form of 
the coefficient matrices 'A;, satisfying relations (3.1) and 
(3.2): 

0 0 - n  AAB-IOAB Oxon , O A ~ B = ~ ; ~ B  O x l n  (3.3) 

Here OX,,= Oxmn(k,) are scalar quantities which are 
invariant under the action of the rotation group. In conse- 
quence of relations (2.5) these functions satisfy the relation 

(Oxrnn(kct))* =Oxmn( - k a ) .  

This means that the functions OX,,  are Fourier trans- 
forms of real kernels OY,,  = O ~ m n ( x f f ) : O ~ m , F =  OX, ,  . Since 
the theory is causal, the supports of these kernels lie in the 
future cone (1.21). 

We define the matrix 

OBAB= - i k p z B =  (GahJA , G ; ; G ~ , , J ~ ) .  

From the dissipativity condition (1.12) we have 

From this we find the matrix inequality corresponding to 
the dissipativity condition (1.12) in the hydrodynamic 
model: 

Now let us find the implications of reversibility (1.14)- 
(1.16) on the microscopic level. Substituting (1.16) into the 
expression for OB and using (2.5) we find 

0 
B A B ( ~ O  , ~ ~ ) = & A E O , B B A ( ~ O  , -ka) .  (3.5) 

The substitution of expressions (3.3) in (3.4) or (3.5) 
allows us to find the restrictions on the kernels OX,,  implied 
by dissipativity and T-invariance respectively. 

Although the functions JA are linearly independent, the 
functions pnJA and JB may be linearly dependent. Then from 
each relation of the form 

we find a condition on the coefficient functions, 
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which can be interpreted as degeneracy of the system. 
Now we proceed to analyze the constitutive relations in 

the form B (2.7). It is easy to see that the identity 

holds. From this it follows that the coefficients in the consti- 
tutive relations (2.7) are related by 

Let us write 'A~=c '  y, ' B = i k , ' ~ ~ .  It turns out to be 
easier technically to investigate the coefficients that enter 
into the matrices ' A ~ .  These matrices allow the 3-currents 
gi to be expressed in terms of the quantities p= #)/ISg:. 

The reversible transformation from the matrices 'Aa to the 
matrices Ca can easily be established using the metric y. 

The requirement of invariance with respect to the group 
SO(3) imposes the following restrictions on the functional 
form of the matrices 'Aa: 

The most general functional form of the coefficient ma- 
trices 'A:, satisfying relations (3.8), is 

Here 'x,, = 'xmn(ka) are scalar quantities invariant un- 
der the action of the rotation group. As a result of Eqs. (2.8) 
these functions satisfy the relation 

This means that the functions 'x,, are Fourier trans- 
forms of some real kernels 'Y,, = ' ymn(xa): 'ymnF= 'x,,, . 
Since the theory is causal, the supports of these functions lie 
in the future cone (1.21). 

From (3.7) we have 

Hence using (2.10) we find the inequality 

This inequality is the dissipativity condition in the form 
(2.9) in the hydrodynamic model. 

If we assume the reversibility conditions (1.14)-(1.16), 
then it is easy to derive the reciprocity relations analogous to 
(3.5): 

As before, the substitution of expressions (3.9) in (3.10) 
or (3.11) allows us to obtain restrictions on the kernels 'x,, 
resulting from dissipativity or reversibility respectively. 

Conditions (3.10) and (3.11) have the standard form of 
the dissipativity and reversibility conditions which obtain for 
mechanical systems with legacy.15 It is for this reason that 
the constitutive relations in the form B are preferable to the 
ones in form A. 

5. HYDRODYNAMICS OF A MULTICOMPONENT 
RELATIVISTIC GAS 

Let us consider a relativistic K-component gas of par- 
ticles which may have internal structure. In this case the 
parameter r has the form of a set ( i ,r l ) ,  where i runs 
through the values 1, ...$ corresponding to the labels of the 
components, and the parameter r' is related to the internal 
degrees of freedom (e.g., the vibrational degrees). Integration 
with respect to the measure d p ( r )  reduces to summation 
over the parameter i and integration with respect to some 
measure dl'  (r') associated with the parameter r'. We fur- 
ther assume that the indices i , j  run through the values 
1, ...k, while the indices I, J run through the values (3+i), 
i = 1 ,. .. ,K. If the indices i, j and the indices I, J are used in 
a single formula their values are related by I = i +  3, J =  j 
+ 3. Assume that there are no reactions between particles 
and that the following is a complete set of K+4 conserved 
quantities: 

According to Ref. 3 the parameters F~ in the equilibrium 
distribution (1.5) have the following form: 

Here p is the inverse temperature, pi are the chemical po- 
tentials of the components, and ua is a 4vector satisfying the 
conditions 

which can be interpreted as the 4-velocity of the medium in 
the equilibrium state. 

Using the notation (1.8) we define the energy- 
momentum tensor T ~ @  of the medium and the flux compo- 
nents jq: 

Equations (1.7) in this case assume the form 

Here fQ= qapsp is the density of the external 4-forces 
and vi are the external particle sources. We define the total 
particle flux as 

In terms of the currents j: and ja we can define the 
partial densities ni and the 4-velocities up of the component 
species, as well as the total density n and 4-velocity ua of the 
gas: 

The definition (4.3) of the velocity of the medium corre- 
sponds to the Eckart approach, and also to the definition of 
the 4-velocity ua of Eqs. (4.1) and (4.2), assumed previously. 
We define the diffusive fluxes using the formula (no summa- 
tion over the subscript i!) 
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Next, the energy-momentum tensor is represented in the 
form 

where the heat-flux vector q a  and the stress tensor f l p  are 
subject to the restrictions 

Relation (4.5) together with (4.6) can be regarded as a 
definition of the internal energy 6, as well as q n  and flp: 

The viscous stress tensor 

is defined in terms of the stress tensor; here we have written 
~ n ~ = u n u 8 - D n p  and p is the hydrostatic pressure, given by 
the function p  = p ( & , n i ) ,  which is evaluated in terms of equi- 
librium distributions. 

Now we go on to consider the dynamics of small pertur- 
bations superposed on a rest state. For an arbitrary physical 

0 1 
guantity A we will use the expansipn A = A + A ,  where 

A is the value in the rest state and A is the perturbed value. 
In particular, from (4.2) we have 

Let us investigate the algebraic structure of the constitu- 
tive relations in the form A. In place of the coefficient func- 
tions Z i B ,  it is convenient to consider the functions 
ZdB= 7 7 a a ~ f B ,  'AffAB= 7 7 n : ~ $ .  We have the obvious 
symmetry relations 

ZnAB=ZaBA 9 Z a S ~ = Z B a ~  9 O A ~ / ~ A = O A ~ ~ A  (4.12) 

In addition relations of the f o m  (3.6) hold: 

When the symmetry relations (4.12) are taken into ac- 
count, the following coefficients are nontrivial: 

Set I is simply the set of numbers calculated according to 
the technique described in Ref. 3. The values of these coef- 
ficients are given in Sec. 1 of the Appendix. 

Next, sets I1 and I11 are broken into sums according to 
Eqs. (3.3). The corresponding expressions are given in Sec. 2 
of the Appendix. 

We write A= - vabkakb. Using the representation of the 
coefficients 'AAEc in terms of the scalar kernels, we can find 

corresponding expressions for the matrices OBAB , and also 
write down the Onsager relations (3.5) (cf. Sec. 3 of the 
Appendix). 

We write down some consequences of the dissipativity 
conditions (3.4): 

Now we will show that this nonlocal hydrodynamic 
model describes the phenomena of diffusion, thermal con- 
duction, and viscosity. Equation (4.4) can be used to express 
the diffusive flux in terms of the parameters hA,  which from 
(2.2) and (4.1) have a clear physical meaning: 

Going over to Fourier transforms and assuming I = i + 3,  
we find 

Substituting the expression calculated previously for Z;b, 
we can easily show that the first term in Eq. (4.18) (the 
nondissipative part) vanishes. Thus, the diffusive flux is 
given by the nonlocal expression 

which includes the effects of baro- and themodiffusion. We 
recall that in the classical interpretation diffusion is a flux of 
material caused by gradients in the chemical potentials. In 
order to distinguish this classical component we must set 
kO=O in expression (4.19), and then restrict ourselves to the 
linear approximation in ka.  As a result we find the symmetric 
matrix of diffusion coefficients 

This matrix satisfies the relations 

and the dissipative inequality [cf. Eq. (4.17)] 

(Dij)3O. 

Similarly, from Eqs. (4.7)-(4.11) (see also Ref. 5) it is 
not difficult to derive expressions for the thermal flux and the 
viscous stress tensor: 

Setting kO=O in these equations and then restricting our- 
selves to first order in ka,  we can distinguish the terms in 
these equations related to thermal conduction and viscosity. 
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If K, l;ly, vs are the classical thermal conductivity, bulk vis- 
cosity, and shear viscosity coefficients, respectively, then we 
have the relations 

0 
3 7 ~ ~ -  Xi41ka=o. (4.22) 

The dissipative inequalities (4.14)-(4.16) ensure that the 
right-hand sides of these expressions are nonnegative. 

Thus, nonlocal hydrodynamics enables us to consistently 
combine the description of diffusion, thermal conduction, 
and viscosity processes with causality. 

6. CONCLUSION 

To conclude this work we make a number of comments 
about the various stages of the above arguments. 

In Sec. 5 it was shown that the classical dissipative phe- 
nomena (viscosity, thermal conduction, and diffusion) can be 
described in a relativistic theory by means of constitutive 
relations in the form A without losing causality, by using the 
dissipativity condition (1.12) corresponding to the familiar 
 theor or ern.^.^,'^ Consequently, the significance of the consti- 
tutive relations in form B, and hence the dissipativity condi- 
tion (2.9), in relativistic hydrodynamics deserves further 
study. It is of interest to note that since nonrelativistic kinetic 
theory uses the operator (do+vada) in place of the differen- 
tial operator (pffd,) in the basic equation, the constitutive 
relations in form A and in form B are the same to within a 
constant matrix. 

One application of the degeneracy condition (3.6) of the 
coefficient matrix 'A,& is the case in which the particles of a 
multicomponent gas have no internal structure. Then from 
(1.1) we have 

T a S P f f p ~ = m ~ ~ I .  

From this, in accordance with (3.6), we find the identity 

Substituting expressions for the coefficients with 
B=a in (5.1) we easily find 

which in accordance with Eqs. (4.20)-(4.22) yields the fa- 
miliar resultlo ~ = 0 .  

In the expressions for the coefficients 'A:, the appear- 
ance of terms with edc, which are not invariant under spatial 
inversion, is associated with the possible violation of 
P-invariance in the particle collisions. The latter is possible 
when weak interactions are considered. 

For practical applications of nonlocal hydrodynamics it 
is necessary to have expressions for the invariant kernels 
OX,, . It is found that their general functional form can be 
specified when L + =  L, ka=O, or ko=O holds. 

It is sufficient to consider the case of the function 

*(k,)=(al ,~,-,'a2), a l  , a2€Ha.  

We write 0 =( - PaLZa) ' I2 ,  A= @ - ' P , ~ ~ Z ~ @ - '  (these 
are operators in H J  and dE(r), the spectral measure for the 
operator A (Ref. 16). Then we find the representation 

The representation (5.2) is the usual expression for the 
relaxation kernel in the form of the integral over the spec- 
trum of internal relaxation times. 

Arguing similarly, we can derive the expression 

Here P(h) is a polynomial in the square of the wave 
number. The representation (5.3) is interpreted naturally as 
an expansion of the spatial nonlocality kernel into an integral 
over the spectrum of correlation radii. 

Of course, the practical application of Eqs. (5.2) and 
(5.3) is dependent on the possibility of evaluating the weight 
functions appearing in the integrals on the corresponding 
spectrum. For this we can use various numerical techniques 
based on an explicitly defined operator L. 

APPENDIX 

1. In the following expressions we use the notation 
z= pm(r) ,  where K,(a is the modified Bessel function of 
the second kind of order n. 

u;= 2 ( 2 ~ ) - ~ / 3 - '  exp(/?pi) I ~ S ' ( ~ ' ) Z ~ K ~ ( Z ) .  

2. The representation (3.3) in this model assumes the 
following form: 

0 ~ 0 0 0 = 0 ~ 0 0 ,  'AOOa= ika0xO1, 'Aoao= ik;Xo2, 

'AOab= aab0xO3 + ikaikb0xO4+ ~ ~ ~ ~ i k ~ ~ ~ ~ ~ ,  
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0 ~ o o ~ = 0 ~ 0 6 1 ,  ika0x071, 0 ~ 0 1 0 = 0 ~ 0 8 1  

O A O I ~ =  ika0x09I O A O I J = O X O I O I J  t 

O A , ~ ~ =  s ~ ~ ~ x ~ ~  + ikoikbOxl 

'Aabc= ~ ~ ~ i k > ~ ~ ~ +  iiinikbik>x13 + ( ikaabc  

+ikb8ac)0~14+(ikaikd~bcd+ikbikd~acd)0~15, 

O A , ~ [ =  s ~ ~ ~ x ~ ~ ~ +  i k a i k b 0 ~ , 7 1 ,  

'A .~O = ika0x1gl ,  

O ~ a l b =  ~ ~ ~ ~ ~ ~ ~ ~ + i k ~ i k ~ ~ , : ~ ~ + ~ ~ ~ ~ i k > ~ ~ ~ ~ ~ ,  

O A a I J ' i k ~ x l  1215 - 
According to (4.13) the following conditions on the sca- 

lar kernels should hold: 

3. Using the equations of the previous section of the 
Appendix we find expressions for the matrix O b A ,  (recall 
that A= - 77abkakb): 

'Boo= - i k O O ~ o o +  A0x02,  

O ~ o b = i k b ( - i k O O ~ O l  + 0 ~ 0 3 - h 0 ~ 0 4 ) ,  

O~ol '  - i k 0 0 ~ 0 6 1 -  A ~ x ~ ~ ~ ~  
'Boo= i k a ( -  i k o o ~ 0 2 + 0 ~ l o -  A O X ~ ~ ) ,  

OBab= Sob(- iko0xO3- A 0 x l 4 ) ,  

+ i k a i k b ( - i k 0 0 ~ 0 4 + 0 ~ 1 2 -  A ~ X ~ ~ + ' X ~ ~ ) ,  

+Eabcikc(-  iko0xO5- h 0 x 1 5 ) ,  

By assuming E ~ = E ~  = 1 .  E ,  = - 1 we can easily write 
down Onsager relations (3.5) for the scalar kernels: 
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