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We predict an alteration of shape and a narrowing of the absorption line of light aikali-metal 
atoms ( 7 ~ i  and 2 3 ~ a )  in an atmosphere of heavy inert gases (Xe and Kr) as the radiation 
intensity increases. The halfwidth of the line at halfheight may decrease by a factor of 1.3 to 1.5. 
The upper part of the narrowed line profile is practically triangular. The critical radiation 
intensity I. at which lineshape narrowing begins depends on the buffer gas pressure (the 
dependence is linear at pressures much lower than 1 tom and quadratic at pressures 
much higher than 1 torr). At a pressure of about 1 torr the critical intensity I. is of order 1 o - ~  W/ 
cmT2. The effect is caused by optical pumping to the ground-state hyperfine components 
and by a strong difference (by a factor of MBIM) in the collisional relaxation rates in the 
orientations and magnitude of the velocity v of the resonant particles under the condition 
M 4 M B ,  where M and MB are the masses of the resonant and buffer particles, 
respectively. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Among the most important characteristics in the nonlin- 
ear spectroscopy of atoms and molecules are the absorption 
lineshape and linewidth of the object studied. It is well 

that increasing the intensity of the radiation leads to 
a broadening of the absorption line owing to saturation ef- 
fects. In this paper we focus on the possibility of a markedly 
different situation: narrowing of the absorption line when the 
radiation intensity increases. Using as an example three-level 
particles with a A-configuration of the levels, which model 
light alkali-metal atoms ( 7 ~ i  and 23 Na), we show that in an 
atmosphere of heavy buffer particles (MIMBe 1, where M 
and MB are the masses of the resonant and buffer particles 
respectively), increasing the radiation intensity leads to de- 
formation and narrowing of the absorption line profile. 

2. THE ABSORPTION LINESHAPE IN THE HYPERFINE 
SPLllTlNG OF THE GROUND STATE 

Let us examine the interaction of a traveling monochro- 
matic wave and absorbing particles mixed with buffer par- 
ticles. The level diagram of the absorbing particles is de- 
picted in Fig. 1. Here the levels n and 1 are the components 
of the hyperfine structure of the ground state, with no restric- 
tions imposed on level separation. The level m corresponds 
to the excited state, and gi is the statistical weight of the ith 
level (i  = n ,l ,m) . We ignore collisions between the absorb- 
ing particles, assuming the density NB of the buffer gas to be 
much higher than the density N of the absorbing gas 
(NB% N). 

This level diagram gives a good picture of the real struc- 
ture of the ground and first excited states of light alkali-metal 
atoms ( 7 ~ i  and 2 3 ~ a ) .  Indeed, the ground level of these at- 
oms is split into two hyperfine components. The component 
separation is comparable with the Doppler width and so the 
ground state is modeled by two levels, n and 1 (for 6 ~ i  atoms 

the hyperfine-component separation in the ground state is 
much smaller than the Doppler width, and one level is there- 
fore sufficient for modeling the ground state of 6 ~ i  atoms). 
For 7 ~ i  and 2 3 ~ a  atoms (nuclear spin 312) the level n is 
characterized by a statistical weight g,= 3 (total atomic an- 
gular momentum F = 1 ) and the level 1 by a statistical weight 
g l=5  (F=2) .  

The level m models a group of levels that are the com- 
ponents of the hyperfine structure of the exited states PlI2 
and P3/2. Such modeling of a group of levels by a single 
level is possible because for 7 ~ i  and 2 3 ~ a  atoms the hyper- 
fine splitting of these excited states is small compared to the 
Doppler absorption linewidth. Radiation involves only one 
fine component of an excited state, P or P3/2. 

For 7 ~ i  and U ~ a  atoms the limiting case of strong col- 
lisional coupling between the fine components PIR and 
P3/2 is realized (the Massey parameter is much smaller than 
unity). Hence from the collision viewpoint a pair of fine 
components is interpreted as a single level with an elevated 
statistical weight. If during the lifetime of the excited state 
collisions have a low probability of occurring, g, = 8 in the 
excitation of the Dl-line (radiation involves the fine level 
Pl12 with two hyperfine components, F = 1 and F = 2) and 
gm= 16 in the excitation of the D2-line (radiation involves 
the fine level P3R with four hyperfine components, F=O, 
F = 1, F = 2, and F = 3). But if the number of collisions with 
the buffer particles during the lifetime of the excited state is 
large, in modeling 7 ~ i  and 2 3 ~ a  atoms by a three-level 
scheme we must put g,=24 in the excitation of both the 
D ]-line and the D2-line. 

The interaction of particles with radiation in steady-state 
and spatially homogeneous conditions is described by the 
following equations for the density matrix:' 
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FIG. 1. The energy level diagram. The straight arrows stand for transitions 
induced'by radiation, and the wavy arrows designate spontaneous radiative 
transitions. 

where 

Here pi(v) specifies the velocity distribution of the particles 
on the level i; N =  pn+ pi+ pm is the absorbing-particle con- 
centration (pi=Jpi(v dv); rmi is the rate of spontaneous 
relaxation of the level m in the channel m -+ i; w, h ,  and k 
are the frequency, wavelength and wave vector of the radia- 
tion; wmi is the m - i  transition frequency; Sm(v), Si(v), and 
Smi(v) are the collision integrals; and I= c ~ ' 1 8 m  is the ab- 
solute value of the Poynting vector, which characterizes the 
radiation energy flux. In writing the expression for the Ein- 
stein coefficient B in (2.2) we allowed for the fact that the 
ratio of the rates of radiative transitions from the level m to 
the hyperfine components n and 1 is determined by the ratio 
of statistical weights:3 

The probability Pi(v) of radiation being absorbed per unit 
time in the m-i transition by a particle with a fixed velocity 
v is determined by the off-diagonal element pmi(v) of the 
density matrix (the coherence). Note that the last equation in 
(2.1) for the off-diagonal element pmi(v) is valid only if we 
ignore the coherence pln(v) between the hyperfine compo- 
nents n and 1. This approximation is true if the radiation 
intensities are not too high:4 

(2.4) 

where r is the homogeneous halfwidth of the absorption 
line, and ol, is the 1-n transition frequency. 

When the collisions have no phase memory (an assump- 
tion common in nonlinear atomic spectroscopy), the off- 
diagonal collision integral has the form 

where vmi and Ami are the impact broadening and collisional 
shift of the levels, respectively. Combining (2.1) and (2.2) 
with (2.5) yields 

where 

Here r l  and r2 are the homogeneous halfwidths of the ab- 
sorption lines for the m - n and m - 1 transitions, respectively. 

For alkali-metal atoms in an atmosphere of inert gases 
the cross sections of the collisional n-1 and 1-n transitions 
between the hyperfine components are many orders of mag- 
nitude smaller than the gas-kinetic cross  section^.^ Bearing 
this in mind, below we examine the case in which there is no 
collisional exchange between the hyperfine components n 
and 1. 

We integrate the second equation in (2.1) with respect to 
v and allow for the fact that in elastic collisions 

As a result we get 

Tmipm=NPi Pi= Pi(v)dv, I 
which yields (see also Ref. 6) 

We see that the ratio of the total probabilities of radiation 
absorption for the m - n and m - 1 transitions depends on nei- 
ther radiation intensity nor radiation frequency. It character- 
izes the process of optical pumping of the hyperfine compo- 
nents of the ground state and is a consequence of the absence 
of collisional exchange between the hyperfine components n 
and 1 (see Ref. 6). 

To find the absorption lineshape we limit ourselves to 
weak fields by assuming that the induced transition rate is 
low compared to the rate rm of the radiative decay of the 
excited level m and the rates of collisional relaxation of non- 
equilibrium structures in the populations pi(v). In the case of 
heavy buffer particles, the condition M+MB makes it pos- 
sible to distinguish two scales of the collisional relaxation 
rate: in orientations (vi) and in the magnitude (viMIMB) of 
the velocity v of the resonant particles. Here vi is the effec- 
tive transport frequency of elastic collisions of a particle on 
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the level i with the buffer gas. The frequency vi is related to 
the coefficient Di  of diffusion of particles in the state i as 
follows: 

where kg is the Boltzmann constant, and T is the tempera- 
ture. But if the buffer particles are not heavy (MZM,), the 
rates of collisional relaxation in orientations (vi) and in the 
magnitude of v are approximately the same. Thus, the weak- 
field condition can be written as 

P i e r m ,  min yvi ,  yvi - , y 4 1 ,  I :A 
P i e r r n ,  min vi, vi - , y 2 1 ,  I :A 

where y = r l k v ,  and r=r,-r2. In the Doppler limit 
(y 4 1 ), the weak-field condition (2.12) contains y as a fac- 
tor. The reason is that radiation will be absorbed only by 
atoms whose velocity projections v, on the direction of the 
wave vector k find themselves, owing to collisions, in a Ben- 
nett hole of width Av,=rlk=yv.  

The condition (2.12) means that the fraction of atoms in 
the excited state is small (pm9N) and that the levelpopula- 
tions i = n ,I  have a velocity distribution closely resembling 
the Maxwellian: 

In these conditions Eq. (2.6) for Pi(v) has the form (here and 
in what follows we assume that the homogeneous halfwidths 
of the absorption lines, and T2, for the m - n  and m-1 
transitions are equal: r , = r,= r ) :  

Employing the normalization condition p, + pl=N (we 
have allowed for the fact that pm4N)  and assuming that the 
homogeneous halfwidth and the collisional shift Ami are 
independent of v, we find from (2.10), (2.13), and (2.14) the 
following expressions for the population pi(v) and the total 
integral absorption probability P: 

where 

The probability integral with a complex-valued argument, 
w(z), has been tabulated in Ref. 7. Equation (2.16) describes 
the lineshape of absorption of a weak field by alkali-metal 
atoms in an atmosphere of inert buffer gases. When the hy- 
perfine components n and I formally merge (the limit 
ol,-+O), Eq. (2.16) for P becomes, as it should, the formula 
for a two-level system with level degeneracy. 

3. THE CASE OF DOPPLER BROADENING 

In the limit of large Doppler broadening, 

we have the following expressions for the function f(x) 
specified in (2.17): 

If y is so small that 

even for 1x1 @- 1, the first equation in (3.2) also holds for 
f(x). Here the absorption probability P specified by (2.16) 
can be written as 

where S is the dimensionless separation of the hyperfine 
structure components, and xo is the dimensionless detuning 
of the radiation frequency from the arithmetic-mean fre- 
quency wo of the m -n and m-1 transitions. The absorption 
probability P as a function of xo is asymmetric if w, 
#wl. 

The peak (the center of the line) in the absorption P 
specified by (3.4) is reached at the point 

and is displaced in relation to the arithmetic-mean frequency 
oo toward the hyperfine component with the greater statisti- 
cal weight. For 7 ~ i  and 2 3 ~ a  atoms the factor wl- w, is 
equal to 0.25, and the displacement of the absorption-line 
center from the arithmetic-mean frequency oo amounts to 
oln/ 8. 

4. THE LINESHAPE IN A LORENTZ GAS 

Let us now find the probability of absorption of a weak 
field using the kinetic equations (2.1) for the density matrix 
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in the limit of a heavy buffer gas, MIME< 1 (a Lorentz 
gas8). For a Lorentz gas the diagonal collision integrals have 
the f ~ r m ~ . ~  

where 

v  v' 
cos 6 = n n 1 ,  n = - ,  n l = -  , v l = v = l v l ,  i=n , l ,m .  

v  u  

Here v  and v' are the velocities of an absorbing particle 
before and after the collision; u i ( v , 6 )  is the cross section of 
elastic ( v  ' = v )  scattering of an absorbing particle in the state 
i  through the angle 6; and a i ( v )  and v i ( v )  are the transport 
cross section and collision frequency. For a Lorentz gas the 
transport frequency v i ( v )  (we can assume that v i ( v )  is ap- 
proximately equal to vi , with vi defined in (2.1 1)) is respon- 
sible for the collisions that change the direction of the veloc- 
ity but not the magnitude. A noticeable change in the 
absolute value of the velocity of the light absorbing particles 
occurs in MBIMB 1 collisions, while the direction of the 
velocity changes in a single collision. The term in the right- 
hand side of (4.1) with the derivative describes the change of 
the absolute value of the velocity of the absorbing particles 
in collisions. The integral term in (4.1) is the collision inte- 
gral with respect to the change in the direction n of the 
velocity. 

We substitute the collision integral (4.1) into the second 
equation in (2.1) and integrate over the orientations of the 
velocity vector v ,  i.e., with respect to dn14rr. The result is 

where 

In the limit of low radiation intensities Pi+O (more pre- 
cisely, if the conditions in (2.12) are met) we can put 
pm(v)=O and Pi (v )  = O  in (4.3). The vanishing of the term 
with the derivatives implies pi(v)  = piW(v),  so that we ar- 
rive at the previous expressions (2.14) and (2.16) for the 
absorption probability. 

The situation changes dramatically, however, as the ra- 
diation intensity grows, when the conditions in (2.12) are 
already violated but 

Only a Lorentz gas ( M 4 M B )  meets such conditions. What 
these conditions mean is that the stimulated transition rate is 
sufficiently large for isotropic nonequilibrium structures to 
emerge in the population distributions in the absolute value 
of velocity, v ,  on levels n and 1 (the collisional relaxation 
rate for such structures is viM/MB).  At the same time the 
stimulated transition rate is not sufficiently high for aniso- 
tropic Bennett structures to appear on the levels n and 1 
(their collisional relaxation rate is v i )  . 

If conditions (4.5) are met, the term on the right-hand 
side of Eq. (4.3) with the derivatives can be neglected (this 
becomes clear after direct substitution of the solutions (4.9) 
and (4.14) into (4.3) is done), and Eq. (4.3) assumes the form 

rmi~m(v)=NPi(v)* 

This yields 

In contrast to (2.10), which follows from an exact property 
of the collision integral (2.8), Eq. (4.7) is a consequence of 
an approximate property of the collision integral for a Lor- 
entz gas: JSi(v)  dn-0. 

Let us find the absorption probability P i ( v )  when the 
conditions (4.5) are met. Since these conditions impose a 
restriction on the radiation intensity, we can neglect the 
population p,(v) in Eq. (2.6) for Pi(v)  and also assume that 
the amplitude of the anisotropic part of the distribution 
pi(v) on the level i=n , l  is small compared to the amplitude 
of the isotropic part. Then 

where pi(v)  is the isotropic part of the distribution pi(v). 
Here, as in (2.14), we have assumed that the homogeneous 
halfwidths of the absorption lines involving the m-n and 
m - 1 transitions are equal: r = r2= r . Integrating (4.8) over 
the orientations of v ,  we find the probability of radiation 
absorption per unit time (the absorption rate) involving the 
m - i  transition by a particle with a fixed absolute value v  of 
velocity: 

where 

with t=vlC, and i = n , l .  The quantities K ,  y ,  and xi were 
defined in (2.17). 
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To find the populations pi (v )  in (4.9), we must sum the 
first three equations in (2.1) and integrate over the orienta- 
tions of v with the help of the collision integral (4.1). This 
leads to the following equation: 

Ignoring p,(v) in (4.11), allowing for the conditions (4.5), 
and combining (4.11) with (4.7) and (4.9) yields the follow- 
ing expression for the total population with respect to the 
absolute value of velocity: 

where 

I 

a- 
ft" 
d 

0.5 

0 
-2 - I  0 2 

lo-@ 
-0, GHz 

2 7r 

Clearly, the total population N ( v )  differs from the Maxwell- 
ian when vn (v )  # v l ( v ) .  For hyperfine components, how- 
ever, it can be assumed with high accuracy that the transport 
frequencies are equal: v , ( v )  = v l ( v ) .  Then (4.12) yields 
N ( v ) = N W ( v ) ,  and we arrive at the following simple form 
of the expression for the populations pi (v ) :  

For the total integral probability of radiation absorption 
by a Lorentz gas, 

we obtain, via (4.9) and (4.14), the following expression: 

- r2}qn( t )Wl( t )  
PL=- dt .  (4.16) 

wn*l(t) +wl*n(t) 

For two-level particles (win-+O) Eqs. (4.16) and (2.16) give 
the same result: P = P L= J;; K ~ J ( x ) .  

In the Doppler limit (3.1) the absorption probability PL 
specified by (4.16) can be written as 

where xo and S have been defined in (3.4). In contrast to the 
absorption probability P specified by (3.4), the absorption 
probability PL specified by (4.17) is a symmetric function of 
the detuning xo of the radiation frequency from the 
arithmetic-mean frequency wo of the rn -n and m - 1 transi- 
tions. 

FIG. 2. The absorption lineshapes for 7 ~ i  atoms in the Doppler limit y 6 1 at 
T=300 K (o,,= 5.049X 10' s-' (Ref. 10) and S= 0.636). The vertical solid 
short lines F = 1 and F = 2 mark the frequencies in resonance with the m-n 
and m-1 transitions. Curve 1 corresponds to a low radiation intensity (con- 
ditions (2.12). calculation by Eq. (3.4)); curve 2 corresponds to an elevated 
radiation intensity and the strong-collision model (conditions (5.5), calcula- 
tion by Eq. (5.6)); and curve 3 corresponds to an elevated radiation intensity 
and a Lorentz gas (conditions (4.5). calculation by Eq. (4.17)). 

5. DISCUSSION 

Radiation absorption described by Eqs. (2.16) and (4.16) 
is characterized by the lineshapes 

where "max" denotes the maximum of the function. For 
Doppler broadening, with the aid of (3.4) and (4.17) we find 
that 

(5.2) 
Noting that in cases interesting from the practical viewpoint 
(we have in mind 7 ~ i  and 2 3 ~ a  atoms, for which w n = 3 / 8 ,  
wl=  518, and S- 1 ) the ratio $,, l ( 4L)m,  is close to unity, 
we conclude from (5.2) that a L < a .  This means that the 
profile of the lineshape a, is narrower than that of a .  In 
other words, in a Lorentz gas the absorption line for three- 
level particles narrows as the radiation intensity increases 
[i.e., as the conditions (2.12) are replaced by (4.5)] 

The curves 1 and 3 in Figs. 2 and 3 illustrate the alter- 
ation of shape and the narrowing of the absorption line for 
7 ~ i  and 2 3 ~ a  atoms in heavy inert buffer gases. The most 
suitable inert buffer gas from the viewpoint of registering the 
effect is xenon. For the 7 ~ i - ~ e  system with a natural xenon- 
isotope content the mass ratio MBIM is 18.9, and for the 
2 3 ~ a - ~ e  system MBlM=5.7,  so that the condition for de- 
scribing a system by a Lorentz gas, MBIM% 1, is satisfied 
fairly well. As Figs. 2 and 3 show, the linewidth at halfheight 
becomes smaller, as the radiation intensity increases, by a 
factor of 1.33 for 7 ~ i  atoms at T=300 K and by a factor of 
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FIG. 3. The absorption lineshapes for 2 3 ~ a  atoms in the Doppler limit 
y e 1  at T=1000 K (o,,= 1.113X10'~ s-' (Ref. 10) and 6= 1.227). The 
curves 1.2, and 3 comespend to the same situations as in Fig. 2. 

1.50 for 2 3 ~ a  atoms at T=1000 K. The upper part of the 
narrowed line profile (curves 3 in Figs. 2 and 3) is practically 
triangular (the left and right derivatives of aL at the point 
xo = 0 do not coincide). 

The narrowing effect is manifested most vividly in the 
Doppler limit y 4  1 and when the dimensionless separation 
S of the hyperfine components is of order unity. Since S is 
temperature-dependent, so is the size of the effect. For 7 ~ i  
atoms the narrowing effect is stronger at low temperatures 
(T5300 K), while for 2 3 ~ a  atoms this effect is stronger at 
elevated temperatures (T- 1000 K). 

In the limit 

~ z ; l = J = ~ = l ,  ( i = n , ~ ) ,  (5.3) 

which is true in the case of homogeneous broadening, 
y+ 1, or when the dimensionless detuning of the radiation 
frequency is large, Ixil + l  (absorption in the wings of the line 
or in practically the entire absorption line when the separa- 
tion of the hyperfine components is large, 6% 1 ), the absorp- 
tion probabilities P specified by (2.16) and PL specified by 
(4.16) are given by the same expression: 

Thus, in the case of homogeneous broadening (y %- 1) there 
is no narrowing effect. 

The upper bound on the radiation intensity in (4.5) is not 
important for the existence of the effect of narrowing of the 
absorption line and is introduced here solely to simplify so- 
lution of the problem. Only the condition MIME< l is im- 
portant. This makes it possible to distinguish two scales of 
the collisional relaxation rate: in orientations (vi) and in the 
magnitude (viMIMB) of the velocity v of the resonant par- 
ticles. 

It is to be expected that for MIMES 1 an increase in the 
radiation intensity leads to an insignificant shift of the ab- 
sorption line center with the linewidth remaining practically 
unchanged. This is supported by the results of solving the 
problem of the interaction of radiation with a three-level 

A-system in the strong-collision model," which solves the 
problem fairly well when MIMES 1. For instance, for 

and in the event of Doppler broadening (y G 1 ), the expres- 
sion for the absorption probability in the strong-collision 
model follows from Ref. 11: 

(for ~~4 1, which is equivalent to P being much lower than 
y v,, the solution given in Ref. 11 coincides, as expected, 
with the model-free solution (2.16)). An increase in radiation 
intensity from K ~ <  1 to K ~ %  1, which is equivalent to the 
growth in absorption probability from P 4 y v, to P - y v, , in 
the strong-collision model only produces only an insignifi- 
cant shift in the profile of as= PsI(P,),, with practically no 
change in the linewidth. A comparison of the curves I and 2 
in Figs. 2 and 3 makes this evident. 

To clarify the physical picture of the effect of line nar- 
rowing, Fig. 4 gives the distributions of the populations in 
the absolute value of v involving the ground-state hyperfine 
components n and 1 in the Doppler limit y 4 1. Only atoms 
whose absolute value of velocity, t=vlv,  is no lower than 
lxil interact with radiation involving the levels i=n, l ,  i.e., 
the radiation-atom interaction function Yli(t) [see Eq. (4.9)] 
resembles a step beginning at t =  lxil: 

The total absorption probability PL specified by (4.15) is 
proportional to the sum (with weight t) of the areas for 
t31xil under the curves representing the distribution of 
populations on the levels i = n ,1: 

m 

P L = P , + P ~ ,  p ; m j ]  tpi(r) dt,  i=n, l .  
xil 

(5.8) 

Let us now discuss qualitatively the distribution of popu- 
lations on the levels n and 1 (Fig. 4). Owing to optical pump- 
ing, particles with velocities t 2  lxll are "pumped" from the 
level 1 to the level n (through the level m), while particles 
with velocities t21xnl are pumped from n to 1. Only par- 
ticles already on level 1 can land in the velocity interval 
/xllst<lx,l on 1, and this "landing" is possible only as a 
result of elastic collisions on the level 1, with the rate of 
arrival equal to yv,MIMB (we assume that vl= v, and 
MIMB41). For low radiation intensity, such that 
Pi< y v,MIM, , deviation from the Maxwellian velocity dis- 
tribution on the levels n and 1 is observed; only the integral 
population changes (the curves 2 in comparison to the curves 
3 in Fig. 4). The situation changes dramatically, however, 
when the absorption probability is high, Pi+y v,MIMB : the 
population pl(t) in the velocity interval Ixll< t<lxnl is de- 
pleted and is has "no time" to be "filled up" by collisions, 
while the population p,(t) in the same interval grows 
(curves 1 in Fig. 4). 
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in an atmosphere of heavy buffer particles of an inert gas (Xe 
and Kr). Optical pumping to the ground-state hyperfine com- 
ponents is essential for the effect to manifest itself. 

In the presence of collisional transitions between the 
hyperfine-structure components n and 1 (characterized by the 
frequency vln) the condition for the line-narrowing effect to 
occur is formulated as follows (cf. Eq. (4.5)): 

For alkali-metal atoms in an atmosphere of inert gases the 
transition frequency v,, is lower by several orders of magni- 
tude than the transport frequency vi of elastic collisions~ and 
the effect is present if MIMB4 1. But if the buffer gas is not 
inert, usually vln> vi and the condition (6.1) cannot be met. 

In conclusion we estimate the radiation intensity I. at 
which the absorption line begins to narrow. Determining I,, 
from the condition that P i=  y viMIMB, we obtain 

FIG. 4. Populations (in arbitrary units), in the absolute value of velocity, of 
the ground-state hyperfine levels n and 1 in the Doppler limit y e  l at 
wn= 318 and wl= 518. Curves I correspond to an elevated radiation intensity 
and a Lorentz gas (calculations in conditions (4.5) by Eq. (4.14) at 
lxll=0.3 and Ix,l=O.8, which is equivalent to 6= 1.1 and xo=0.25 or 
6= 0.5 and xo= 0.55); curves 2 correspond to a low radiation intensity (cal- 
culations in conditions (2.12) by Eq. (2.15) at Ixll =0.3 and Ixnl =OX; and 
curves 3 correspond to an equilibrium population in the absence of radiation 
or when the radiation frequency is tuned to the arithmetic-mean frequency 
wo of the m-n and m-1 transitions (xo=O or, which is the same, 
Ixnl= lxll). Equations (2.15) and (4.14) yield the same result at xo=O: 
pi(v)=NwiW(v). 

From comparison of the distributions 1 and 2 in Fig. 4, 
allowing for the expression (5.8) for P i ,  it follows that, all 
other things being equal, the absorption probability for the 
distributions 1 is lower than for the distributions 2. In other 
words, the absorption line narrows as the distributions 2 are 
replaced by the distribution 1, i.e., as the radiation intensity 
increases. 

When the radiation frequency is tuned to the arithmetic- 
mean frequency wo of the m-n and m-1 transitions, i.e., at 
Ixol =0, we have Ixnl = IxII - Here the dip at the level 1 and 
the peak at the level n in the distributions 1 (Fig. 4) disap- 
pear (the width of the peak and dip, equal to Ilxnl - lxlll, 
tends to zero as Ixo(+O) and the distributions 1 transform 
into the distributions 3. The absorption probability P, speci- 
fied by (5.8) reaches its maximum, obviously, at xo= 0. Thus, 
the center of the absorption line for P i+y  v,M/MB is at 
point xo= 0, which is confirmed by Eq. (4.17). 

5. CONCLUSION 

We have described the effect of absorption-line field nar- 
rowing in vapors of light alkali-metal atoms ( 7 ~ i  and 2 3 ~ a )  

For 7 ~ i  and 2 3 ~ a  atoms the Einstein coefficient B is 
1 . 3 9 ~  1017wn c ~ ~ . w - ' . s - ~  and 1 . 5 7 ~  1017wn c m 2 - ~ - '  
- 

.s ', respectively. Assuming vn- lo7 s-' (this corresponds 
to a buffer gas pressure of roughly 1 torr), T-5 x lo7 s-', 
and wm- 1, we estimate the radiation intensity lo at 
0.5X10-~ W cm-* for the 7 ~ i - ~ e  mixture and at 
2 X W cmP2 for the 2 3 ~ a - ~ e  mixture. 

When the buffer gas pressure is much lower than 1 torr, 
the impact linewidth of absorption of 7 ~ i  and 2 3 ~ a  atoms is 
small compared to the radiative linewidth (vmi4rm/2) .  
Here the homogeneous halfwidth in (2.7), r = r m / 2  is 
pressure-independent and the intensity I. specified in (6.2) is 
proportional to the buffer gas pressure. At pressures much 
higher than 1 torr the homogeneous halfwidth is proportional 
to the pressure ( r=vmi) ,  SO that I, specified in (6.2) be- 
comes a quadratic function of pressure. 
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