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On the basis of previously obtained equations for the partial atomic dipole densities, which are 
more general than the Bloch equations, we have carried out an analysis of the motion of 
dipoles in strongly optically excited gases. We show that dipole-dipole interactions can cause not 
only dephasing of the dipoles, but also coherent collective oscillations of the optical dipoles 
with characteristic frequency om,. As a result, we have established that coherent alignment of 
dipoles, necessary for the generation of an observable pulse of superradiation, arises under 
the influence of strong dipole-dipole interactions, and not as a result of interactions of optical 
dipoles with the radiation reaction field, as was previously assumed in the theory of 
superradiance. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Superradiant pulses, emerging from strongly optically- 
excited matter, have been intensively studied both experi- 
mentally and However, so far, even the sim- 
plest concentration model of superradiance only takes 
account of the precession of the dipoles in the radiation re- 
action 

Here d is the matrix element of the dipole moment of the 
resonant transition, N is the number of dipoles in a small 
volume v&h3 of the material. Here we have not taken into 
account the precession of the dipoles in the local dipole 
fields Ed-NdIV, even though 

This neglect of the dipole-dipole interactions in the theory of 
superradiance is in no way justified except by the difficulties 
of taking into account the contribution of this interaction to 
the collective coherent motions of the dipoles. 

To describe the motions of the dipole densities @(t) 
observed in optics, as in other kinetic problems? it is neces- 
sary first to obtain the kinetic equations. These equations can 
be derived from simple physical arguments, as was done by 
 loch' in obtaining the equations for the magnetization. An- 
other way to derive the kinetic equations is directly from the 
equations for the density matrix of the system of coupled 
dipole-dipole interactions of the quantum magnetic mo- 
ments, as was proposed in Refs. 6 and 7. 

The Bloch equations were later carried over with great 
success into optics8 to describe the motion of the densities of 
quantum optical dipoles. At present, however, in optics8 and 
the study of magnetic resonances it has been found7 by ana- 
lyzing a large quantity of experimental data on the decay of 
free polarization, echo effects, saturation, etc., that the Bloch 
equation provides a good description only of the dephasing 
of ensembles of dipoles precessing in external fields and lo- 
cal dipole fields, the latter various in magnitude and direc- 

tion. Therefore these equations cannot describe the collective 
coherent motions of the dipoles in a superradiant field. 

In this regard note that recently, by treating the elemen- 
tary dynamic process in the form of precession of the dipoles 
in external and local dipole fields, kinetic equations were 
obtained9*10 which are more general than the Bloch equa- 
tions, for the partial densities u,(h,t), cr=x,y ,z of the quan- 
tum dipoles. Earlier, analogous equations for the magnetic 
dipole densities were approximately derived in Ref. 1 1  from 
the equations for the density matrix of the system of coupled 
dipole-dipole interactions of the magnetic moments. Here 
ua(h,t) is the density of dipoles found at time t in the lon- 
gitudinal local dipole field h. Below for brevity we will call 
such densities layer polarizations. Recall that in a magnetic 
resonance and in optics we call those components of a vector 
longitudinal that are parallel to a strong constant magnetic 
field I& or to the direction of propagation of electromagnetic 
waves. It should also be emphasized that in optics a longitu- 
dinal local field is not a true field, but an auxiliary field. 
convenient for describing optical phenomena. 

With the help of the kinetic equations for the layer po- 
larizations collective coherent oscillations of dipoles were 
first described in Ref. 9, where these oscillations have fre- 
quency 

where o d = d 2 ~ / h v ,  o, is the resonant frequency of an 
atom, and a-1. Such oscillations, as was shown in Ref. 9, 
give rise to radiation peaks at frequencies o,?wmc close to 
o, , observable in strongly optically-excited gases in the ex- 
perimentally well-studied effect of spectral condensation of 
radiation. 12,13  

In order to use the kinetic equations for the layer polar- 
izations to explain the motion of the dipoles under superra- 
diant conditions, we added the contributions from the dipole 
precession in the radiation reaction field which are nonlinear 
in the dipole densities to the rates of variation of the layer 
polarizations? As a result, solutions of the kinetic equations 
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were obtained for the first time in Ref. 9 for small times 
t< r, TIN for w,t% 1 in the form of a total complex dipole 
density [g(h) is defined below in Eq. (8)]: 

(Here, T is the spontaneous transition time of the atom, r is 
the characteristic time of variation of the local field h under 
the influence of the thermal motion of the atoms.) Thus, it 
was shown that dipole-dipole interactions are manifested in a 
superradiant field in the oscillations of the dipoles with fre- 
quency w,,, large in comparison with the characteristic fre- 
quency of the local field ad. 

The goal of the present paper is to use solutions of the 
kinetic equation for the layer polarization to explain how the 
dipole-dipole interactions in strongly optically-excited mate- 
rials lead to dephasing and to coherent collective oscillations 
of the dipoles with frequency om,, and also, taking these 
interactions into account, to trace out how the process of 
collective spontaneous radiation proceeds at arbitrary times 
all the way to complete de-excitation of the material. 

2. KINETIC EQUATIONS FOR SUPERRADIATION WITH 
ACCOUNT OF THE DIPOLE-DIPOLE INTERACTIONS 

The kinetic equations for the layer polarization with ac- 
count of the interactions of the dipoles with each other and 
with the radiation reaction field were obtained in Ref. 9 for 
the concentrated model of Dicke in the form (the fields h 
below are given in frequency units) 

where 

is the distribution function of the longitudinal local dipole 
fields: 

y = 3 . 8 d 2 ~ l ~ ~ ,  117 = ~ ( N I V ) " ~ ,  (9) 

it is the thermal velocity of an atom, and its spontaneous 
transition rate is 

The contributions to the rate of variations of the layer polar- 
izations which are proportional to NIT are associated with 

the radiation reaction field, and those proportional to 117 are 
associated with random variations of the fields h due to the 
thermal motions of the atoms. 

The first term on the right-hand side of Eq. (5), thanks to 
the choice of layer polarizations as the variables, exactly 
describes the contribution to the rate of variation of the layer 
polarizations from the precession of the dipoles in the field h. 
This contribution is characterized by the first of the two 
terms in the Hamiltonian of the secular part of the dipole- 
dipole interactions, which can be represented in the form7v9 

(11) 

Here a(:) are the operators of the components of the atomic 
pseudodipoles, identical with the Pauli matrices, 

and rik and Oik are the magnitude and polar angle of the 
vector joining the ith and kth dipoles. His in Eq. (11) is the 
isotropic part of the Hamiltonian. This part simultaneously 
describes the precession of the dipoles in isotropic, local di- 
pole fields and the exchange of polarizations between the 
pseudospins. Its contribution to the rate of variation of the 
layer polarizations is easily determined from five simple 
properties which it possesses. Since His  corresponds to pre- 
cession of the dipoles in the local fields, its contribution 
should be linear, first, in the field h, and second, in the layer 
polarizations F(h,t). Since His  contains H z ,  within itself, its 
contribution should also contain a term proportional to ih- 
F(h,t). Finally, since the contribution of His describes the 
exchange of polarizations between the layer h and all the 
remaining layers, it should vanish when the polarizations are 
equal and upon integration over all the layers. The contribu- 
tion to the rate of variation of the layer polarizations corre- 
sponding to all these conditions can be represented in the 
form 

It should be emphasized that it was specifically the 
added term H: to the well-known two-level Hamiltonian of 
noninteracting atoms8 that made it possible in Ref. 9 to take 
multiparticle effects into account, which, in particular, are 
manifested under superradiant conditions in the coherent col- 
lective oscillations of the dipoles. At the same time, on the 
basis of the commonly used two-level model, which does not 
take H: into account, the Bloch equations were successfully 
used in Ref. 8 within the framework of resonance optics to 
describe just those phenomena in which the dipole-dipole 
interactions cause only a dephasing of the dipoles. 

Let us move on now to analyze, with the help of kinetic 
equations (5) and (6), the contribution of the dipole-dipole 
interactions to the motion of the optical dipole densities in a 
gas strongly excited by a resonant field. We will take it to be 
enclosed in a volume with linear dimensions l e h ,  which 
will allow us to analyze the motions of the dipoles without 
accounting for wave effects in terms of the concentrated 
Dicke model. 
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3. SOLUTIONS OF THE KINETIC EQUATIONS FOR THE 
LAYER POLARIZATIONS 

One can convince oneself by direct substitution in the 
kinetic equations (5) and (6) that these equations are satisfied 
by the solutions 

where 

and 

where for (h2)> 1 / ( 2 ~ ) ~  we have 

and fo(t) and mz,(t) are defined by the system of equations 

It should be emphasized that relation (15) is approximately 
applicable for the case under consideration of strongly opti- 
cally excited matter characterized by roughly identical popu- 
lations of the upper and lower resonant levels. 

Under the condition 

which for rates of change of the atomic environment 
117 =ni13v, where no is the atomic density, is well satisfied 
for n o < l ~ 1 5  ~ m - ~ ,  it is possible to neglect terms in Eq. (16) 
proportional to 117, which leads to k1,2= + i m. 

Equations (18) and (19) then completely coincide with 
the kinetic equations derived in Ref. 13 for the concentrated 
Dicke model,' which do not take dipole-dipole interactions 
into account. These equations describe superradiance as the 
result of rotation under the influence of spontaneous transi- 
tions of a gigantic pseudodipole proportional to N 

The appearance in solutions (14) of the decaying peri- 
odic factors which are proportional to exp(+iw,,,-112r)t 
and are absent in Dicke's theory1 implies that under the in- 
fluence of the dipole-dipole interactions spatially homoge- 
neous, coherent oscillations of the dipoles develop with large 
frequency (3). It is specifically these factors that distinguish 
the solutions of kinetic equations (5) and (6) from the solu- 
tions of Dicke's kinetic equations.' 

To account for the appearance of a large frequency, we 
will make use of Eq. (5), discarding the terms proportional to 

117 and NIT, which are small in comparison with the fre- 
quency (3). Multiplying Eq. (5) by g(h) and hg(h) and in- 
tegrating with respect to h, we find 

It is clear from these equations that an effective longitu- 
dinal field enters into the kinetics of strongly optically- 
excited dipoles not through the average dipole field wd, but 
through the root-mean-square field (3), which is much larger 
in gases. The solution of Eqs. (22) and (23) has the simple 
form 

It is clear from these solutions that under the influence of 
dipole-dipole interactions in strongly optically-excited mat- 
ter, spatially homogeneous oscillations of the dipoles are es- 
tablished, leading to superradiation of a macroscopic sample. 

In order to answer the question of the appearance of 
identical orientations of the dipoles over an entire macro- 
scopic sample, it is important to turn our attention to the 
work of Rehler and ~ b e r l ~ . ' ~  Assuming simultaneous align- 
ment of all the atomic dipoles of an extended sample and 
numerically calculating the intensity of the coherent radia- 
tion emitted by all the atoms of the sample, they succeeded 
in determining for some simple sample shapes the radiation 
reaction field acting on the atoms at the time t and in obtain- 
ing a kinetic equation for the optical dipole densities which 
provides a good description of the superradiant pulses ob- 
served in extended ~ a m ~ l e s . ~ , ' ~  

In this equation the shape of the extended sample is 
taken into account by a constant p, determined by numerical 
cal~ulation.~ The equation itself turns out to coincide with 
the Dicke equation1 for p= 1. It has been used successfully 
to describe superradiant pulses in extended samples having 
the same shape as in the concentrated model. 

In connection with the importance in the superradiance 
phenomenon of the mechanism by which the dipoles become 
coherent, we will consider it in more detail in the following 
section. 

4. MECHANISM FOR COLLECTIVE COHERENT 
OSCILLATIONS OF THE DIPOLES 

We will now show that coherent oscillations of dipoles 
can also be considered as periodic echo chains. It is interest- 
ing to note that such oscillations were first detected7 back in 
the 1950s in the context of nuclear magnetic resonance in the 
decays of the free polarization of crystalline materials. 

The initial segment of these decays is well described by 
a Gaussian curve which characterizes the dephasing of the 
magnetic dipoles in solid materials with high density of mag- 
netic dipoles.7 Then, after a significant (roughly a factor of 
ten) decay of the magnetization over five periods, damped 
harmonic oscillations of the coupled dipole-dipole interac- 
tions of the magnetic dipoles were ob~erved.'~ 
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These oscillations are echo chains. Such an interpreta- 
tion is convincingly confirmed by the close coincidence of 
the observed decays15 with those obtained by molecular dy- 
namics calculations in Ref. 16, which take account of the 
precession of the dipoles in the local dipole fields. 

Obviously, precession of the dipoles in the local fields 
can cause only phasing and dephasing of the dipoles. These 
processes are manifested in the calculated decays as periodic 
sequences of echos. 

Because the precession of magnetic and optical dipoles 
is identical in magnetic or electric local dipole fields, it is 
obvious that coherent oscillations of dipoles in optics can 
also be considered as periodic echo sequences. 

~t is interesting to note that in the case w0,,*6, 
where 6 is the mean value of the Doppler shift, the linearly 
polarized oscillations of the dipoles suppress the Doppler 
shifts. In this case the influence of the Doppler shifts on the 
oscillations can be estimated from perturbation theory. 

For this purpose it is enough to note that during the first 
and second half-periods of an oscillation with period 
To=2dom, the Doppler shift 8 will create polarization in- 
crements F ~ % ~ ,  identical in magnitude, but of opposite 
sign. As a result, the contribution of the Doppler shift to the 
dephasing of the dipoles decreases to 82/w,, . 

In the case of circularly polarized dipole oscillations the 
Doppler shifts are not suppressed. Therefore, in strongly 
optically-excited gases the appearance of linearly polarized 
coherent oscillations is more probable. 

5. CONCLUSION 

In conclusion we may note that the kinetic equations for 
layer polarizations have been successfully applied in work 
on nuclear magnetic  resonance^'^^" and electron pararnag- 
netic  resonance^'^ to analyze a number of other problems in 
which the dipole kinetics could not be described by the 
Bloch equations. 

The kinetic equations for the layer polarizations, for ex- 
ample, have been used successfully to describe nuclear mag- 
netic resonance spectra in quantum crystals of 3 ~ e  in solu- 
tions with arbitrary radical concentration.1° In crystals 
exchange interactions characterize the influence of tunnel 
motions of the atoms on the precession of the dipoles in the 
local dipole fields, but in solutions of radicals they cause 
polarization exchange between the electron spins. 

We will use Eq. (13) to account for the contribution of 
these isotropic interactions to the kinetic equation for the 
layer polarizations, replacing h by hex (Ref. 10): 

where 

With the help of kinetic equations (5) and (6) for NIT=O 
with the added contributions (25), it was possible in Ref. 10 
to achieve a good description of the spectra observed in 

quantum crystals and radical solutions, with the exception of 
the high-frequency asymptotic behavior. In Ref. 10 it was 
shown that to describe this asymptotic behavior it is neces- 
sary to take account of memory effects in the spectral diffu- 
sion, i.e., in the term in the kinetic equations proportional to 
117. 

Memory effects have no influence on the contributions 
of the dipole precession to the rate of variation of the layer 
polarizations because the precession rates are determined by 
the spin and the local field taken at the same instant of time. 

It is important to emphasize here that in addition to the 
results considered above, the kinetic equations for the layer 
polarizations were used in Ref. 9 to obtain the Bloch equa- 
tions for the optical dipole densities in gases and liquids, and 
in Ref. 17, to obtain the kinetic equations for the layer po- 
larizations describing saturation effects in solids. For wl+wd 
(o l  is the amplitude of the variable magnetic field in fre- 
quency units), the latter reduce to the kinetic equations ob- 
tained in Ref. 18 for the magnetization and inverse tempera- 
ture of the reservoir of the dipole-dipole interactions, which 
accurately describe the spectra observed19 in nuclear mag- 
netic resonances. 

Summarizing, we can say that the kinetic equations for 
the layer polarizations obtained here have made it possible 
for the first time to describe on a single basis a wide range of 
resonance phenomena observed in optics, nuclear magnetic 
resonance, and electron paramagnetic resonance. 

In conclusion it is interesting to pursue the following 
analogy. In a way similar to that in which simple physical 
considerations in quantum statistical lead to the 
establishment of the form of the equilibrium density matrix 

(& is the Hamiltonian of the material), which determines all 
the thermodynamic properties of the material, five simple 
physical considerations (see above) in kinetics lead to equa- 
tions for the layer polarizations which well describe various 
motions of magnetic and optical dipole densities. 
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