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We study the interaction of two arbitrarily polarized oppositely propagating single-frequency 
plane waves in a resonant medium of randomly moving two-level systems. We find that in a 
medium of isotropically oriented molecules the oppositely directed waves always write a 
spatial lattice of the dielectric constant E ,  on which they rescatter into each other. Collinearly 
polarized waves interact in such a way that the stronger wave has the greater local growth 
rate. On the other hand, as a result of interaction of orthogonally polarized waves the weaker wave 
has the greater local growth rate. Interaction alters the eccentricities and the orientation of 
the polarization ellipses of the oppositely propagating waves. We study the polarization states as 
functions of the intensities and polarization characteristics of the oppositely propagating 
waves, of the detuning S of the field frequency from the resonant transition frequency, and of the 
medium parameters. When S= 0 holds, the fields of the oppositely propagating waves are 
found to transform in such a way that far from the cross section under examination their 
polarizations tend to be erthogonal. When the detuning is finite, the axes of the polarization 
ellipse of each wave undergo an additional rotation in a direction determined by the sign of S. 
When particle diffusion in the medium is at its maximum, the polarization state of each 
wave does not change and the equations for the intensities are transformed into the equations of 
radiation transfer. 63 1995 American Institute of Physics. 

1. INTRODUCTION 

The principles of operation of lasers, bleachable filters 
reversing the wavefront at a mirror, and many other devices 
of quantum electronics are based on the interaction of two 
oppositely propagating waves of optical radiation with a 
resonant medium. Generally the fields of the waves can be 
polarized arbitrarily and their intensities can even be similar 
to the saturation field intensity. The effectiveness of the non- 
linear interaction of waves in a resonant medium depends on 
the wave polarizations, as a result of which the polarizations 
of the oppositely propagating waves change.' 

In describing the interaction of field and matter serniclas- 
sically it is customary to think of the resonant medium as a 
collection of two-level quantum systems whose vector 
&,=d of the matrix elements of the signal-transition dipole- 
moment operator is collinear to the field.2 Such a model me- 
dium enables using a single scalar quantity to describe the 
electric field. The model is believed to be proper only for a 
linearly or circularly polarized field E and only for sub- 
stances whose particles can form regular patterns (say, crys- 
tals). In other cases the "scalar" description does not de- 
scribe the real situation properly for at least two reasons. 
First, all resonant media except crystals consist of molecules 
randomly oriented and moving (or transferring 
e~citation).~-~ Second, the vector d can be polarized either 
linearly if in the transition of a particle from one energy level 
to another the total angular momentum I J/ of the molecule is 
conserved, or circularly if [ J I  changes by one unit.*6 Thus, 
polarization of d does not generally coincide with the polar- 
ization of E, and it is unclear whether the polarization of the 
field and the polarization of the dipole moment of a unit 

volume of the medium, P, are identical. If not, the wave 
polarizations change and nonlinear polarization effects be- 
come possible. There is practically no way in which the 
"scalar" description scheme can be employed for interpret- 
ing such phenomena. In such cases it becomes necessary to 
take into account the random orientations and movements (or 
excitation transfer) of the resonant particles. In spite of its 
importance, no semiclassical theory that describes the inter- 
action of high-power radiation with matter and allows for the 
motion of randomly oriented molecules has been very well 
developed. One of the goals of this paper is to partially 
eliminate this deficiency by using the example of solution of 
the specific physical problem of interaction of arbitrarily po- 
larized oppositely propagating waves in an active resonant 
medium. 

We know of several treatments that use the semiclassical 
approach in conjunction with a description of certain aspects 
of the interaction between radiation and an isotropic medium 
of randomly oriented particles. Several important results of 
these works contradict each other, either partially or com- 
pletely . 

Pantell and puthoff3 gave an equation of motion for the 
macroscopic polarizability P of an isotropic resonant me- 
dium obtained by a quantum mechanical method with an 
approximation in which the active levels of all the molecules 
have the same populations irrespective of the molecules' ori- 
entations and position in space. They found that P is collin- 
ear to the active field vector E. This result correlates with the 
implications of Refs. 1 and 5, in which the general laws 
governing the interaction of single-frequency laser radiation 
(oppositely propagating waves, for one thing) with a reso- 
nant medium are examined. There it was postulated that the 
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nonlinear susceptibility of a resonant medium depends on the 
square of the absolute value of the field strength, and it was 
thereby assumed that in such a medium a strong elliptically 
polarized field E does not induce anisotropy. From the results 
of Refs. 1 and 5 it follows that the polarization state of a 
single travelling wave never changes and that in the case of 
two oppositely propagating noninterfering waves the popula- 
tion difference of the resonant medium remains spatially ho- 
mogeneous. 

On the other hand, ~ e m ~ i s k i ~  and Casperson and 
~ e ~ s e r , 8  who studied the energy and polarization character- 
istics of dye lasers with coherent polarized pumping, showed 
that a polarized strong laser field applied to an isotropic reso- 
nant medium induces anisotropy. A similar result follows 
from the approximate expression, given in Ref. 4 and ob- 
tained by an iterative method, for the off-diagonal element of 
the density matrix of a two-level molecule placed in a weak 
resonant field. The conclusions agree with those arrived at in 
Refs. 9-14, which describe research involving the propaga- 
tion of an elliptically polarized wave in a homogeneously 
broadened resonant medium of randomly oriented immobile 
molecules (in a solid amorphous substance). For one thing, 
in Refs. 9-13 it was found that owing to saturation of the 
resonant transition12,13 the polarization vector of the nonlin- 
ear response of the medium, P, does not coincide with the 
elliptical polarization of the active field E, and that because 
of such induced anisotropy the polarization ellipse of the 
field changes its parameters. Moreover, as established in Ref. 
15, molecular motion weakens this anisotropy. 

This paper studies the laws governing transformation of 
the polarization and energy characteristics of oppositely 
propagating waves in an inverted resonant medium of ran- 
domly oriented two-level particles with a signal transition in 
which IAJI = 1, a transformation that occurs because polar- 
ized laser radiation induces anisotropy in the nonlinear di- 
electric constant. 

2. THE EQUATIONS FOR ARBITRARILY POLARIZED 
MONOCHROMATIC RADIATION PROPAGATING IN A DENSE 
RESONANT MEDIUM 

Allowance for the motion of the resonant objects, which 
is one of the most important sections of the theory developed 
here, is based on three well-known and now often used ideas 
about the properties of objects in the microworld. First, the 
magnitude and polarization state of the vector d of the matrix 
elements of the signal-transition dipole-moment operator are 
assumed to be determined exclusively by the position of the 
atoms and electrons inside the molecule, with the result that 
the direction of d is determined entirely by the orientation of 
the molecule's symmetry axes in space.16 Second, particles 
in fluids, while rotating and moving according to the laws of 
thermal motion, retain their shape. Finally, in glasses and, for 
high dye concentrations, in liquids the exchange interaction 
can generate excitation transfer between neighboring reso- 
nant molecules oriented arbitrarily in relation to each other. 
These ideas make it possible to write equations that allow for 
the changes in similarly oriented excited and unexcited mol- 

ecules brought on not only by the interaction with the reso- 
nant field but also by the rotation and movement in space or 
by excitation transfer. 

Let us examine molecules whose vectors d are collinear, 
i.e., are oriented in space in the same way. The energy state 
of each such particle is described by the equation of motion 
of the density matrix 6 of a two-level system with an opera- 
tor W= - ( i ~ )  of the energy of interaction with an external 
field. Assuming that the concentration N of the resonant ob- 
jects is constant, we introduce the following variable quanti- 
ties related to the density-matrix elements f i i j  : 

which have the meaning of partial number densities of ex- 
cited (N2) and unexcited (N1) molecules that are identical in 
their parameters and have the same orientation in space. 
These quantities depend on the interaction energy (dE) and 
are therefore functions of the coordinates of the observation 
point and of the angles determining the directions of d and E 
at this point. 

According to the laws of diffusion, the amount by which 
Brownian motion in fluids and excitation transfer in solids 
and liquids reduces the spatial inhomogeneities in the num- 
ber densities Nj and their differences over a time interval 
St is 

In gases, where these laws are well known, the diffusion 
coefficient D = ii2/3v is determined17 by the average molecu- 
lar thermal velocity ii = dm and the collision frequency 

which depend on the pressure P and temperature T of the gas 
(k is Boltzmann's constant) and the particle mass m and 
radius a. 

By analogy with translational motion, it can easily be 
established that the random rotation of molecules levels out 
the angular dependence of N2,, . Actually this process is the 
diffusion of the orientations of molecules and is similar to 
the process, studied by ~ e b ~ e , ' ~  of variation of the angular 
number density of particles whose constant dipole moments 
form an angle with a certain preferred direction in space. In 
addition to Ref. 18, other rigorous  method^'^.^^ can be used 
to calculate the variations in the angular number density, 
SNj, in a time interval St. The result is equations of the 
form 

where An is the angular part of the Laplacian operator in a 
spherical system of coordinates. Note that using such a rota- 
tional diffusion equation, Phillion et a1." described the varia- 
tion in the number density in a dye solution of molecules 
with the same spatial orientations. For a gas the characteristic 
time of orientational (rotational) diffusion can be expressed'8 
in terms of the collision frequency v, the molecular volume 
v=4.rra3/3, and the number density N, of the colliding par- 
ticles as r= 6VN,lv. 
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The motion of resonant objects with the same physical 
properties resembles self-diffusion of excited and unexcited 
molecules. Allowing for such self-diffusion of molecules in a 
resonant medium, as shown in Ref. 15, amounts to changing 
a single material equation for the partial density of the popu- 
lation difference, n, in the complete semiclassical system of 
equations. The equation acquires two terms, DAn and 
(l/r)Ann, which describe the variations in n caused, respec- 
tively, by the random translational and rotational movements 
of the particles (or migration of the particle energy states). 
The result is an equation of the Einstein-Fokker-Planck 
(EFP) type in which the coefficients of diffusion D and of 
orientational diffusion 117 depend on the energy-level struc- 
ture, the aggregate state of matter, the particle number den- 
sity, and other properties of the medium. 

The above ideas and the results of Ref. 15 allow us to 
write a system of equations for the interaction of the field E 
and a dense resonant medium: 

where the (partial) population difference n = N(pz2- p l) 
and the (partial) polarizability of a unit volume of the me- 
dium, = <tWF12>, depend on the direction of d 
and are proportional to the number density N of resonant 
particles and to the corresponding elements pij of the density 
matrix 6 of a two-level object with a fixed orientation in 
space; no is the steady-state value of the partial population 
inversion in a zero field; TlP2 are, respectively, the longitudi- 
nal and transverse relaxation times; vf is the speed of light in 
the matrix of the medium; a is the conductivity of the me- 
dium, which determines linear losses; and fi is Planck's con- 
stant. All other notation is practically standard. 

The angular brackets (. . .) stand for averaging over the 
possible orientations of the vectors d=&,ldl and, generally, 
over other statistical parameters, and the bar designates av- 
eraging over the high-frequency oscillation period. Hence 
the system of equations (4) must be augmented by an equa- 
tion for the distribution function W over the orientations of 
d. For liquids and solids W must be assumed to depend nei- 
ther on time nor on the acting field. For gases the variations 
in W due to the resonant field can be estimated by the ap- 
proach developed by Gaponov and ~ i l l e r . ~ ~  Estimates, 
whose justification is given in Ref. 15, show that at room 
temperature and in the optical range the molecular distribu- 
tion function W over the orientations of d can be assumed 
isotropic with an accuracy of 10-~-10-~.  In what follows 
we assume, for the sake of simplicity, that W is always iso- 
tropic, so that the system of equations (4) is supplemented by 
an additional relationship: 

The two constitutive equations in (4) are valid for amor- 
phous solids, liquids, and dense gases with a homogeneously 
broadened luminescence line and a particle collision fre- 
quency v= T i  ' exceeding the Doppler linewidth (olc)  ii, 
which means that for such systems the approximation 
I ( u v ) ~  121 9 1R" 12/~21 is valid. For solids, liquids, and dense 
gases the transverse relaxation time T2 can be much shorter 
than the time TI of longitudinal relaxation.') The steady- 
state solution 

of the system of equations (4) satisfy the following equa- 
tions: 

where K =  4 ~ k n ~ ( d ~ ~ ~ ~ 1 [ 3 h ~ ( l +  s2)] is the linear gain and 
r = ~ T U ( ~ / E )  'I2/c the linear absorption coefficient in the 
medium, 8= ( 0  - 0 12) T2 is the dimensionless detuning of 
the frequency of the field from that of the luminescence line 
center, k= wlvf is the wave number, and t= r/T1 is a small 
parameter characterizing the diffusion of orientations of the 
dipole moments d of the resonant tran~ition.~) In Eqs. (7) and 
(8) the field 6 is normalized to a field 

whose strength exceeds that of the commonly accepted satu- 
ration field strength by a factor of three. 

Before we begin a detailed study of the problem of 
propagation of two oppositely propagating waves, let us es- 
tablish the equivalence of the two theoretical approaches to 
describing the interaction of arbitrarily polarized high- 
intensity radiation and resonant media developed in Refs. 1 
and 9. In one approach1~3-57'2-15 the resonant medium is a 
collection of two-level objects (atoms or molecules) whose 
polarizations are the same in both magnitude and state but 
whose vectors d of the matrix element of the operator of the 
signal-transition dipole moment are randomly oriented in 
space. 

The other approach was developed by Nasyrov and 
shalagin9-" for a resonant medium where the resonant ob- 
jects (atoms or molecules) are in a state of quasiclassical 
rotational motion with large angular momenta J. There it was 
shown that the usual equations for the density matrix that 
allow for degeneracy can be transformed into equations for 
two nondegenerate states that take into account the orienta- 
tion of J via two angles, 6 and $. 

To compare the two approaches we use the steady-state 
solution of Eq. (8) for an inverted medium of isotropically 
oriented molecules (no= const>O) in the simple limit of the 
absence of the diffusion of particles and their orientations 
(D = 0 and r- = ,$- ' = 0) to examine the angular depen- 
dence of the partial population difference 
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on the assumption that the distribution of n is formed as a 
result of the optically polarized field 

of a plane wave propagating along the z axis acting on the 
two-level  molecule^.^) For a medium of molecules character- 
ized by a signal transition wit!! conservation of angular mo- 
mentum (the emission Q-branch) and by a linearly polarized 
unit vector do of each particle arbitrarily oriented in space, 
i.e., 

the expression for the partial population difference 

n=no{i+3[(&Yxcos+)2+(8; .  sm+)2]sin2 8)-' (12) 

coincides, except for minor differences in notation and nor- 
malization, with the corresponding Eq. (3.8) in Ref. 9 for the 
population difference of molecules with the same direction 
of the angular momentum J. For media of the second type 
consisting of molecules characterized by a signal transition 
with the angular momentum changing by a unit, I A J( = 1, 
and by a circularly polarized unit vector "; of each particle 
arbitrarily oriented in space, i.e., 

the expression for the partial population difference 

n=no(1+~(@+t$)(1+cos28)+(@ 

coincides, except for the differences in notation and normal- 
ization mentioned, with Eq. (3.10) in Ref. 9 (transformed to 
the same compact form) for the population difference in the 
molecules characterized by transitions with J,--+J,+ 1. The 
fact that the compared expressions coincide suggests that 
there is total equivalence of the two semiclassical approackes 
to describing the interaction of polarized radiation of infi- 
nitely high intensity and a resonant medium of randomly 
oriented molecules. 

Note that when there is orientational diffusion, Eqs. (12) 
and (14) may change considerably, and so will the result of 
propagation of elliptically polarized radiation in such a me- 
dium. As shown in Ref. 14, where the polarization instability 
of a traveling-wave laser was studied, the critical excess of 
pumping above the threshold value at which the steady-state 
lasing mode breaks down may decrease by tenfold or more 
owing to a decrease in orientational diffusion. 

3. STATEMENT OF THE PROBLEM AND THE EQUATIONS 
FOR THE VECTOR AMPLITUDES OF THE OPPOSITELY 
PROPAGATING WAVES 

Let us examine the propagation in an active medium of 
two oppositely propagating plane waves, 

~=G+(z)exp( - ikz)+G-(z)exp(ikz), (15) 

whose complex-valued amplitudes G,(z) vary little over one 
wavelength A.  We assume that the waves are polarized ellip- 
tically, with the result that each can be represented in the 
form of two circularly polarized waves rotating in opposite 
directions, 

with the complex-valued amplitudes fi= Uexp(icp,). The po- 
larization ellipse of each travelling wave (say the wave G+) 
is determined by the three parameters: the major axis 2(A 
+ B), the ratio s+ = (A -B)I(A + B) of the axes, and the 
angle cp+=(cpA- cpB)/2 between the major axis and the x 
axis. An important role in describing the polarization effects 
that emerge in the interaction of two oppositely propagating 
waves is also played by the relative position of the field 
vectors, which is specified by the angle 

between the major axes of their polarization ellipses. 
Equation nlno in (4) is real and contains the variable 

coefficient 

whose components wo and G depend on the angular coordi- 
nates and the complex-valued amplitudes of the interacting 
waves. We write the solution of this equation in the form of 
series in spatial and spherical harmonics, 

in which the coefficients (C:) 1 and (5:) depend weakly on 
z. Substituting (19) into (7) and employing the Van der Pol 
method, we arrive at the truncated equations 

for the complex-valued amplitudes of the oppositely propa- 
gating waves, with Q- = Q: . From the right-hand sides of 
Eqs. (20) we see that to describe the propagation of oppo- 
sitely propagating waves in a resonant medium we only need 
to find the mean value and the first spatial harmonic of 
n!no. The first term on the right-hand side of each equation 
in (20) gives the contribution to the gain of a wave provided 
by the mean (saturated) population difference, and the sec- 
ond term gives the contribution to the gain of a wave pro- 
vided by the rescattering of the other (oppositely propagat- 
ing) wave on the lattice of the nonlinear dielectric constant. 
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The spatial harmonic amplitudes ~ d O , $ , , z )  can be 
found by solving the following infinite system of coupled 
equations: 

In deriving (21) from Eq. (8) we used the approximation 

v2{d,exp( - 2i fkz )  = - 4 f2k2d,exp( - 2i fkz), (22) 

which is less accurate than the method used in deriving Eqs. 
(20). Besides 5, Eq. (21) contains another small parameter, 
p= 1 / 4 k ' ~ ~ ~ ,  which characterizes the magnitude of the 
spatial diffusion of the particles.4) Because of this diffusion 
the ratio IQ f / l l ~ f -  1 of the amplitudes of the spatial har- 
monics of the population difference proves to be small (equal 
to p by order of magnitude). Hence if the calculation accu- 
racy is fixed, there could be a reduction in the number of 
equations in (21). 

Using the properties of spherical harmonics, we can ob- 
tain a system of coupled linear equations of the band type in 
the coefficients E Y ~ E , ~ )  and 6 3 5 , ~ ) .  The system consists 
of one inhomogeneous equation and an infinite number of 
homogeneous equations. The fact that each equation has two 
small parameters makes it possible to seek the unknown co- 
efficients in the form of power series in 5 and p .  Employing 
this method, we can calculate all the necessary coefficients 
(C;),,,  and ( f i ~ ) o , ,  and hence find, with any preassigned 
accuracy, the angular distributions of the mean value 
Qo(O,@) and the amplitude of the first spatial harmonic, 
Q , ( 0 ,  *), of the partial population difference. These func- 
tions are solutions of the equation for nlno and depend on 
the quantity I@kl in (8), which is proportional to the energy 
of the interaction between an arbitrarily polarized molecule 
and the field and differs for the resonant media of the two 
different types. 

In order to be specific, let us consider the active medium 
of molecules whose signal-transition dipole moments are cir- 
cularly polarized. For such a medium the unit vector do of a 
particle arbitrarily oriented in space has the form (13), and 
the angular dependence of 3 1 @ ~ 1 ~  is determined by the 
functions 

where the following notation has been employed: 

the right-hand sides of the equations for the complex-valued 
amplitudes of the circularly polarized oppositely propagating 
waves, 

These components form five combinations: 

The main laws governing the interaction of oppositely 
propagating waves in the resonant medium considered here 
can be established by calculating ( e ~ ) ~ , ,  and ( f i ; )O, l  to first 
order in e and p and then finding the coefficients 

In this case fourteen orthogon;*l components of the expan- 
sion of nlno in spatial and spherical harmonics contribute to 
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which give the contribution of each physical mechanism to 
the gain of a separate circularly polarized wave. 

4. THE INTERACTION OF COLLINEARLY AND 
ORTHOGONALLY POLARIZED WAVES 

It is assumed that interfering waves in a nonlinear me- 
dium always write a dielectric-constant lattice. In this termi- 
nology interfering waves are those oppositely propagating 
waves whose interaction with the resonant medium forms the 
first spatial harmonic of the population difference. 

4.1. Let us examine the interaction of oppositely propa- 
gating waves that are circularly polarized and are character- 
ized by the same (right) rotation of the electric field vector, 
i.e., B = b = 0. In this case from Eqs. (24)-(27) we first find 
4; and then from Eqs. (25) we obtain the equations 

for the intensities J +  =A2 and J -  =a2. Equations (28) show 
that the stronger wave has a greater local gain. Qualitatively 
this conclusion coincides with the results of the "scalar" 
theory?3-25 according to which the mechanism of redistribu- 
tion at the first spatial harmonic of n/no ensures that the 
growth of the stronger wave dominates. 

From Eqs. (25) we can find the growth rates 

(29) 
of the field perturbations in the form of oppositely rotating 
weak waves (B,b+ 1) and establish that the gains are posi- 
tive if the linear absorption r is fairly small. This means that 
the solution of system (28) is convectively unstable. 

4.2. The results obtained in Refs. 1,3 and 5 have given 
rise to the idea that orthogonally polarized oppositely propa- 
gating waves, which do not interfere in linear media, do not 
write a spatial dielectric-constant lattice in an isotropic reso- 
nant media. This, however, has not proved to be quite the 
case. 

Let us study the interaction of rotating, circularly polar- 
ized oppositely propagating waves (B = a = 0). Equations 
(27) suggest that the first spatial harmonic of the population 
difference in this case is finite and that the lattice amplitude 
I(e:), I # 0 is independent of spatial diffusion (the coefficient 
p).  The amplitude increases with 6 (i.e., as angular diffusion 
decreases) and, obviously, is largest for a medium without 
angular diffusion. The interaction of these orthogonally po- 
larized waves is described by the equations 

(30) 

for the intensities J +  =A2 and J -  = b2. In contrast to Eqs. 
(28), Eqs. (30) imply that due to rescattering on such a lattice 
the weaker wave has the greater growth rate. The solution of 
Eqs. (30) proves to be convectively unstable, too. 

4.3. Using the angle cp+ - c p -  = @/2, we examine the in- 
teraction of oppositely propagating waves with the same lin- 
ear polarizations (A = B, a = b, c p ,  = cpb , and ( P A  = q B )  . 
Combining (25) and (27), we arrive at the equations 

which can be interpreted as the law of conservation of polar- 
izations of the interacting waves. Here the equations for the 
wave intensities, J +  = 2A2 and J -  = 2a2, coincide with (28) 
except that the coefficient 5/30 replaces 236160. This means 
that, all other things being equal, for the resonant medium 
considered here waves with the same linear polarization of 
their fields are amplified more than collinear circularly po- 
larized waves. 

4.4. Assuming that in a certain cross section the oppo- 
sitely propagating waves are linearly polarized and orthogo- 
nal to each other (A=B, a = b ,  cpA-cpB=O, and 
r p ,  - rpb  = m) , we can obtain the equations 

for the intensities J ,  and the equations for the polarization 
characteristic s, and @, which coincide with (3 1). Equations 
(31) and (32) suggest that linearly polarized orthogonal 
waves propagate without changing their polarization states 
and that the stronger wave has the greater growth rate. 

4.5. In the case of maximum diffusion (P-+O and 
5+0) Eqs. (28), (30), and (32) transform into equations of 
radiation transfer. 

In the other limiting case of no diffusion (D=0  and 
7- = 0)  , the amplitude of the first spatial harmonic of popu- 
lation inversion, 

where the bar designates averaging over one wavelength, has 
the maximum value (other things being equal) and hence the 
mechanism of rescattering of the two distinct oppositely 
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propagating waves into each other plays the most important 
role here. In the Van der Pol approximation, Q and the mean - 
value of the partial population inversion, Qo= nlno) ,  are the 
coefficients in the Fourier-series expansion of the almost- 
periodic (in the coordinate z) function nlno , i.e., oscillating 
with a period of A12 and at the same time slowly varying, in 
the form of the steady-state solution (9) of Eq. (8). 

These analytical consequences of Eqs. (28), (30), and 
(32) are illustrated in Fig. 1 by curves representing the de- 
pendence of the gains of the oppositely propagating waves, 
G +  = J+([)lJ+(O) and G-=J-(0) lJ - ([ ) ,  on the integral 
linear growth rate [= ~ ( z  - zo)  of the layer z - zo of the 
active medium. 

5. NONLINEAR POLARIZATION EFFECTS IN THE 
INTERACTION OF OPPOSlTELY PROPAGATING WAVES 

With the exception of the two particular cases considered 
above, the polarizations of oppositely propagating waves al- 
ways undergo transformations: the major axis of the polar- 
ization ellipse rotates and the ellipticity of each wave 
changes. Variations in polarization are caused by the aniso- 
tropic nonlinear dielectric constant ENL induced by the field 
in the medium. As a result the local propagation constants 
6, = h: + ih: of the oppositely rotating circularly polarized 
compo~ents of each of the oppositely propagating waves dif- 
fer. The real parts h: differ, which causes the polarizations 
of the oppositely waves to rotate, while the dif- 
ference in the imaginary parts h c  leads to changes in the 
ellipticities of the waves. Generally, E N L =  e' + ie" has both 
an imaginary part e" and a real part e ', whose value is 

FIG. 1. G+=J+(r)lJ+(O) and 
G -  =J-(0)IJ-(r)  as functions of the inte- 
gral linear growth rate r= K ( Z  - z,) of the 
layer z - z ,  of the active medium (solid 
curves depict the G+ vs 5 dependence, and 
the dashed curves the G - vs dependence) 
for four cases: (a) circularly polarized or- 
thogonal waves, (b) linearly polarized or- 
thogonal waves, (c) circularly polarized col- 
linear waves, and (d) linearly polarized 
collinear waves. At the boundary z = 0 of the 
active medium the intensities of the interact- 
ing waves are equal: J+ ( 0 )  = J-(0)  = 1. 
Curves I in all diagrams are constructed for 
media with maximum diffusion of the mol- 
ecules ( p =  t=O),  curves 3 are constructed 
for media without diffusion, and curves 2 
are constmcted for media with the following 
parameters: t= 0.30 [(a) and (b)], and 
5= lo-' and P= 0.20 [(c) and (d)]. 

proportional to the detuning 6 of the field frequency from the 
frequency of the center of the luminescence line. Each con- 
tributes to the transformation of polarizations of the propa- 
gating waves, and each contribution can be considered a 
manifestation of an independent physical mechanism. 

The inhomogeneous anisotropic distribution of ElNL is 
determined entirely by the spatial distribution of the popula- 
tion inversion nlno formed as a result of the interaction of 
the two-level medium and the polarized radiation. Such a 
distribution acts as a lattice on which the waves rescatter into 
each other and as a result their polarizations change. This 
physical mechanism of changing the polarizations of oppo- 
sitely propagating waves operates independently of S and, 
therefore, can be defined as a mechanism related to the pres- 
ence of en. ~akubovichl~ was the first to point out that the 
rescattering of waves on the E l N L  lattice is a physical mecha- 
nism for changing the mutual orientation of the wave polar- 
izations, and later experiments were carried out 26 in which 
the value of rotation of the polarization planes of two lin- 
early polarized oppositely propagating waves was measured 
for the active medium of a gas laser. 

The second physical reason for the rotation of the polar- 
ization planes is the presence of e ' S and is related to the 
additional dispersion introduced into the medium by resonant 
molecules. 

5.1. The changes in the polarizations of the oppositely 
propagating waves in the interaction space can be described 
by equations for cp, and s* . These equations are obtained 
directly from the system of equations (25) and can be repre- 
sented in the form of two symmetric pairs: 
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+a11+~i+17(1+~,)+e 'Y cos @ X  

ds, - KI ch2 8, + = -  
- dz 4(1+ J )  

{SekY sin @(q-J+-  vF,) 

where we have introduced the following notation: 

Equations (33) and (34) can be transformed into each other 
pairwise by the following substitutions: 

Equations (33)-(35) clearly show that the effectiveness of 
changes in the polarizations of the interacting waves depends 
on the wave intensities J , ,  the wave ellipticities (F, 

s +), and the diffusion in the medium. The right-hand sides 
in G s .  (33) and (34) strongly depend on @, since the angle 
rg+-cp-=@I2 between the major axes of the polarization 
ellipses of the oppositely propagating waves is one of the 
main parameters determining the local anisotropy of the 
ENL lattice. All other things being equal, their absolute values 
increase monotonically with P and 5 and, obviously, reach 
their maximum value when there is no diffusion. The contri- 
butions of E '  to the changes in the polarization states of the 
waves are taken into account by terms whose value is pro- 
portional to the detuning S. 

5.2. First we analyze Eqs. (33) for zero detuning 
(S= 0),  when E '  = 0, and establish the main laws governing 
the variations in cp, caused by the rescattering of the waves 
on the anisotropic E" lattice. When the condition (i.e., 
7- 9 7) is met (e.g., for dense gases), from Eqs. (33) we can 
find dcp, l d ( ~ z ) a  sin @ and that these polarizations can ro- 
tate in two opposite directions, depending on @. For 
O<@<T the axes rotate clockwise and the angle between the 
axes, cp+ - rg- , monotonically increases with 5, asymptoti- 
cally approaching the value d 2 .  For - d @ < O  the axes 
rotate counterclockwise, and the angle between these axes 
changes, with 5 increasing toward the limit of - 4 ~ .  The 
variation of rg, is fastest when I rg+ - rg-1 =;T. If the major 

axes of the ellipses are orthogonal to each other, 
cp+ - p - = iw, or are oriented in the same direction, the rg , 
do not change. 

The anisotropic properties of e" and hence the right- 
hand sides of Eqs. (33) also depend on the ellipticities of the 
interacting waves. The corresponding contributions to the 
variation of cp, are provided by the terms proportional to 
6, s t ,  and the difference JR-JL of the dextrorotatory and 
levorotatory parts of the intensity, JR and JL , of the radiation 
interacting with the medium. They reach their maximum 
value when there is no diffusion, at @ = d 2 ,  and as 
ls,l+ 1. 

5.3. The ellipticities of the oppositely propagating 
waves transform because of the interaction on the E" lattice. 
At S=O the right-hand sides of Eqs. (34) have three terms, 
which depend differently on the medium parameters and the 
intensities and polarization states of the interacting waves 
and which, therefore, can be interpreted as four independent 
components of the physical mechanism of transformation of 
the polarization ellipse of each of the two oppositely propa- 
gating waves on the E" lattice. 

The sign of the first term in the four terms on the right- 
hand side of each equation in (34) coincides with the sign of 
the corresponding quantity - sT . If the s, have the same 
sign, this component of the physical mechanism "tries" to 
lower 1 s ( and to asymptotically transform elliptically polar- 
ized waves into linearly polarized waves. 

The second term on the right-hand side of each equation 
in (34) is proportional to JL-JR= - ( F +  -F-). If the 
s t  a F ,  have the same sign, this term also lowers (s,( in 
each wave in the direction of the wave's propagation and, 
therefore, evens out the fractions JL and JR . When there is 
no second wave ( J -  = 0 and s- = 0),  this term on the right- 
hand side of (34) does not vanish, in contrast to the other 
terms, and ensures that Is+ 1 decreases, so that asymptoti- 
cally, on a large path, an elliptically polarized wave is trans- 
formed into a linearly polarized wave 9p13. 

The signs of the remaining two terms on the right-hand 
sides of (34) coincide with those of s,cos@ and 
(JL - JR)cos@, respectively. Hence, depending on s , and 
@, the corresponding components of the physical mecha- 
nism of ellipticity variations can lower or raise the value of 
Is( of each wave. These terms provide the greatest contribu- 
tions to the variation of s, when the major axes of the po- 
larization ellipses are collinear (@ = 0)  or orthogonal to each 
other (<P = T). For P a  (, i.e., 1 7 7 - ~ t ~ ~ ~ @ J s J  $,cos@l, 
these components of the physical mechanism are responsible 
for the decrease in Is+[ in the direction of propagation of the 
wave, provided that cos @ < 0. 

5.4. When E '  a S, the propagation constants i, of 
circularly polarized waves change, and Eqs. (33) and (34) 
acquire the appropriate terms proportional to S. This second 
physical mechanism for polarization transformation operates 
even in the absence of one of the oppositely propagating 
waves 9s10*'2,13. For one thing, as a traveling wave passes a 
section of the active medium, the axes of the polarization 
ellipse of the wave rotate clockwise if the field frequency is 
shifted from the frequency of the gain-line center to the vio- 
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let part of the spectrum (S>O) and of the field vector is 
dextrorotatory (A > B and s > 0). 

The contribution of e' to the polarization variation in the 
oppositely propagating waves becomes similar to that of E" 

in general for IS(-- 1, i.e., when E'  and e" are of the same 
order of magnitude. However, its dependence on Jt , 
cp+-cp- , and s, is quite different. For instance, E'  has a 
small effect on the angles q ~ ,  if the waves are polarized 
almost linearly ( 1  s -c 1 4 0 )  and the angle between the major 
axes of the polarization ellipses, cp+ - cp- , is @/2=?+d4. 
On the other hand, E ' may have a strong effect on the ellip- 
ticities of the waves in this case. 

5.5. When diffusion is strong ( P j O  and t- tO),  anisot- 
ropy disappears and the amplitude Q~ of the first spatial 
harmonic of nlno vanishes. Then Eqs. (3 1) are valid, so that 
the shape of the polarization ellipse of each wave remains the 
same in all cross sections of a layer of the resonant medium. 
The equations for the intensities of the oppositely propagat- 
ing waves and, for one thing, Eqs. (28), (30), and (32), ac- 
quire the form of a radiation transfer equation (the nonlinear 
Bouger law). They have repeatedly been used in the past 
(see, e.g., Refs. 27 and 28) to describe noninterfering waves 
in resonant media within the "scalar" theory of interaction 
of radiation and matter. Physically, the reason for such trans- 
formations is that strong diffusion transforms a nonlinear 
medium of randomly oriented two-level systems into a me- 
dium that for all practical purposes is homogeneous and iso- 
tropic. Every molecule of the medium takes part on an equal 
basis (to one-third of its capacity) in the interaction with the 
strong field, irrespective of the polarization state of the field 
and that of the dipole moment of themolecule. Under 
these conditions the waves interact as a if they were in a 
medium where the of each molecule is collinear with the 
field and the resonant absorption cross section is lower by a 
factor of three.5) 

5.6. The results of calculations of the dependence of the 
polarization characteristics cp, and sr  on the total linear 
growth rate [= ~ ( z -  zo). which reflect the main behavior of 
the variations in the polarizations of the oppositely propagat- 
ing waves, are depicted in Figs. 2 and 3. The curves are 
constructed for three different values of the detuning of the 
field frequency from the frequency of the luminescence-line 
center (S= 0 and S= 0.5) for oppositely propagating waves 
that in the cross section at zo=O are linearly polarized, 
G+ = (xo-yo)/ 6 and B =xo, at an angle of 45" to each 
other, so that their intensities and the ratios of the polariza- 
tion ellipse axes are the same (J+(O) = J-(0)  = 1 and 
s+(O) = s-(0) = 0)  and the angles cp, between the major 
axes of the polarization ellipses of the strong and weak 
waves and the x axis are, respectively, cp+(O)= -45' and 
cp-(0) = 0. The solid curves in Figs. 2 and 3 depict the char- 
acteristics cp+ and s+ of the stronger wave, as a function of 

while the dashed curves depict the angle @/2=cp+-cp- 
and the quantity s-as a function of [. Curves 1 are con- 
structed for media with maximum diffusion (P=(=O), 
curves 3 are constructed for media without diffusion, and 
curves 2 are constructed for a medium with arbitrarily chose 
parameters: P = 0.10 and t= 

Figure 2 shows that at zero detuning (S=0) the angles 

LlG. 2. cp, (solid curves) and 9, - cp- (dashed curves) as functions of the 
integral linear growth rate 6 of a layer of the medium: curves I, P=t=O;  
curves 2, @=0.10 and 5- and curves 3, medium without diffusion. 

cpr vary monotonically because of the rescattering of waves 
on the E" lattice. As each oppositely propagating wave trav- 
els through a layer of the active resonant medium, its polar- 
ization ellipse rotates counterclockwise through an angle 
Aq+- (if the wave is observed along the direction of its 
propagation). The polarization ellipse of the weaker field ex- 
periences the greater rotation. 

The main information as to how the detuning S influ- 
ences the nonlinear polarization effects is contained in the 
curves 1 and 3. The parameters P and 6 of real media are 
determined by the diffusion processes taking place in the 
media, with the result that an arbitrarily chosen combination 
of the values of p and 6 does not give a proper picture of real 
physical conditions. A proper choice of these parameters 
should place the curves 2 inside the area bounded by the 
curves 1 and 3 for the two limiting cases. 

Equations (25) and their particular cases (28)-(34) can 
be used to describe the interaction of arbitrarily polarized 
oppositely propagating waves in a passive two-level me- 
dium. For this one need only substitute - K for K in these 
equations. 

In resonant media where the molecules are characterized 
by a linearly polarized vector d of the signal-transition ma- 
trix element, the transformation of the polarizations of the 
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FIG. 3. The ratios s +  (solid curves) and s -  (dashed curves) of the axes of 
the polarization ellipses of the oppositely propagating waves as functions of 
the integral Smear growth rate 5 of a layer of the medium: curves I, 
P=(=O; curves 2, P=0.10 and 4= lo-'; and curves 3, medium without 
diffision. 

oppositely propagating waves is also described by equations 
of the form (25), (33), and (34). However, their right-hand 
sides depend differently on the intensities and the polariza- 
tion characteristics of the interacting waves. Hence the re- 
sults of our study cannot be employed without additional 
modifications for interpreting the nonlinear polarization ef- 
fects occurring in such media. 

Our results can be used to estimate the potentials of such 
adaptive devices as a two-way amplifier with a wavefront- 
reversal mirror and high-power pulsed lasers with a nonlin- 
ear shutter, to design wavefront-conjugation mirrors on the 
basis of quarter-wave mixing in a resonant medium, and to 
study the properties of matter by methods of nonlinear po- 
larization spectroscopy. 
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')strictly speaking, for a dense gas, in addition to the diffision terms the last 
equation in (4) must contain the terms (uVn) and ( w V B p )  where u and w 
are, respectively, the h e a r  and angular velocities of the moving particles. 
In calculating the macroscopic polarizability the necessary statistical aver- 
aging must also be done over the random parameters u and w using the 
same particle energy distribution function as in calculating the diffusion 
coefficients D and 7 - I .  The results of these calculations can be shown to 
coincide with those that can be obtained by solving Eqs. (4) in which the 
last EFP equation for nlno contains diffusion coefficients increased by a 
factor of 3 to 10, depending on the thermodynamic parameters of the gas. 
Hence we can assume without loss of generality in the statement of the 
problem that the system of equations (4) provides a proper description of 
the interaction of radiation and a dense resonant medium of randomly 
oriented moving particles. 

')~stimates show that for carbon dioxide at atmospheric pressure and mom 
temperature (= 

3)~i thout  loss of generality we can assume 8'' and eF; to be real. 
4 ) ~ o r  carbon dioxide at atmospheric pressure and rook temperature P is less 

than 0.01 for radiation with a wavelength of approximately 
')Jn Refs. 27 and 28 the intensities are normalized to a quantity three times 

smaller than the one we used. 
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