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We examine the energy losses in collisions between heavy multiply charged relativistic ions and 
light atoms for ion charges Z S  1 and relative collision velocities v S 1 such that Z- v < c, 
where c is the speed of light (atomic units), together with the polarization losses associated with 
the motion of heavy relativistic ions in matter. Strictly speaking, in this range of parameters 
the Born approximation does not work. We derive simple formulas for the effective retardation. 
Finally, we compare the results with the experimental data and the results of calculations 
done by other researchers. O 1995 American Institute of Physics. 

1. INTRODUCTION quantum mechanics when the energy E of the scattered par- 

The common approach to calculating the ionization 
losses in collisions of charged relativistic particles with at- 
oms is to employ the Born approximation (see Ref. 1, § 82). 
which requires Z l u 4  1, where Z is the charge of the incom- 
ing particle, and v is the relative collision velocity (here and 
in what follows we use the atomic system of units). Lately, 
however, much experimental work has been done in the 
study of inelastic collisions of atoms with ions whose 
charges are so great that the Born approximation range for 
such ions is not reached even for v-c ( c  is the speed of 
light), so that Zlv- 1 often holds (see, e.g., Refs. 2-4 and 
the references listed there). On the other hand, the use of 
approximations applicable for Z/v - 1, the eikonal approxi- 
mation and its m~difications?~ the method of sudden 
perturbations:-9 and the classical path methodlo to calculate 
the cross sections of inelastic processes, entail considerable 
computation even when the collision velocities are nonrela- 
tivistic. The calculations become even more complicated 
when we move into the relativistic region." 

This paper uses the approach developed in Ref. 12 and 
its generalization to the case of relativistic collisions13 to 
examine the energy losses by heavy multiply charged rela- 
tivistic ions in collisions with light (nonrelativistic) atoms for 
Z-vGc (2%- 1, VS 1, and c-137), together with the polar- 
ization losses associated with the motion of heavy multiply 
charged relativistic ions in matter. We derive simple formulas 
that describe effective retardation. We also compare our re- 
sults with the experimental data and the results of other re- 
searchers. 

2. CROSS SECTIONS OF INELASTIC PROCESSES 

The most systematic method of calculating the cross sec- 
tions of inelastic processes in the collisions of fast ( v 9  1) 
multiply charged (ZS1)  ions with atoms is to use the 
Glauber approximation, applicable when Zlv - 1. It is based 
on the old eikonal approximation, which is close to the qua- 
siclassical approach. The eikonal approximation is usually 
employed in potential scattering problems in nonrelativistic 

ticle is much higher than the potential energy U (see Ref. 14, 
p. 200). The eikonal approximation is generalized in Ref. 
15a, Sec. 1.7.4, to the case of potential scattering of high- 
energy relativistic particles. In this case, after summation 
over the polarizations of the scattered particles, the differen- 
tial cross section of scattering into the solid angle d f l  en- 
compassing the direction of the unit vector n has the follow- 
ing form (see Ref. 15a, p. 76): 

with a scattering amplitude independent of the spin structure: 

where q= kf- ki , ki and kf are the particle momenta before 
and after the collision, with 1 ki( = I kfl = k, 

where in the laboratory reference frame the potential U(R) is 
the temporal component of the 4-potential, Ap=(U,O,O,O), 
and depends on the coordinates R=(x,b) of the scattered 
particle; here bl v, and the x axis is directed along v, so that 
b is usually interpreted as the impact parameter. If the par- 
ticle velocity is so great that I ~ l a / v +  1 holds, Eq. (2) be- 
comes the Born approximation. The eikonal approximation 
(2) for potential scattering can be generalized (following Ref. 
14, 8 152) to the case of the collision of a fast particle with 
a system of particles, with the additional condition that the 
incoming particle velocity is much higher than the character- 
istic velocities within the scattering system. More precisely, 
we examine the collision between an ion moving with a rela- 
tivistic velocity v and a light (nonrelativistic) atom. We de- 
note the characteristic velocity of the atomic electrons by 
v,. Note that when particles with a moderate charge 
2-2, (here 2, is the effective charge of the atomic nucleus) 
are scattered by atoms, the condition v,Gv coincides (see 
Ref. 14, p. 741) with the condition for the applicability of the 
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Born approximation: the atomic electrons usually have a ve- 
locity va-Za , with the result that at 2,-Z the condition 
v a 4  v  yields Zlv 4 1. But when atoms collide with an ion 
whose charge Z is much greater than Z a ,  the condition 
v a 4  v  does not automatically imply Zl v  4 1. However, the 
assumption that the velocity of the incident particle is much 
higher than the characteristic velocities within the scattering 
system (the nonrelativistic atom) makes it possible to con- 
sider ion motion with the atomic electrons held fixed. Hence 
the natural generalization of Eq. (2) to the case of elastic 
scattering of a relativistic ion by a nonrelativistic atom has 
the form 

where the scattering potential is a function not only of the 
ion coordinates R= ( x , b )  but also of the instantaneous posi- 
tions of the atomic electron, whose set of coordinates is des- 
ignated by {r,) ,  i.e., U =  U(x,b;{r , } ) .  Integrating over the 
coordinates of the atomic electrons (whose total number is 
N) corresponds to averaging over the internal (ground) state 
of the atom described by the wave function T o ( { r a ) ) .  The 
general expression for the inelastic scattering amplitude for 
the case where the atom goes from state I * , )  to state Iqf) 
has the form (cf. Ref. 14, 5 152) 

Next, using dt=dxlv  and the mutual orthogonality of 
the functions qi and T f ,  we arrive at an expression for the 
inelastic scattering cross section that can be directly obtained 
from the sudden perturbation approximation:7~'3 

Accordingly, the integrand is interpreted as the probability 
for the atom to go from the state qi to the state qf in a 
collision with impact parameter b. 

These procedures for obtaining Eqs. (6) and (7) from the 
Glauber approximation, which include changing the order of 
integration, are proper only for potentials with a limited 
range. For long-range potentials these procedures make the 
integrals in (6) and (7) divergent for large impact parameters. 
This divergence, however, is ~ n i m ~ o r t a n t ~ . ~  because at large 
impact parameters the Born approximation becomes appli- 
cable, and the ranges of applicability of the Born approxima- 
tion and sudden perturbations approximation overlap, which 
makes it possible to do proper matching in the impact pa- 
rameter. But for a nonrelativistic hydrogen atom computa- 
tions with Eq. (7) result in considerable time e~penditure.~,~ 
For this reason Refs. 12 and 13 suggested an approach based 
on the fact that at v - Z S  1 the inelastic cross sections are 
substantial and the range of large impact parameters provides 
the main contribution. The corresponding cross section has 
the form12.13 

where, as in Eq. (3), the ion momentum transfer q is where bo and bl are estimated from the conditions for the 

kf - ki . When Zlv < 1 holds, Eqs. (3) and (4) become the applicability of the approach. Equation (8) can also be ob- 

Born approximation. tained directly from (7), provided the expansion of the po- 

The inelastic scattering amplitude can be obtained via tential U(x,b;{r , } )  in (7) in powers of the small parameter 

the well-known formula Iral/b stops after the dipole terms. 

ki 
o= - lor(2 d o ,  (5) 3. COLLISIONS WITH SEPARATE ATOMS 

k f 

where R is the scattering solid angle of the ion. 
However, even in the case of a nonrelativistic charged 

particle colliding with such a simple system as the hydrogen 
atom, calculations of the excitation and ionization cross sec- 
tions employing the Glauber approximation lead to cumber- 
some e ~ ~ r e s s i o n s . ~ . ~  Certain simplifications can be achieved 
by proceeding as follows: for small scattering angles we 
have d R . ~ d ~ ~ l k ~ k , = d ~ ~ l k ~ ;  we then represent (ajI2 from 
(4) in the form of a double integral with respect to d2b and 
d2b' and integrate with respect to d2g via the integral rep- 
resentation of the &function; after this the latter is eliminated 
by integrating with respect to d2b' .  As a result for Eq. (5) 
we come to 

According to Ref. 14, 5 49, the mean energy losses in 
collisions are characterized by a quantity known as the ef- 
fective retardation: 

K=C ( ~ n - ~ o ) ( + n ,  (9) 

where E, and EO are the energies of the excited In) and 
ground 10) states of the atom, and on is the cross section for 
excitation of state In). For simplicity we start by examining 
the collision of a multiply charged relativistic ion with the 
hydrogen atom. 

According to Refs. 12 and 13, it is convenient to parti- 
tion the entire interval O<b<m of possible values of the 
impact parameter b into three regions: 
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which correspond to small, medium, and large impact param- 
eters. From Ref. 13 the values of the boundaries of the re- 
gions are 

We calculate K in each region specified in (10) and ob- 
tain the total effective retardation by adding the contribution 
of each region. Here the exact values of the boundaries are 
unimportant, since in each region the dependence of K on the 
parameters bl and bo proves to be logarithmic, leading to a 
proper matching of the contributions of adjacent regions and 
to a situation in which the dependence of K on the matching 
parameters b ,  and bo disappears from the final result. 

Small impact parameters corresponds to large momen- 
tum transfers, and, following Ref. 1, 5 82, we ignore the 
binding of the electron to the atom and assume that the mul- 
tiply charged ion is scattered elastically by an electron that 
initially was at rest. Then the effective retardation is ex- 
pressed in terms of u(E), the cross section of transfer of 
energy 6, as follows: 

The only difference from Ref. 1, where it is assumed that 
Z/v * 1, is that we cannot substitute a(€) into the Born ap- 
proximation, since in our case Zlv could be of order unity. 
As in Ref. 1, we assume that the incoming ion is an infinitely 
heavy particle, meaning that it does not change its motion in 
the course of the collision. Then the cross section for the 
scattering of an electron that initially was at rest by an ion 
moving with a constant velocity can be obtained by going 
over to the reference frame in which the moving electron is 
scattered by the immobile ion. We denote the corresponding 
scattering angle by 8. Following Ref. 1, we assume (exclud- 
ing the ultrahigh energy region) that the energy loss E is 
8-dependent, 

and the values E,, and are attained at 8= .rr and 
8= Omin, respectively. As a result we can write Eq. (1 1) as 

where a ( @  is the cross section of electron scattering on an 
immobile ion of charge Z for an arbitrary electron velocity v 
(it was obtained in Ref. 15b, 5 11.5, by solving the scattering 
problem for the Dirac equation), and uR(8) is the Rutherford 
cross section: 

According to Refs. 15b and 16, the ratio of the exact cross 
section to the Rutherford cross section, a (  @)/aR( 8), tends 
to unity as 8 4 0 .  Consequently, to determine the scattering 

TABLE I. Effective retardations (atomic units) obtained through numerical 
integration of Eq. (13) with the use of dm, from Ref. 16. 

Ion energy, in 
MeVInucleon 

Ion charges 
29 50 

angle 8 we can use the quasiclassical relationship (Ref. 17, 
Problem 2 to 5 39) that links the scattering angle with the 
impact parameter (see also the graphic qualitative picture of 
a collision suggested in Ref. 12): 

Clearly, for small Omi, the integral in Eq. (13) depends on 
Omh logarithmically, with the result that Eq. (13) can be writ- 
ten as 

where the function a(Z,v) is determined by comparing (16) 
with the results of numerical calculations by Eq. (13), which 
were done using the values of u(8)  of Ref. 16. As a result 
a(Z,v) can be approximated by the following formula: 

where cr=Z/c. To validate the approximation (17), in Tables 
I and I1 we list the values of the effective retardation calcu- 
lated (at b = 1 ) by Eq. (13) (Table I) and by Eq. (16) (Table 
11) with the use of a(Z,v) from (17): the first column gives 
the energy of the multiply charged ion (in units of MeV per 
nucleon) corresponding to the relative velocities for the data 
of Ref. 16; the other columns list values of K (in atomic 
units) for ion charges 6, 13,29,50, 82, and 92, respectively. 
As Tables I and I1 demonstrate, the suggested approximation 

TABLE 11. Effective retardations (atomic units) calculated by Eq. (13) with 
the use of the function a(Z,v) defined in Eq. (17). 

Ion energy, in Ion charges 
MeVInucleon 6 13 29 50 82 92 
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is fairly good, at least for the ranges of Z and v for which the 
data of Ref. 16 are given. We also note that in the nonrela- 
tivistic limit (/3+O) and as a -+O,  according to (17), 
a(Z,v)+ 1, since a/aR-+ 1 as P-10 and a+O.  

The range of moderate impact parameters, b < b < bo , 
corresponds to the range of moderate momentum transfers, 
which provides12*13 the main contribution to the inelastic 
cross section. In this range the transferred energy E is less 
than unity, i.e., the ionization potential of the atom, and the 
contribution of this region cannot be taken into account by 
perturbation theory We also note that in 
this range the electron of the hydrogen atom is nonrelativistic 
both before and after the c~llision.'~ The contribution of this 
range to the effective retardation can be obtained from (9) by 
substituting the inelastic cross section (8), 

an= !b:2~bl(nle-iqr10)12 db,  (18) 

and repeating the calculations (see Ref. 14, 5 152). The only 
simplification is that the upper limit of integration in (18) is 
independent of the final state of the atom: 

z2 41 K = C  (€,--E0)an=4Tr -Z ln- ,  
n v 40 

where qo=2Zlvbo, and q l=2Zlvbl .  
In the range of large impact parameters, bo<b<w the 

interaction of the incident ion with the atom can be taken 
into account perturbatively?-9.12913 The corresponding ampli- 
tude of the atom's transition from state 10) to state In) can be 
obtained following the reasoning of Ref. 18: 

where ~ I , = E , - E ~ ,  l = n n b d m ,  Ko(t) and K, ( t )  
are modified Bessel functions, and ron = (0 1 rl n). 

The cross section corresponding to (20), 

is obtained by integrating with respect to the impact param- 
eter b within the following limits: the angle of b varies from 
0 to 27r, and bo<b<m. As a result we get1) 

where 1;1= eB = 1.78 1 (B = 0.5772 is Euler 's constant), and 
xon = (n 1x10). The contribution of this range to the effective 
retardation can be obtained by substituting (21) into (9): 

where, following Ref. 1, 5 82, we have introduced the "av- 
erage atomic energy" I such that 

FIG. 1.  Effective retardation K as a function of E, the energy of the incident 
ion. The solid curve represents the results of our calculation [Eq. (24)], and 
the dashed curve is the Born approximation (Eq. (25)). For convenience we 
list some values of the velocity on the upper horizontal axis. 

~ n ( ~ n - ~ o ) I ~ O n I ~ l n ( ~ n - ~ o )  
In I= 

~ n ( ~ n - ~ o ) I ~ o n l ~  
(23) 

We obtain the total effective retardation of a multiply 
charged relativistic ion on the hydrogen atom by adding (22), 
(19), and (16): 

For comparison we give the value of K listed in Ref. 1, $ 82, 
which was calculated in the Born approximation: 

Figure 1 illustrates the behavior of the effective retarda- 
tion at Z=92: the solid curve represents the results of our 
calculation [Eq. (24)], and the dashed curve is the Born ap- 
proximation [Eq. (25)l. As Fig. 1 shows, the Born approxi- 
mation systematically overestimates the values of K in the 
low-energy region, while at high energies the same approxi- 
mation yields a value of K smaller than the one given by Eq. 
(24). 

Note that the nonrelativistic limit for the ionization 
losses (24) (allowing for the fact that a ( Z , v ) ~  1 as P-+O 
and a+O), 

has the appearance of the well-known Bohr formula (see Ref. 
19, Article 4), which was derived from classical ideas. We 
also note that our results [Eq. (24)] obtained by the approach 
developed in Refs. 12 and 13 and valid only for Z- v B 1 
does not allow for a transition to the Born approximation, 
which is valid for Zlv + 1 (a similar situation occurs with the 
Bohr formula). 
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As our derivation of Eq. (24) shows, the generalization 
of Eq. (24) and the generalization of Born losses (25) to the 
case of collisions between multiply charged relativistic ions 
and complex but nonrelativistic atoms (for which the char- 
acteristic velocity of the atomic electrons, u, , is much less 
than the relative collision velocity v) can be obtained by 
multiplying the right-hand side of (24) by 2, , the number of 
atomic electrons, and by replacing I with the average atomic 
potential I,, which is still determined by Eq. (23) with en ,  
EO, and (xo,I2 calculated for the complex atom: 

4. ENERGY LOSSES IN MATTER 

Now let us examine the question of energy losses by a 
multiply charged relativistic ion moving in a medium. The 
losses are represented by the sum of macroscopic (polariza- 
tion) losses and the energy lost in collisions with separate 
atoms. Here we assume that the ion velocity is much higher 
than the characteristic velocities of the atomic electrons (or 
at least most of these velocities). According to Fermi (see 
Ref. 20, Article 85), polarization losses in the motion of a 
charged particle in a medium are determined by the flux of 
the Poynting vector through a cylinder of radius b; con- 
structed around the particle trajectory. The energy loss per 
unit path length, or the effective retardation, is obtained by 
dividing the energy flux by the particle velocity: 

where we have written ( 2 = ~ 2 [ ~ - 2 -  c -~E(w)]  and ~ ( w )  is 
the dielectric constant. When the cylinder radius b; is small, 
i.e., 

we have 

where, as in (21), v= 1.781. On the other hand, according to 
Ref. 21, energy losses can be interpreted as the work per- 
formed by the field over a path one unit long: 

Equations (30) and (3 1) coincide if condition (29) is met and 
if q0=2/vb;. Indeed, 

Usually the next step is to examine two cases: 
v 2 < ~ 2 / ~ o  [where eO= ~ ( 0 )  is the dielectric constant in a 
static field], and v2> c2/ eo . In the first case we have2' 

where, as in Ref. 21, (I, is the average value of the frequency 
of motion of the atomic electrons: 

In the second case (u2> c2/ eO) , for particles whose en- 
ergy is not too high (the energy of motion is lower than the 
ion's rest energy), Eq. (33) is usually employed. On the other 
hand, in the ultrarelativistic limit?' 

Next we must "match" the macroscopic losses to the energy 
losses on separate atoms. To this end we write condition (29) 
as 

where for estimates we have assumed that w- w,- 1, which 
is the characteristic atomic frequency. The condition at 
which the macroscopic approach is valid has the form 
b;%-bl- 1, i.e., characteristic atomic dimension. Thus, the 
lower boundary of b; lies between b l  and bo: 

Comparing this with the conditions (lo), we conclude that to 
obtain the total energy losses when a multiply charged rela- 
tivistic ion moves in a medium we must add the contribu- 
tions of the regions A and B defined in (10) (the upper limit 
in B is b;) to the polarization losses. According to Eqs. (16) 
and (19), the sum of the contributions provided by A and B is 

where we have replaced the number Z, of atomic electrons 
by the number of electrons per unit volume, N, as is assumed 
in Ref. 21. Adding (33) and (36), we arrive at an expression 
for the total energy lost by a multiply charged relativistic 
medium traveling through matter for the case U ~ < C ~ / E ~ :  

As mentioned earlier, this expression is also often used 
for the case where and for particles that do not 
move very fast. Note that (37) differs in one respect from Eq. 
(27), whose behavior is illustrated in Fig. 1 and which de- 
scribes losses on separate atoms: the average potential I, is 
replaced by (I, (cf. a similar situation in Ref. 21). Acting in 
the same manner in the ultrarelativistic case, we find the total 
effective retardation: 
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TABLE 111. Experimental and theoretical values of energy losses in MeV (mg/cm2)-I for different ion-target 
combinations. 
-- 

Projectile Target ~alculations~ Our results ~ x ~ e r i m e n t ~  

86 
36Kr 
900 MeVInucleon Be 2.346 2.438 2.552 00 2.4322 0.037 

(P=0.861) 

Thus, allowance for polarization losses in the ultrarela- The authors are deeply grateful to Dr. Cristoph Schei- 
tivistic case leads to a growth of effective retardation with denberger, GSI, Darmstadt, Germany, for his attention to 
velocity that is less than that of losses on separate atoms [Eq. their work and for information about his investigations. 
(27)l. For convenience we write Eq. (37) a form that ex- 
presses polarization losses explicitly: 

2~~ *e-mail: victor@iaph.silk.glass.apc.org. 

K = ~ T ~  Z2N[ In z ~ ~ - @ ) ~ ( z , v ) I .  (39) ' ) ~ t r i c t l ~  speakin Eq. (21) was derived on the assumption that 
t=flnbv-'&=Sl. where fin-1. Then b<u(l-8')-"-ao. so 
that subsequent matching can be carried out precisely at such values of b. 

where the values of the average ionization potential I ,  and 
the Fermi correction a 2  for polarization losses can be taken 
from Refs. 22 and 23. 

Table 111 lists the experimental and theoretical values of IV. B. Bereste'sk", E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electro- 
dynamics, 3rd ed., Pergamon Press, Oxford (1991). 

the effective retardation [in units of (mg/cm2)-11 for different 's. Kelbch, J. Ullrich, W. Rauch et al., J. Phys. B 19, L47 (1986). 
ions (we limit our investigation to Kr and Xe, whose nuclei 3 ~ .  Scheidenberger, H. Geissel, H. H. Mikelsen et al., Phys. Rev. Lett. 73, 

c a q a  fairly large charge) and targets from Ref. 3 and also 50 (1994). 
4 ~ .  Berg, J. Ullrich, E. Bemstein et al., J. Phys. B 25, 3655 (1992). our results: the first column specifies the ion, the ion's energy J. H. McGuire, Phys. Rev. A 26, 143 (1982). 

(in units of MeV per nucleon), and the value of P=vlc ;  the 6 ~ .  S. F. Crothers and J. H. McCann. J. Phvs. B 16. 3329 (1983). . . 
second column specifies the type of target; the third lists the 7 ~ .  H. Eichler, Phys. Rev. A 15, 1856 (197i). 

results of calculations in Ref. 3 by Bethe's formula with the 'A. Salop and J. H:Eichlerl J. Phys. B 12, 25 (l979). 
9 ~ .  L. Yudin, Zh. Eksp. Twr. Fiz. 80, 1026 (1981) [Sov. Phys. JETP 53, Fermi correction for polarization losses; the fourth column 523 (1981)1. 

lists the results of calculations in Ref. 3 by Bethe's formula lot 0. ~ ~ i ~ h ~ l d ,  R. E. olson, and W. l+itsch, phys. Rev. A 41, 4837 
with the Fermi. MotLZ4 and ~ l o ~ h ~ ~  corrections: the fifth (1990). 

column lists our results; and the sixth the experimental val- 
ues for effective retardati~n.~ Our results may be seen to 
agree fairly well with the experimental data. This corrobo- 
rates the conclusion of Scheidenberger et al.3 about system- 
atic deviations from Bethe's retardation theory in the case of 
heavy relativistic ions. 

5. CONCLUSION 

The present simple approach makes it possible to esti- 
mate the effective retardation of multiply charged relativistic 
ions in their collisions with separate atoms and in passing 
through matter in many cases that are important from the 
practical viewpoint, since the formulas allow using the wide- 
spread method of introducing phenomenological correction, 
usually employed in applied calculations. The range in which 
our formulas can be applied, Z- v S c ,  does not allow for a 
direct transition to the Born approximation (Zl v 9 1 ) , but we 
believe this is a minor limitation since for ions whose charge 
is sufficiently high (e.g., Z=92) the range of the Born ap- 
proximation is not reached even when v-c. 
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