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The modified matching condition for quasiclassical wave functions on the two sides of a turning 
point has been obtained for the radial Schrodinger equation. It differs essentially from the 
usual Kramers condition which holds for one-dimensional problems. Comparison with exact and 
numerical solutions of the Schrodinger equation shows that the modified matching condition 
not only makes the quasiclassical approximation in the subbarrier region asymptotically exact in 
the limit n-tm, but also considerably enhances its accuracy even in the case of small 
quantum numbers, n-1. Power-law and short-range potentials are considered in detail. It is 
shown that for zero-energy states in a short-range attractive potential (i.e., at the point when the 
bound 1-state occurs, 131) the normalization condition generally used in the WKB method 
should also be modified. O 1995 American Institute of Physics. 

1. INTRODUCTION d2 * - + k2(x) $= 0, 
An important point in the WKB method is the matching dx 

(or boundary1) condition for quasiclassical wave functions 2 
defined on either side of a turning point x = a: k= J- (l+;) + 2[~ , , -  ~ ( e ~ ) ] e ~ ~ .  (4) 

Cp- 1i2(x)cos( (:pdx- y), x>a ,  Here -(21+ 1)~18 plays the role of the energy, the point r =O 

*(x) = 
maps into to x=  -m, and as follows from (4) in the region of 

~ ' l p ( x ) l - " ~  exp(- j:(pldx), x<a ,  
large 1x1 the quasiclassical condition is satisfied automati- 
cally for X-+ -w: 

In the one-dimensional case the Kramers boundary con- 
dition (2) usually holds for smooth potentials. However, as 
will be shown below, for three-dimensional problems expres- 
sion (2) is incorrect in general: the coefficient ratio C'IC is 
no longer a universal constant, but depends on the orbital 
angular momentum 1 and on the behavior of the potential 
V(r) at short distances [see Eqs. (7), (8), and (8') below], 
and only in the limit l a 1  does it go over to Eq. (2). 

2. MODIFIED MATCHING CONDITION 

The centrifugal potential for angular momenta 1-1 does 
not satisfy the quasiclassical condition at short  distance^.',^ 
In particular, the quasiclassical treatment leads to incorrect 
behavior of the wave function in the limit r+ 0: it goes as 
j y l ( r )~ r s  with s = 112 + (1 # 0), rather than the 
correct value s = 1 + 1. As is well known?3 this difficulty can 
be overcome by using the Langer transformation: 

after which the radial Schrodinger equation assumes the 
form (?i=m=l) 

[Here cr is an exponent that determines the behavior of V(r) 
in the limit r+  0; see Eq. (5). The condition a>-2 or a> 0 
excludes "falling into the center" in quantum mechanics.']. 

For attractive potentials with power-law behavior at 
short distances (r-to), 

for a > O  and sufficiently large values of the energy E we can 
omit the term with the potential V in Eq. (4), after which it 
can be solved in terms of Bessel functions: 

This solution makes it possible to pass through the turning 
point by matching it with the quasiclassical asymptotic forms 
(1); after some calculations we find 

v = 1 +  112 for a > O .  (8) 
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TABLE I. Values of the function dv). 

In the case a < O  the energy kvels usually crowd toward 
the boundary of the continuum,'' so that in contrast to the 
above, in (4) the term E exp(-2x1 should be neglected but 
the potential (5) should be retain&. Ultimately we arrive 
again at condition (7), in which, however, 

1 .O 0.922 14 1 5; 
0.98498 

1.5 0.94666 0.98622 
2.0 0.95950 1 0.98817 

Note that the function gv)  is numerically 4-lase to unity;2) see 
Table I. Thus, we have l(112)=\i%=0.8578, 
,$(I)= &e-'=0.922 1, while in the limit v-ta we have 

2.5 0.96738 
3.0 0.97270 
3.5 0.97653 
4.0 0.97942 
4.5 0.98168 

Thus, (7) goes over to the usual Kramers matching con- 
dition (2) only in the limit 1S1, while for I -  1 these two 
conditions differ. The reason for this is as follows. In order 
that condition (2) be applicable it is necessary that the region 
in which the linear approximation V(x) = V, - F (x - a) 
holds for the potential intersect the quasiclassical region 
where I(dldx)( llk(x)l+l holds. In the case we are consid- 
ering this requirement reduces to the inequality 
(21 + 1 ) - ~ ~ 9 1 ,  and for I- 1 it is not satisfied. 

8 0.98964 
9 0.99079 
10 0.99170 
i 2 0.99308 
2 3 - 0.99584 

3. EVALUATION OF m) 

Nore. For large v this function can b- calculated using the 
asymptotic formula (9). in which case the error for v 2  10 is less 
than lo-'. 

The matching condition (7) determines the wave func- 
tion in the subbarrier region. As is well known, the value of 
#(0) (or rather I C , ~ ~ ~ )  is an important physical parameter for 
systems in which there are interactions with two very differ- 
ent radii, e.g., the strong and electromagnetic interactions 
(see, e.g., Ref. 4 and the work cited there). At short distances 
we have 

Using Eqs. (1)-(4) we can derive the quasiclassical expres- 
sion for the asymptotic coefficient at zero: 

where 

in1 is the energy determined by the Bohr-Sommerfeld quan- 
tization condition J r +  p(r)dr  = (q + 1/2)m, r, are tum- r - 
ing points (O<r- < r+ ) ,  T, is the classical period of the 
radial oscillations of the particle, n = 1 + q + 1 , and q = 0,1, ... 
is the radial quantum number (frequently denoted in the lit- 
erature by n,). Note that the quasiclassical momentum p(r )  
is calculated here with the Langer correction? i.e., 1(1+ 1) is 
replaced by (1 + 112)~. 

We emphasize that Eq. (1 1) has been derived through the 
application of the usual matching condition (2). From (7) the 
correct quasiclassical approximation for the coefficient at 
zero is 

E n 1 = l ( v ) c ~ .  (12) 

The nontrivial point in (12) is the appearance of the factor 
Kv). Here we do not derive Eqs. (7), ( l l ) ,  and (12), but 
compare them with the results of analytical and numerical 
calculations of the coefficient cnl for power-law and short- 
range potentials. 

4. EXAMPLES 

The integrals that appear in Eqs. (1 1) and (11') can eas- 
ily be calculated for the exactly soluble models of the har- 
monic oscillator [a=2 in Eq. (5)] and the hydrogen atom 
(a=  - 1); see Appendix A. We also consider other power-law 
potentials:) where the Schriidinger equation can only be 
solved n~mer ica l l~ .~)  Some of these results are shown in 
Tables I1 and 111, where the following notation is used: 

Here Enl and cnl are the exact values of the energy and the 
coefficient at zero, and i n l ,  C Y ,  and Enl are defined above. 
For particular values of the quantum numbers n,l (or q , l )  in 
Table I11 two numbers are given: (A) corresponds to ( l l ) ,  
i.e., to the usual matching rule (2) for a turning point; (B) is 
calculated from Eq. (12), including the factor Hv). 

Let us discuss the results of the calculations. As can be 
seen from Table III, the modified matching rule (7) in prac- 
tically all cases, including the ground state (q = 1 = O), sub- 
stantially increases the accuracy of the quasiclassical ap- 
proximation for I) (0). Note the exceptionally high accuracy 
of Eq. (12) in the case of the anharmonic oscillator (a=4). 

It should be emphasized that for n+W and fixed 1 the 
ratios vYB do not approach unity?) 

Thus, expression (11) is not asymptotically correct, even if 
the number of nodes satisfies q B l .  Only after the introduc- 
tion of the correction ((v) does Eq. (12) become asymptoti- 
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TABLE 11. Energies En, for attractive power-law potentials. 

cally correct in the limit q=n,+w (this is a necessary con- 5. ZERO-ENERGY STATES 
dition for the quasiclassical expression to be correct). 

Similar calculations were carried out for short-range This case requires special treatment, since the asymp- 

Yukawa and Hulthin potentials, totic form of a bound-state (121) wave function changes: 
x l ( r ,E=  0) falls off as r -  ' rather than exponentially in the 

,a 
0 

1 

limit r - t w  We consider this point for the example of the 
(I5) Tietz pooatial: 

Table IV shows the values of the binding constants gz) and 
gnl corresponding to Enl=O and EnI=O, respectively, i.e., 
those for which the nl level appears. It is clear that even in 
this case (which is less favorable for the quasiclassical treat- 
ment) the WKB method is accurate to a few percent, except 
for the s-states. 

A more detailed investigation was performed for several 
s- and p-states in the Yukawa potential. As an example, 
Table V shows the values of the energy, the coefficient at 
zero, and the ratios l?nIl~nl and vnl for the 2s level. The 
notation for columns (A) and (B) is the same as in Table 111. 
The entries in Tables IV and V show that (except for a rela- 
tively narrow region near g = g;;, i.e., the case of shallow 
levels) the quasiclass~cal formula (12) is accurate to a few 
percent even for n =2 and 3 (here n is the principal quantum 
number of a state). 

Generally speaking, the modified matching condition (7) 
significantly increases the accuracy of the quasiclassical ap- 
proximation for the wave functions [compare columns (A) 
and (B) for g 2 1.5g;:I. For large values of g the nl state 
is localized in the region of small r where the Yukawa po- 
tential goes over to the Coulon~b potential. By virtue of this 
the limiting values c,,, vn, for g a m  agree with the corre- 
sponding coefficients cnl from Table I11 for a= - 1. 

Note. Here we have set g= l ;  a=O co~~esponds to the logarithmic potential V(r)=ln r. The 
quantities E,, characterize the accuracy of the WKB method and are defined in Eq. (13). Here and 
in what follows the numbers in parentheses give the order of the exponent: 1.3 1(-2)=1.31. 
etc. 

1 , q  
0 , 0 
0 , 1  
0 , 2 
1 , 0 
1 , 1 
1 , 2 
2 , 0 
2 , 1 

10 , 0 
10 , 1 

0 , 0 
0 , 1 
0 , 2 
1 , 0 
1 , 1 
1 , 2  
2 , 0 
2 , l  

10 , 0 
10 , 1 

which is often used in atomic The "critical" val- 
ues of the effective binding constant g=Zl,u corresponding 
to when the nl state appears can be found explicitly either 
from the exact solution of the Schrodinger equation (gnl 
= ZIP;;) or from the Bohr-Sommerfeld quantization condi- 
tion (gnl): 

Thus, in the limit n+m we have 

En1 
0.69776 
1.50087 
1.94304 
1.29457 
1.80437 
2.14437 
1.66674 
2.04086 
2.91666 
3.03660 

1.85576 
3.24461 
4.38167 
2.66783 
3.87679 
4.92699 
3.37178 
4.46830 
7.58336 
8.34111 

Equation (11) in this case reduces to the following form: 

where 

en1 

1.31 (-2) 
2.24(-3) 
9.48 (-4) 
1.56 (-3) 
6.28(-4) 
3.47 (-4) 
5.13(-4) 
2.79(-4) 
2.03(-5) 
1.73 (-5) 

4.94(-3) 
1.60(-3) 
8.10(-4) 
1.22 (-3) 
6.21 (-4) 
3.82(-4) 
5.37(-4) 
3.31(-4) 
3.88(-5) 
3.35 (-5) 

985 JETP 80 (6), June 1995 Karnakov et a/. 985 

a 
4 

8 

1 ,  q 
0 , 0 
0 , 1 
0 , 2 
0 ,  3 
1 , 0 
1 , 1 
1 , 2 
1 , 3 
2 , 0 
2 , 1 
2 , 2 

l 0 , O  
10 , 1 
10 , 2 

0 , 0 
0 , 1 
0 , 2 
1 , 0 
1 ,  1 

10 , 0 

En1 
1.50790 
4.62122 
8.42845 
1.27383(1) 
2.82099 
6.36257 
1.04570(1) 
1.49907 
4.30282 
8.19236 
1.25463(1) 
1.99638(1) 
2.55651 (1) 
3.13926(1) 

1.80214 
6.57180 
1.34512(1) 
3.58452 
9.54346 
3.35398(1) 

En1 

-2.80(-2) 
-5.73 (-3) 
-2.33 (-3) 
-1.26(-3) 
-9.19 (-3) 
-3.29 (-3) 
-1.63(-3) 
-9.63 (-4) 
-4.46 (-3) 
-2.10 (-3) 
-1.19(-3) 
-3.71(-4) 
-2.94(-4) 
-2.37(-4) 

-9.66 (-2) 
- 1.65 (-2) 
-6.75(-3) 
-4.07 (-2) 
- 1.07 (-2) 
-2.24(-3) 



It is found that because of the slow (power-law, not ex- 
ponential!) dropoff in x1(r) in the subbarrier region the usual 
quasiclassical normalization 

C =  2 ~ ; " ~  (19) 

TABLE 111. Accuracy of the quasiclassical treatment for the coeffi- 
cients at zero (power-law potentials). 

1 

I I (A) (B) I (A) (B) I (A) (B) I 

nslevels n = Q + 1 

must also be modified. 
For potentials with an algebraic "tail" at infinity 

0 1  a = - I  I a = 0 

( r - r ,  (P>2),  r - + ~ ,  (20) 

a = l  

a finite contribution to the normalization comes from the 
subbarrier region r >  r +  (except for the case E<O). The 
Schrodinger equation with the potential (20) and energy 
E =O can be solved in terms of Bessel functions. Using this 
solution we find in place of (19) 

(here we have 1 3  1, since for 1 =0  the wave function at the 
point where the level appears is not normalizable). In par- 
ticular, for the Tietz potential (P=3) we have 

I I I J 

states with 1 jt 0 
q ] a = O ,  l = l  1 a = 2 ,  1 = 1  l a = 2 ,  1 = 3  

I I 
In column (B) of Table VI the values of the ratios 
?Inl= C"nll~nl are given, where cnl are the exact coefficients at 
zero and Enl is the quasiclassical approximation for them 
(including the modification of both the matching rule and the 
normalization): 

After introducing these corrections we find that the ratios 
satisfy ijnl-+l in the limit q t ~ ,  i.e., the quasiclassical treat- 
ment yields the exact asymptotic form for the coefficients in 
zero. Note that the principal role in (24), especially in the 
case of the p-states, is played by the correction dl given in 
Eq. (3), which is associated with the change in the quasiclas- 
sical normalization condition. It can readily be seen that for 
1 S l  

so that for large values of 1 the ratio (21) goes over to the 
usual normalization ~ondition.~ 

00 

TABLE IV. Short-range potentials (at the point when the nl level appears). 

The results of the calculations using these formulas are 
given in Table VI, from which it is clear (cf. the column for 
pnl = g"nl/gnl) that the quasiclassical treatment determines the 
critical values gnl to within a few percent, just as it does the 
energies Enl for power-law potentials (compare Table 11). On 
the other hand, the coefficients C? in this case have a 
fairly large error [column (A)], which only grows as q+m. 
Introducing the factor 5(21+1) in Eq. (18) following Sec. 2 
does not eliminate this flaw. 

Note. Columns (A) and (B) give the ratios vy and I j n r  ; cf. Eq. 
(13). For the exact values of the coefficients at zero (c,,) see Table I1 
of Ref. 4. 

1.0563 1 

Note. Here n= 1 + q + 1 and p,,,= g,,lg$'). 
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1.0337 1 
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1.0563 1 

Hulthen potential 

g'n;, Pnl 

0.5 1.221 
2.0 1.090 
4.5 1.053 

2.7486 1.036 
5.3623 1.025 
9.0505 1.018 

State 

1s 
2s 
3.3 
2p 
3p 
4p 

1, q .  

0, 0 
0, 1 
0 , 2  
1 ,  0 
1 ,  1 
1 .  2 

' Yukawa potential 
g y p  Pn1 

0.8399 1.199 
3.2236 1.082 
7.171 1.049 

4.5410 1.032 
8.872 1.022 
14.731 1.016 



TABLE V. Results of calculations for the 2s level in the Yukawa potential. 

Here we have restricted ourselves to treating the asymp- 
totic coefficient cnl [cf. Eq. (lo)]. The same corrections 
should be taken into account, however, in calculating the 
wave functions for finite r in the subbarrier region, the ma- 
trix elements, etc. 
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S. G. Pozdenyakov and D. V. Popov for performing the nu- 
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Russian Fund for Fundamental Research (Project No. 95-02- 
05417a) and the International Science Fund (Grant MJT 
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APPENDIX A 

Here we present formulas for the exactly soluble power- 
law potentials, specifically, the cases a = 2, - 1, and 1 in Eq. 
(5). 

In the first case we have 

n = l + q +  1. Hence 

where 

and the function & x )  is defined in Eq. (7). Using the dupli- 
cation formula for the gamma function we can readily estab- 
lish the identity 

which enables us to evaluate the function X ( x )  for the data in 
Table I. In the limit x P 1  we have 

and Eq. (1 1) yields [cf. the expansion (9)l. 
I n n e ~ + 1 ~ 2  I+ 112 112 Similarly, in the case of the Coulomb potential (a= - I) 

c ~ = { ~ ( q + 1 1 2 ) ~ + 1 1 2 ( 1 f ~ )  ] 02~+3~4 we find 

(Al) A(q+21+ 1) 

whereas the exact value of the coefficient at zero is (A71 

TABLE VI. The Retz potential (E,,=O). 

Note: Here p,,, = i , , , /g, ,  = pfy)/k,,, 
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From (A3) and (A7) it is immediately apparent that in the 
limit q--fw (i.e., for states with a large number of nodes in 
the radial wave function) the ratios 77y approach a limit 
which differs from unity: 

Thus, the quasiclassical approximation with the matching 
rule (2) does not yield the correct values of #(0) for 1-1 
(this is also evident from Table 111). This contradiction is 
removed by using the modified matching rule (7), by means 
of which we find 

where v is defined in (A8). On the other hand, if both quan- 
tum numbers q and 1 are large, then it follows from (A3) and 
(A7) that 

where 

Of course, this expansion is invalid in the limit p -+ 0 or 
p+l, when one of the quantum numbers (I or q) is of order 
unity. 

Finally, the Schrodinger equation can also be solved ex- 
actly for the s-states in a linear potential (a= 1): 

E,,= 2-li31n, jyns(r)= Nn~i(2 l I3r -  l,), (All) 

where z = - 6, is the nth real root of the Airy function Ai(z), 
and it follows from the normalization condition that N: =21i3 
[ ~ i ' ( -  [,)I-~. Hence 

c n S = d ,  n=1,2,3 ,... (A1 2) 

(thus, the coefficient c,, in this case does not depend on n in 
general). 

APPENDIX B 

For power-law potentials the following scaling relation 
holds: 

,m) = g21a+2m- ffIa+2 En1 7 

cnl(gm) = (gm) 1+3/2/a+2 
Cnl  9 (B1) 

whose validity can be verified by means of a scale transfor- 
mation in the radial Schrodinger equation: 

r+hr ,  ~ = ( ~ m ) - " ~ + ~  

(cf. also Ref. 8). Likewise, for the logarithmic potential V(r) 
= g  In r wehave 

where the values of these quantities for g = m = 1 are written 
as En, and cnl.  In consequence of these relations we can 
restrict ourselves to the case g = rn = 1, as was done in Tables 
I1 and 111. Using (B2) we can show that our calculations for 
the logarithmic potential are completely equivalent to the 
results of Quigg and ~osner '  for ns-states. 

Note that the logarithmic potential follows from (5) for 
a=@ 

(the infinite constant a-' can be disregarded, since it only 
yields a general shift in the energies Enl and cannot change 
the wave functions). 

Note also that the binding constant g in (5) and the co- 
efficient at zero have dimensions 

where L is length and we have written h=m= 1. In particu- 
lar, for a = - 1 we have g = Z =  a ,  ' (atomic units) and 
c n l  N Z ' + ~ ' ~ ,  while for a = 2  we have g=02, c ~ ~ N w ( ~ ~ + ~ ) ' ~  
[which is consistent with Eq. (A2)], where o is the frequency 
of the oscillator. 

')ln a power-law potential [i.e., under the condition that Eq. (5) holds for all 
0< r<m] elementary scaling arguments yield  an^^'"+^ , n* I. If a < O  
holds, then we have En-+-0  in the limit n - w .  

')The reason for this is that the Stirling formula for the gamma-function 
T ( x )  is very accurate even for x-I. 

3)The attractive power-law potential is defined by Eq. (5) with g>O for all 
values of r ,  0< r<m. Here we set g= I, which can always be done in view 
of the scaling relations (see Appendix B). 
')In the numerical calculations we used the Merson method (a modification 

of Runge-Kutta). The calculations of the energy eigenvalues En, and the 
coefficients at zero were performed with an accuracy of order 10-~-10-~. 

')The limiting value of q, does not depend on the exponent a for a>O (this 
can be seen clearly in Table 111). 
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