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The influence of the quantization of the energy of electrons on Doppler-shifted cyclotron 
resonance in a compensated metal in an oblique magnetic field has been studied theoretically. 
Analytic expressions for the elements of the surface impedance tensor of a solid metal 
under the conditions of strong anisotropy of the transverse conductivity have been obtained for a 
simple model of the Fermi surface. It has been discovered that the quantum oscillations of 
the nonlocal doppleron decay caused by magnetic Landau decay are displayed very strongly. It has 
been shown that these oscillations are large at frequencies comparable to the frequency of 
electron collisions. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Numerous investigations have been devoted to the study 
of Doppler-shifted cyclotron resonance in metals. Various 
manifestations of Doppler-shifted cyclotron resonance, par- 
ticularly in moderate magnetic fields, in which the motion of 
the conduction electrons in a magnetic field is described sat- 
isfactorily by classical means, were studied in these investi- 
gations. Naberezhnykh et al.' investigated the behavior of 
the radio-frequency impedance of a compensated metal in 
strong magnetic fields, in which quantum oscillations of the 
magnetic susceptibility (the de Haas-van Alphen effect) and 
of the static conductivity (the Shubnikov-de Haas effect) 
appear. The amplitudes of these oscillations are small (they 
are inversely proportional to N~" and N " ~ ,  respectively, 
where N is the number of Landau levels on the Fermi surface 
of the metal). The latter is attributed to the fact that the 
electrons in all quantum levels on the Fermi surface contrib- 
ute to the magnetic susceptibility and the static conductivity, 
and the oscillations of these quantities are associated with the 
relative variation in the total number of levels N, which is 
very large in typical metals. At the same time, effects caused 
by electrons with a definite longitudinal velocity are known. 
For example, the absorption of ultrasonic or electromagnetic 
waves in metals can be effected by electrons moving in 
phase with these waves. When the magnetic field H varies 
under the conditions of quantization of the transverse energy 
of the electrons, the discrete values of the longitudinal veloc- 
ity on the Fenni surface vary and alternately pass through the 
value of the phase velocity of the wave. As a result, the 
efficiency of the absorption of the wave varies sharply, and 
the absorption coefficient of ultrasound undergoes giant 
quantum  oscillation^.^ The nonlocal decay of helicons (mag- 
netic Landau decay) in uncompensated metals undergoes 
similar  oscillation^.^ The possibility of such oscillations in 
compensated metals, in which helicons cannot exist, has not 
been discussed in the literature. 

In this paper it will be shown that quantum oscillations 
of magnetic Landau decay are also possible in compensated 
metals. Magnetic Landau decay occurs when a constant mag- 
netic field H is directed at an angle to the direction of propa- 
gation of the wave in the metal or at an angle to the symme- 
try axis of the Fermi surface. This decay influences the 

distribution of the radio-frequency field and the surface im- 
pedance of the metal in two ways. First, it makes a contri- 
bution to the imaginary part of the Doppler root of the dis- 
persion equation and thereby causes nonlocal doppleron 
decay in the range of magnetic fields in which this propagat- 
ing mode exists. Second, magnetic Landau decay determines 
the skin-effect root for one of the linear polarizations of the 
radio-frequency field.4 In this case the corresponding quan- 
tities determining the spatial distribution of the wave field 
can undergo quantum oscillations. The field of a doppleron is 
circularly polarized, and the fields of the skin components 
are linearly polarized. Therefore, in the case of an oblique 
magnetic field, magnetic Landau decay influences the imped- 
ance in a complex manner, and very lengthy calculations are 
required to find the elements of the impedance tensor. To 
simplify these calculations as much as possible, we investi- 
gate the quantum oscillations of the magnetic Landau decay 
and surface impedance of a compensated metal using a 
simple model, in which the electron Fermi surface has the 
form of a parabolic lens: and the contribution of holes to the 
conductivity can be taken into account in a local approxima- 
tion. 

2. MODEL OF THE FERMl SURFACE AND NONLOCAL 
CONDUCTIVITY 

Let the electronic part of the Fermi surface of a metal 
have the form of a parabolic lens (Fig. I), and let the spec- 
trum of electrons have the form 

where m ,  v ,  and p  are constants with the dimensions of 
mass, velocity, and momentum, respectively, and the p,l axis 
of the p , p , ~ p , ~  coordinate system is parallel to the axis of 
the lens. We take a right cylinder with axis parallel to the p,r 
axis as the hole Fermi surface. We shall assume that a normal 
to the surface of the metal (the wave propagation vector k) is 
parallel to the z' axis and that the constant magnetic field H 
(the z axis) is inclined at an angle M 1  to the z' axis. 
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Landau decay. According to Ref. 6, the corresponding part of 
the nonlocal conductivity tensor d$ has the form 

I 

- e2mcm11 
Y "p-2.rrh31kz) W,W$Q(k,w,H,T), 

(6) 

Y '  1 
W= - 2.rr /02ndrpv(rp) 

(7) 

FIG. 1. Orientation of the magnetic field A and the coordinate axis relative 
to a parabolic lens. Ihe layer of p,=const sections passing through the edge e H  
of the lens is bounded by the dashed straight lines. o c =  mil= 

~ c C  
(8) 

Let us determine the parameters of motion of electrons 
in an oblique magnetic field. It can be seen from Fig. 1 that 
in the case under consideration there are two types of sec- 
tions of the lens formed by pz=const planes: sections which 
do not pass through the edge of the lens (Ipzl>p sin 8, 
where p = \I- is the radius of the lens) and sections 
which intersect the edge (Ipzl<p sin 8). The sections of the 
first type are ellipses, and the longitudinal velocity of elec- 
trons in these sections averaged over a cyclotron period does 
not depend on p z  : 

( S  is the area of the section of the lens formed by the 
p,=const plane). Therefore, the electrons of all the sections 
of the first type contribute to the Doppler-shifted cyclotron 
resonance and do not contribute to the magnetic Landau de- 
cay (their longitudinal velocity is much greater than the 
phase velocity of the wave). The orbits of the second type 
consist of parts put together from two different ellipses ob- 
tained as a result of sectioning of the upper and lower para- 
bolic portions of the lens. The mean value of the longitudinal 
velocity of electrons in these sections is given by the formula 

where 

In the sections of the second type C, varies from -vlcos2 O 
to vlcos2 8. Near the central section of the lens 
(IP,I@P sin 8) 

Among these electrons there must be electrons which move 
on the average in phase with the wave and cause magnetic 

where w is the frequency of the wave, m, is the electron 
cyclotron mass, mil is the longitudinal mass, and po is the 
value of p, at which the mean velocity of the electron coin- 
cides with the phase velocity of the wave: 

~ Z ~ , ( P O )  = o. 

The function Q describes the effect of quantization of the 
electron energy on the dissipative part of the nonlocal con- 
ductivity. According to Ref. 7, it is defined by the expression 

where 

E,(P,) is the energy of an electron with the quantum number 
n  (n  =0,1,2, ...) and the longitudinal momentum p, , kB is the 
Boltzmann constant, T is the temperature, and v is the fre- 
quency of electron-impurity collisions. For simplicity, we ne- 
glect the spin splitting of the electronic levels. Expression (9) 
was obtained under the assumption that hw<kBT. 

The value of Q depends in a complex manner on 
hwClkBT, on kvlv, i.e., the ratio of the electron mean free 
path to the length of the electromagnetic wave, on 
N= [ E ~ I ~ O , ] ,  i.e., the number of Landau levels on the 
Fermi surface, and on the frequency of the wave o. The 
dependence of Q on these quantities was analyzed in some 
limiting cases in Ref. 7. The character of the quantum oscil- 
lations of the magnetic Landau decay described by Q in the 
case under consideration will be investigated after we deter- 
mine the values of k, o ,  and H at which the effect is most 
strongly displayed. 

We calculate the values of W, and W, in our model. 
When 8<. 1, the transverse components of the velocity v, and 
u, in Eq. (7) can be taken in a zeroth approximation with 
respect to 6 in the form 

P P 
V x = -  m COS 9, v,=- m sin cp. (11) 
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The inclination of H has a very strong influence on the lon- 
gitudinal velocity vz (p) :  on the upper half of the lens (zl>O) 
v , - v ,  and on the lower half of the lens (zl<O) v,-  - v ,  i.e., 
near the central section where v z 4 v ,  the longitudinal veloc- 
ity is 

Substituting ( 1 1 )  and (12) into (7) and calculating the inte- 
grals with respect to p' and p, we obtain 

where 

mvc 
q = k - ,  p = J G .  

e H 

It follows from Eq. (5) and the definition of mil in Eq. (8) that 
in our model when K< 1 ,  we have 

At the same time, the cyclotron mass mc scarcely differs 
from m: m C M m .  Thus, for a parabolic lens the longitudinal 
mass mil is much smaller than the cyclotron mass (for the 
electron lens in cadmium pl /2mv=0.1) .  This fact is impor- 
tant: it will be shown below that the small value of the lon- 
gitudinal mass favors giant quantum oscillations of the mag- 
netic Landau decay. 

Substituting (13) and (15) into (6),  we represent the dis- 
sipative part of the nonlocal conductivity associated with the 
magnetic Landau decay in the form 

nec 
@ ( L )  = - 

XX H K(9) ,  

The remaining elements of the conductivity tensor are speci- 
fied by electron orbits which do not pass through the edge of 
the lens and by holes. They have the form 

nec 
u a S ( ~ , q ) =  H s a p ( q ) ,  a , P = x 9 y ,  (18) 

v - i w  
?*= - , J ? = ( t - 1 - i y , )  * - 1  , 

'" c 

m ,  is the hole cyclotron mass, v, is the frequency of colli- 
sions of holes with scatterers, a,, = a,, = 0 ,  and ax, and a,, 
are proportional to tan 0 and insignificant at small 0. 

The pole in the first term of (20) corresponds to the 
Doppler-shifted cyclotron resonance of electrons whose or- 
bits do not pass through the edge of the lens: 

The second term in (20) represents the hole Hall conductiv- 
ity, which is assumed to be local. Such an approximation can 
be used to consider the Dop~ler-shifted cyclotron resonance 
of electrons, if the longitudinal velocities of the holes are 
considerably smaller than the velocities of the electrons, as is 
the case, for example, in cadmium. 

3. DISPERSION RELATION (AND SURFACE IMPEDANCE) 

The dispersion relation for a radio-frequency wave in a 
metal 

which is written in dimensionless variables in the form 

can be represented in the form 

In (25) we replaced the tensor index y' by y.  Inclination of 
the magnetic field H relative to the symmetry axis of the 
Fenni surface and the wave propagation vector k results in 
magnetic Landau decay, which is manifested by the appear- 
ance of an additional dissipative term K in s,, as a result of 
which the transverse conductivity becomes anisotropic (we 
are interested in the case ~%-ls,,(O)l, which is possible even 
when M 1 ,  since ~ - 1 q l e  and s,,(O) - 1  y* + y f l  4 1 .  
The relative differences between s , , ~  and sxy and between 
s ,  ,, and s,, are of the order of 8 and can be neglected when 
fH 1. Therefore, henceforth we shall not distinguish between 
y ' and y or between z' and z .  

When Eqs. (19) and (20) for sap are taken into account, 
Eq. (25) can be written in the form 

In the range of magnetic fields corresponding to 6-1, Eq. 
(26) has two large roots q+ and q -  of the order of unity and 
two small roots q ,  and q ,  . The large roots q+ and q - cause 
the expressions in the first and second sets of parentheses in 
(26), respectively, to vanish, since ~4 1. When Eqs. (20) for 
s ,  ( q )  are taken into account, the approximate expressions 
for these roots have the form 

i t2 
q t - + = +  4( 1 +2)312 K( m). (27) 

In (27) we have neglected terms of order y and y, specifying 
the collisional doppleron decay. This approximation becomes 
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invalid at values of H for which I1 -4- y. The root q  - de- 
scribes the wave vector of a doppleron whose field is circu- 
larly polarized and rotates in the same direction as the elec- 
trons ("minus" polarization). This mode is a propagating 
mode in the range of magnetic fields where &1. The root 
q +  describes the analogous quantity for a mode whose field 
rotates in the opposite direction. The decay of these dopple- 
rons, which is proportional to K, is governed by the magnetic 
Landau decay. Here we neglect the collisional part of the 
doppleron decay. 

To find the small roots q l  and q ,  , it should be taken into 
account that syy - y* + yT and sYx=q2 for q2+1. As a 
result, Eq. (25) becomes 

whose solution has the form 

The root q l  corresponds to the skin mode specified by Lan- 
dau decay, whose electric field is polarized along the x axis. 
The wavelength of this mode increases with the magnetic 
field proportionally to H~ (Ref. 4). The mode corresponding 
to q ,  behaves differently at high and low frequencies. At 
high frequencies, where v 4 w + o c ,  this mode has the form of 
an Alfvin wave with wave vector k ,=wlv , ,  where 
v,= H l 4 ~ n ( m  + m l )  is the Alfvin velocity of the electron- 
hole plasma. In the low-frequency range o< v this wave be- 
comes a decaying skin mode specified by the collisions of 
electrons and holes. 

To calculate the surface impedance of a metal when car- 
riers are diffusely reflected from its surface, we must solve 
the system of integrodifferential equations for the electric 
field of a wave in a metal (z>O) 

In the case of an oblique magnetic field, in which the trans- 
verse conductivity is anisotropic (axx#uyy), this system 
does not separate into two independent equations and cannot 
be solved by the standard Wiener-Hopf method. An approxi- 
mate method for solving such a system when the zeros and 
branch points of the dispersion relation (22) are located in 
two regions far from one another in the complex plane of q  
was developed in Refs. 8 and 4. Just such a situation arises in 
the case under consideration: the field in the metal consists 
of two short-wavelength components (the Doppler roots 
q:-- 1 )  and two long-wavelength components (the skin root 
q ,  and the Alfvkn root 9,).  The method just cited can be used 
to separate system (30) into two solvable systems of equa- 
tions for the long-wavelength and short-wavelength compo- 
nents. 

Setting the field ?Ya(z) at z<0 equal to zero, we write 
system (30) in the Fourier representation in the form 

where 

c=cmvzleH, ?Ya and ga are the values of the field and its 
derivative with respect to 5 on the surface 5=0, and summa- 
tion with respect to repeated indices is understood. Here gqa 
is a regular function in the lower half-plane of q ,  and Fqa is 
such in the upper half-plane. 

Following Ref. 8, from the conductivity s , ( q )  we iso- 
late the zeroth and first terms of the expansion in q 2  and 
combine them with the magnetic Landau decay K. This sum 
forms the long-wavelength part of the conductivity tensor 
sLap .  In our model the elements sLap have the form 

The tensor s ~ , ~  defines the long-wavelength components of 
the field: the small roots q  and q ,  are solutions of the equa- 
tion det DLap=O, where 

We introduce the tensor 

which specifies the short-wavelength components of the 
wave field [the Doppler roots q ,  are solutions of the equa- 
tion det d a p ( q )  =0] .  The elements of the tensor dap have a 
pole at q2 = I : .  

The tensor dap can be approximately diagonalized in 
circular polarizations, to which we can transform via the ma- 
trix 

Simple but lengthy calculations lead to the following result 
for the elements d ,  of the tensor d= bdb-I:  

where the Doppler roots q ,  are specified by Eqs. (27). 
It follows from the results in Refs. 4  and 8 that the 

high-frequency surface impedance tensor of a semi-infinite 
metal is given by 

The tensor Map is specified by the contribution of the short- 
wavelength components: 

968 JETP 80 (5), May 1995 Savel'eva et a/. 968 



The tensor Nap is specified by the contribution of the long- 
wavelength components, and, according to Ref. 4, its ele- 
ments for our model in the case of I q l l  %q, have the form 

x x +  N ~ ~ = V ( ~ - - ) ,  

Substituting (36)  into ( 3 8 )  and integrating with respect to q ,  
we obtain 

Now, using expressions (39)-(41) ,  in a linear approximation 
with respect to 7 we obtain 

In the terms proportional to we set 

4. GIANT QUANTUM OSCILLATIONS OF THE IMPEDANCE 

The quantity K defined by (17) ,  which is associated with 
magnetic Landau decay, appears in the impedance Z in two 
ways: through the imaginary parts of the Doppler roots q ,  
and through the skin-effect root 9 ,  in 7 .  Here the quantum 
oscillations of Im q  . and q  , can differ significantly. The rea- 
son lies in the fact that the function Q, which describes the 
quantum oscillations, appears in q ,  and in q l  at appropriate 
values of q ,  and the degree of spreading of the giant oscilla- 
tions can depend strongly on q .  Spreading of the quantum 
oscillations occurs for two reasons: as a consequence of the 
thermal spreading of the Fermi distribution and as a conse- 
quence of collisions between electrons and scatterers. The 
role of the temperature is defined by the value of the ratio 
hoclkBT. In the case of the de Haas-van Alphen and 
Shubnikov-de Haas effects, under which all the electrons 
from the spreading region of the Fermi distribution contrib- 
ute to the physical parameters of the metal, the role of the 
scattering is characterized by the ratio vlw, , which can easily 
be rendered sufficiently small. In the case of giant quantum 
oscillations of the absorption of a wave by electrons moving 
with it in phase, the degree of spreading of the oscillations 
due to scattering depends strongly on the wavelength and 
consequently on q.  Since the Doppler roots q ,  are of the 
order of unity, and the skin-effect root q l  is small, the con- 
ditions for the realization of giant oscillations of q  are much 
more stringent than the conditions for oscillations of 
qq = Im q,  . Therefore, here we restrict ourselves to consid- 

eration of the case in which the oscillations of q ,  are spread 
strongly by electron collisions and the function Q ( q l )  is 
equal to unity to high accuracy. The oscillations of qq are 
clear-cut, and below we shall ascertain the optimal condi- 
tions for observing them. 

Before proceeding to the quantitative theory of the quan- 
tum oscillations of magnetic Landau decay, we must find the 
electron spectrum of the lens E = E , ( P ~ ) .  It is specified by the 
semiclassical quantization condition 

For sections of the lens near the central section, condition 
(44) gives the following spectrum: 

We have omitted all small corrections to the first and second 
terms in (45) .  

Let us consider the frequency range bounded by the in- 
equalities v<w<w, under the assumption that the term qua- 
dratic in k in the argument of D in ( 9 )  is much smaller than 
o. Then the maxima of the giant oscillations are found at the 
values of the magnetic field specified by 

The corresponding value of Q is given by 

Assuming that E ~ ~ B ~ ~ T ,  we can approximate the factor 
v + olk  (k>O) in the argument of the hyperbolic cosine in 
( 4 7 )  by 2 d k .  As a result, the formula for QM is brought into 
the form 

The integral is easily calculated in the limiting cases of large 
and small a. When aal, the region x -  l l a  is significant in 
the integral, which is then equal to dcx, so that 

In this case the collisions of the electrons scarcely influence 
the giant quantum oscillations, and their amplitude and shape 
are determined by the thermal spreading of the Fermi distri- 
bution. Realization of this case requires fulfillment of the 
inequalities 
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In the opposite case of a e l ,  the spreading of the quantum 
absorption maxima is determined by scattering. The integral 
is then equal to 4, and we obtain 

If expression (27) for the wave vector of an electron dopple- 
ron with minus polarization is plugged into Eq. (51), it takes 
on the form 

where 

and uo is a quantity of the order of the conductivity of the 
metal parallel to the axis of the lens in the absence of a 
magnetic field. It is noteworthy that Q$) depends on o and 
H only through the parameter 6 and that g is a constant for a 
given metallic sample. For example, for cadmium n-5. lo2' 
~ m - ~ ,  and in the vicinity of the equator of the lens 
mI1-3. g. Taking v= lo9 s-', which corresponds to an 
electron mean free path in the lens equal to 1 mm, we find 
that g-30. According to (27), magnetic Landau decay has a 
significant influence on doppleron decay over a compara- 
tively narrow range of magnetic fields above the doppleron 
threshold, where 651. In this region Qg)-g; therefore, the 
amplitude of the quantum oscillations is very large. The high 
narrow peaks of nonlocal doppleron decay are separated by 
broad deep minima. The calculations show that at the 
minima Qmi,-2/~$)4 1. 

The function Q, which undergoes giant quantum oscilla- 
tions as the field H varies, determines the imaginary part of 
the doppleron wave vector q -  (27) and, according to Eqs. 

(40), (42), and (43), appears in the expressions for the ele- 
ments of the impedance tensor Z. Therefore, the elements of 
Z should undergo giant quantum oscillations in accordance 
with these formulas, if gSl  for the particular metallic 
sample, the frequency o of the exciting field is at least of 
order v, and the thermal energy kBT is much smaller than the 
distance between the Landau levels of the electrons in the 
vicinity of the doppleron threshold: 

In the case of cadmium, when the frequency equals 250 
MHz and the field strength H = 50 kOe, (1 - ~ 1 5 . ~ 1 ,  and the 
energy tio, corresponds to a temperature of 6 K. Therefore, 
at temperatures T(1 K and angles of the order of several 
degrees, the impedance of a solid cadmium sample should 
undergo giant quantum oscillations. 
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