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The effect of local flattening of the Fermi surface of a metal on the geometrical oscillations of 
the velocity and absorption of ultrasonic waves is investigated theoretically. It is shown 
that the existence of local flattening of the Fermi surface can lead to a large enhancement of the 
oscillations. It is predicted that the amplitude of the oscillations depends on the direction 
of the external magnetic field. O 1995 American Institute of Physics. 

Magnetoacoustic geometrical oscillations of ultrasonic 
absorption, which were first observed by ~ommel '  and inter- 
preted by pippard? are examples of the best-studied oscilla- 
tion phenomena in metals. Pippard geometrical oscillations 
are manifested in the propagation of sound perpendicular to a 
moderately strong external magnetic field H, in which the 
effective electron collision frequency 117 is much lower than 
the electron cyclotron frequency R, and the characteristic 
diameter 2R of a cyclotron orbit is much greater than the 
wavelength of the sound wave. The appearance of such os- 
cillations is associated with the periodic reappearance of the 
most favorable conditions for absorption of acoustic energy 
by electrons as the magnitude of the magnetic field changes. 
The period of the oscillations is determined by the largest 
cross-sectional diameter of the Fermi surface in a plane per- 
pendicular to H. The electrons which move parallel to the 
wavefront and are associated with this plane absorb energy 
from a sound wave. 

According to the theory of geometrical oscillations,'-4 in 
a simple metal with a closed Fermi surface the relative num- 
ber of such electrons is very large, making the amplitude of 
geometrical oscillations of the absorption coefficient and 
sound velocity small compared to their basic values. In the 
presence of certain singularities in the geometry of the Fermi 
surface, however, the number of electrons participating ef- 
fectively in absorption can be much larger, which should 
result in a significant amplification of the oscillations. For 
example, it is shown in Ref. 5 that because the dispersion 
law for charge carriers in a quasi-two-dimensional conductor 
is highly anisotropic, the number of electrons participating in 
magnetoacoustic oscillations becomes comparable to the to- 
tal number of electrons at the Fermi surface. As a result, in a 
conductor of the type considered, the amplitude of the geo- 
metrical oscillations of ultrasonic absorption is much larger, 
and the form of the oscillations is much different from the 
case of a quasi-isotropic metal. 

A change in the number of electrons participating in the 
absorption of acoustic energy under the conditions of a Pip- 
pard geometrical resonance may also be associated with the 
existence of local flattening of the Fermi surface at the points 
corresponding to the stationary points of a cyclotron orbit. 
The objective of the present work is to analyze the effect of 
local flattening of the Fermi surface on the geometrical os- 
cillations of absorption and the velocity of sound. 

We assume that among the cavities of the closed Fermi 

surface there is present a biconvex lens, whose symmetry 
axis is also the x-axis of the coordinate system chosen. We 
write the dispersion relation for the electrons associated with 
the lens in the form 

Here, p l  is the radius of the lens and p ,  is the half-thickness 
of the lens at the center. For 1 = 1 the dispersion relation (I) 
corresponds to an ellipsoidal Fermi surface, for which m I  
and m2 are the principal values of the effective-mass tensor. 
If the parameter 1 characterizing the shape of the lens as- 
sumes values greater than unity, then the Gaussian curvature 
of the surface vanishes at the points ( ? p 2 ;  0 ;0 ) ,  which co- 
incide with the vertices of the lens. Because of the axial 
symmetry of the lens, the curvature of both principal sections 
vanishes at these points, i.e., the vertices are points where the 
surface of the lens is flattened. The lens will be flatter near its 
vertices, the greater the value of 1. 

Electrons from neighborhoods of the vertices of the lens 
will participate in Pippard's magnetoacoustic oscillations if 
the magnetic field and the direction of propagation of the 
sound are perpendicular to the axis of the lens. Accordingly, 
it is assumed that H is parallel to the z-axis, and a sound 
wave with wave vector q and frequency w propagates along 
the y-axis of the coordinate system fixed in the lens. An 
expression for the wave vector of a sound wave can be writ- 
ten down on the basis of the equations of the theory of 
propagation of ultrasound in metals:677 

Here, s is the sound speed in the absence of the magnetic 
field and Aq is a dynamic correction which arises as a result 
of the interaction with electrons and is linear if the amplitude 
of the acoustic wave is small. For longitudinal sound Aq is 
determined mainly by the deformation interaction with the 
electrons: 
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where p, is the mass density of the metal, m,(p , )  is the 
cyclotron mass, U , ( p , , q )  is the Fourier component in the 
expansion in the azimuthal angle which fixes the position of 
the electron on the cyclotron orbit: 

Here, Ayy(pz  ,@) and u,(p ,  ,@) are the corresponding com- 
ponents of the deformation-potential tensor and the electron 
velocity; N is the electron concentration; and, the symbol (...) 
denotes averaging over the Fermi surface. For a multiply 
connected Fermi surface, in Eq. (3), in addition to the inte- 
gration over p , ,  a summation must be performed over all 
cavities of the Fermi surface. The quantities U n ( p z , q )  are 
calculated for each cavity separately. 

In the region considered, where qR * 1, the neighbor- 
hoods of the stationary points on the cyclotron orbits make 
the main contribution to the integrals over @ in the expres- 
sions (4) for U,(p ,  , q ) .  Evaluating, accordingly, the inte- 
grals (4) by the stationary-phase method, the following as- 
ymptotic expressions are obtained for the quantities 
U, , (P ,  , + q ) :  

where U o ( p , ) = U ( p z , @ l ) = U ( p z , @ 2 ) ;  2 R ( p Z )  is the di- 
ameter of a cyclotron orbit of the electrons in the lens in the 
direction of propagation of the sound wave; @ 1 and <P2 are 
the values of the angle @ which correspond to the stationary 
points on the cyclotron orbit; and, @2- @ 1 = T .  

The functions V ( p , )  and W ( p z ) ,  in Eq. (6) are corre- 
spondingly given by 

Here, 

and all dimensionless coefficients a k ( p z )  , except a l ( p z ) ,  
vanish at pz=O, and a l ( p z )  is of the order of 1 at p,=O. In 
particular, for the case 1 = 2 we obtain 

where 

For small values of p, , corresponding to a neighborhood 
at the center of the lens, for which 

the leading term of the asymptotic expansion of the function 
V ( p z )  in inverse powers of qR with 1= 2 has the form 

Here, r ( x )  is the gamma function, m y = m , ( O ) ,  and 
Rex= R ( 0 ) .  

For sufficiently large values of p,  , where the inequality 
(11) is not satisfied, the following approximation can be used 
for V ( p , )  : 

The asymptotic expressions for W ( p , )  in the corresponding 
ranges of p ,  are obtained from Eqs. (12) and (13) by replac- 
ing the cosine by a sine with the same argument. 

In calculating the dynamic correction arising in the wave 
vector of the sound wave as result of the interaction with the 
electrons of the lens, the range of integration over p, in the 
expression (3) must be divided into regions, with small and 
large values of p , .  When the integration in each region is 
performed, the corresponding asymptotic form must be used 
for the functions V ( p , )  and W ( p , ) .  The result is 

Here, the leading term in the expansion of the first term 
in inverse powers of the parameter qR can be represented in 
the form 

(15) 

where u ; ( p z )  =m2uo(pZ)l(p2&), and 
yo= m l ~ w p 2 / 2 ~ p m m ~ s 2  is of the same order of magni- 
tude as the sound absorption coefficient in the absence of a 
magnetic field. For q R P  1 the integral in the expression (15) 
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is of order 11& . Therefore, both terms in Eq. (15) are of 
the same order of magnitude. At not too high frequencies 
( 0 r <  l ) ,  they do not exhibit an oscillating dependence on 
the magnetic field and give the continuous part of the con- 
tribution of the lens electrons to the absorption and renormal- 
ization of the velocity of the ultrasonic wave. 

The magnetoacoustic oscillations are described by the 
term Aq2, whose leading term is 

1 
X 

sinh[(?rlnexr)( 1 - imr)] ' (16) 

where b= r2(1/4)/(4/fim2). 
The real and imaginary parts of the dynamic correction 

Aq determine the renormalization of the velocity of and the 
energy absorption coefficient for the ultrasonic wave. As fol- 
lows from Eq. (16), the leading-order approximation in the 
small parameter (qR)-' for the oscillating part of the ab- 
sorption coefficient has the fonn 

The amplitude of the oscillations described by the expression 
(17) is of the same order of magnitude in (qR)-' as the 
nonoscillating contribution to the absorption coefficient 
ImAq This is a direct consequence of the larger number of 
effective electrons as a result of the flattening at the neigh- 
borhoods of the vertices of the electron lens. In a simple 
metal whose Fermi surface is closed and convex everywhere, 
the oscillating correction to the sound absorption coefficient 
is small compared to the continuous part. 

The expressions (15)-(17) were derived under the as- 
sumption that the parameter 1 characterizing the degree of 
flatness of the lens near its vertices is equal to 2. Therefore, 
even a moderate flattening of the Fermi surface can result in 
a significant amplification of the geometric oscillations. For 
1> 2, the amplification of the oscillations will be even more 
pronounced. For an arbitrary value of 1, the function V(p,) 
in a neighborhood of p,=O is described by the asymptotic 
expression 

A similar expression can also be written for W(p,). 
To calculate the contribution from the neighborhood of 

the stationary point p,=O to the integral over p, in Eq. (3) 
with 1>2, the asymptotic expression (18) must be used. As a 
result, an expression which extends the expression (17) to 
arbitrary values of the parameter 1 is obtained for the oscil- 
lating part of the sound absorption coefficient: 

Here, bl= r2(1/21)/(?r212[a,(0)]"'). 
At the same time, the first term in the expression (15) for 

the nonoscillating part of the dynamic correction Aql can be 
replaced by 

7T 
X coth [a,T(' - -'0" 1 

Even under these conditions, the second term in the expres- 
sion for Aql is of the same order of magnitude. Therefore, 
even with greater flattening of the surface of the lens, the 
amplitude of the geometric oscillations of ultrasonic absorp- 
tion (19) is of the same order of magnitude as the continuous 
part of the absorption coefficient and is much greater than 
(by a factor qRex for 1%- 1) the amplitude of the correspond- 
ing oscillations in a simple metal, whose Fermi surface has 
no local flattenings. 

The oscillating contribution to the velocity of the ultra- 
sonic wave is expressed in terms of the real part of the 0s- 
cillating contribution to the correction Aq: 

The amplification produced in the magnetoacoustic oscilla- 
tions as a result of the increase in the number of electrons 
participating in the oscillations is manifested in the oscilla- 
tions of the sound speed just as in the oscillations of the 
ultrasonic absorption which we analyzed above. 

Since the amplification, which we studied in this work, 
of the geometric resonances in the velocity and absorption of 
ultrasound is due to the local geometric characteristics of the 
Fermi surface, it can be observed only for a definite choice of 
the direction of the magnetic field with respect to the sym- 
metry axes of the crystal lattice. When the magnetic field is 
tilted away from the direction for which the point of flatten- 
ing of the Fermi surface falls on its section corresponding to 
the cyclotron orbit of the electrons participating effectively 
in the formation of the oscillations, the influence of this point 
vanishes and the amplitude of the oscillations decreases. 
Therefore, the amplification of geometric oscillations, just as 
a number of other effects which result from local geometric 
features of the Fermi surface of a metal:-'l should exhibit a 
pronounced dependence on the direction of the external mag- 
netic field. 

Specifically, for the model Fermi surface (I)  considered 
here, the amplitude of the geometric oscillations of the ve- 
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locity and sound absorption coefficient will depend on the 
angle cp between the external magnetic field and a plane 
perpendicular to the axis of the lens. The range of variation 
of the amplitude of the oscillations with increasing cp is de- 
termined by the degree of flattening of the lens near its ver- 
tex. 
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