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Tunneling between two orbital antiferromagnets (systems in which the magnetic ordering is 
produced by spontaneous currents in the ground state) is studied. It is shown that in contrast to 
tunneling between ordinary antiferromagnets (in which the magnetization results from spin 
ordering), where the spin-dependent part of the tunneling current is proportional to the relative 
orientation of the magnetizations in them, for orbital antiferromagnets the spin-dependent 
part of the current depends on the relative local orientation of the spontaneous currents. 
Unfortunately, because a semi-infinite crystal (a crystal bounded by a surface) does not 
possess a center of inversion, it is impossible to distinguish between the contributions to the 
tunneling current from spontaneous currents and spin polarization. The lack of a center of inversion 
in the presence of initial spin ordering results in the induction of spin currents, and the 
initial spontaneous currents inevitably result in magnetization of the electron spins. These 
contributions can only be distinguished numerically. O 1995 American Institute of Physics. 

1. INTRODUCTION The microscovic current distribution can be expressed in 

Magnetic ordering in solids can result from the ordering 
of electron spins. For elements with d and f shells, it is 
sometimes said that the atomic spins are ordered, but the 
appearance of an atomic moment is nonetheless of an elec- 
tronic nature. In the case of spin ordering in a crystal, there is 
a spin density distribution s(r) and an associated magnetiza- 
tion distribution. In the case of spin ordering, the electron 
density matrix and the free energy of the system are func- 
tional~ of the spin density, which can be chosen to be the 
order parameter. In the presence of spin ordering, there is no 
microscopic current in a unit cell of the crystal. 

At the same time, states of the crystal in which the spin 
density is identically zero (s(r)=O) but a current j(r)#O cir- 
culates in the unit cell in the ground state of the crystal (this 
can be termed an orbital magnetic material) are not forbid- 
den, in principle . The total current averaged over the volume 
of the crystal is then zero: Jj(r)dr=O; otherwise, a macro- 
scopic magnetic moment would arise, and this could not cor- 
respond to the ground state of the crystal.' The current dis- 
tribution produces a nonuniform magnetization distribution 
in the crystal. In contrast to spin ordering, however, the mag- 
netization cannot be chosen as an order parameter in terms of 
which one can express the density matrix and the free energy 
of the elctrons 

At the same time, the current also cannot be chosen as an 
order pameter,  because the free energy would then depend 
on the gauge of the vector potential. A different quantity 
must be chosen as the true order parameter in terms of which 
the current and magnetization are expressed. 

The Possible of the existence of states of a crystal with 
nonzero current in the ground state was pointed out in Ref. 3 

terms of the toroidal moment j(r)=[v[~~(r)]]. '  - 
Subsequently, states of a crystal carrying current in the 

ground state were rediscovered on the basis of the two- 
dimensional Hubbard model (the so-called flux In 
this case, the boson fields at lattice bonds (the latter can be 
expressed in terms of electron averages) can be chosen to be 
the order parameter. In the model considered below, there is 
no toroidal moment. 

It would be interesting to know what kind of exerpi- 
ments can distinguish magnetic order that results from spin 
ordering from the case when the magnetization is produced 
by a nonuniform current distribution with no spin ordering. It 
turns out that tunneling measurements are such experiments. 
Our objective in the present paper is to clarify the character- 
istics of tunneling in a crystal in the flux-phase state. 

2. QUALITATIVE ANALYSIS 

We first examine qualitatively tunneling in the flux- 
phase state. For definiteness, we have in mind the flux-phase 
on a two-dimensional square lattice.6~~ This phase can be 
described in the language of effective single-particle states. 
In the flux-phase, half of the elementary magnetic flux quan- 
tum penetrates into each square unit cell. The electron spec- 
trum can be calculated as in the single-particle problem, 
where the hopping integrals between nearest neighbors in the 
lattice have phase factors with specially selected 
phases &j=tij  exp(iOij), (where tij is the hopping integral 
between sites i and j)? The flux penetrating a unit cell is 
given by the phase increment around the cell perimeter: 

on the basis of a model with electron-hole pairing.2 The na- 
ture of this state was then investigated in detail in a number @=c 4,. 

li ;\ - \ . I f  

of papers?y5 It was found in these papers that the true order 
parameter is the toroidal moment T(r), which is invariant The current along the ( i j )  bond is 

under simultaneous time reversal and coordinate inversion. ji = e Im{ii j}. (2) 
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FIG. 1. 

With this choice of the phases 

- - 
I, ,= t,,=rT3=iT4= rexp 

half of the elementary flux penetrates a cell (the increment of 
the phase q5 to .rr in units of hcle), and the currents flowing 
along opposite sides of the square are equal in magnitude 
and oppositely directed (j,,= - j,,, j23= - j,,). The 
current-induced magnetizations are oppositely directed at the 
centers of neighboring cells (Fig. 1). There is no spin order- 
ing; the currents for electrons with different spin directions 
flow identically. This magnetic state cannot be observed in 
tunneling experiments with an ordinary magnetic needle (in 
the case of scanning tunneling microscopy) with spin order- 
ing. Indeed, the density matrix for the electrons in a needle 
with spin magnetic ordering can be represented in the form9 

where are the spin-independent and the spin-dependent 
parts of the density of states; f and 6 are respectively the unit 
matrix and the vector of Pauli matrices, and M, is the mag- 
netization in the needle (we assume that the needle is single- 
domain, and M, does not depend on the site number). 

For a system in the flux-phase the density matrix is di- 
agonal in the spins and is a function of the hopping integrals 
and their phases 

b fP = pfP( ei j)i, (5) 

since j is the matrix inverse of the effective single-particle 
Hamiltonian, which is diagonal in the spins 

The tunneling current is proportional to the trace of the local 
densities of states 

where Tr denotes the trace over the spin indices. Because 
bfP is diagonal in the spin, the current is insensitive to the 
orientation of the magnetization in the needle. 

In tunneling from a surface with spin ordering, however, 
the tunneling current would contain a term that depends on 
the relative orientation of the magnetizations in the needle 
and at the surface9 

where Mt,, are the magnetizations in the needle and the crys- 
tal, and Io, are constants which depend on the details of the 
electronic structure. This term in the current makes it pos- 
sible, in scanning tunneling microscopy experiments with a 
magnetic needle, to identify individual magnetic ions on the 
surface." 

FIG. 2. 

In summary, the spin magnetization in the needle is in- 
sensitive to a change in the orientation of the magnetic mo- 
ment in an orbital magnet from one cell to a neighboring 
cell. In delete a spin antiferromagnet, however, the spin- 
dependent part of the tunneling current would have different 
signs in neighboring cells. A change of the sign of the mag- 
netic moment in an orbital antiferromagnet from cell to cell 
can be observed if tunneling occurs in a crystal in the flux- 
phase state. 

3. TUNNELING BETWEEN ORBITAL ANTIFERROMAGNETS 

To describe tunneling between two systems in the flux- 
phase state, we consider two planar square lattices between 
which a weak tunneling bond exists. In one case the relative 
arrangement of the lattices is such that the magnetization in 
the cells lying below one another is oriented in the same 
direction, and in the second case it is oriented in opposite 
directions (Fig. 2; the fine lines represent the weak tunneling 
bonds). To describe the flux-phase, it is convenient to use the 
approach of Ref. 7. The flux-phase state can be described on 
the basis of the Hamiltonian 

where the summation extends over nearest neighbors ( i  j), t 
is a hopping integral, J is the exchange interaction constant 
at neighboring sites, and U is the intrasite Coulomb repul- 
sion constant. Such a hybrid model gives the Hubbard model 
in the limit 140 and the Heisenberg model in the limits 
U--+O and r 4 O .  

The interaction terms in the Hamiltonian are formally 
eliminated by a Hubbard-Stratonovich transformation. Com- 
pleting the square with auxiliary boson fields does not 
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change the partition function. In so doing, an additional in- 
tegration over these degrees of freedom arises. This supple- 
mentation of the Hamiltonian formally reduces the original 
problem to one with a quadratic Hamiltonian in the fermion 
degrees of freedom plus additional couplings for the fermion 
and boson fields. The transformed Lagrangian corresponding 
to the Hamiltonian (9) has the form 

and the couplings are 

where +i and xij are the additional boson fields. 
In calculating the partition function, the integration over 

the fermion degrees of freedom can be evaluated exactly and 
the integration over the boson fields can be performed, as a 
rule, in the saddle-point approximation. In calculating the 
different averages in this approximation the fermion part of 
the problem is effectively a single-particle problem, and the 
boson fields are actually replaced by their averages at the 
saddle point. 

We are interested in calculating the tunneling current 
between two weakly coupled systems ( L  and R), described 
by the Hamiltonians (9) and located in the flux-phase state. 

The tunneling-current operator can be expressed in terms 
of the tunneling-coupling operator (the Heisenberg represen- 
tation is used for the operators), and they have the following 
form: 

and 

i(r)=iC?x [ T ~ ~ ; ~ C ~ , ( ~ ) C ~ ~ ~ ( ~ ) - ~ . C . ] ,  
iju 

(14) 

where subscripts i and j refer to the L and R systems, re- 
spectively, and TLRij is the tunneling matrix element between 
sites i and j in the L and R systems. 

The tunneling current is defined as the average 

where the integration (15) extends over a closed time 
For weak tunneling coupling, the argument of 

the exponential can be expanded to first order in the 
tunneling-coupling operator. One can then average indepen- 

dently over the L and R states of the systems (the tunneling 
current is then proportional to T:,). We have 

where the symbols (...)L,R denote averaging over the states 
of the noninteracting L and R systems, 

Xexp - i  LL,R( t l )d t l  . 
H P  I 

In what follows, these indices are suppressed. The expression 
(16) can be put into the form 

where the matrix notation T L R s { T L R I j )  has been introduced 
for convenience, and i'.' are the Keldysh Green's functions 
(GFs) for the fermions. To calculate them, the boson degrees 
of freedom are replaced by c numbers at the saddle point. By 
definition, we have 

and similarly for the L system. 
The Keldysh Green's functions can be expressed in 

terms of retarded Green's functions and the single-particle 
distribution function 

It is convenient first to find the retarded Green's function in 
the momentum representation, and then transform to the site 
representation. The retarded Green's function is the matrix 
inverse of the effective single-particle Hamiltonian 

The boson fields on the couplings xij  in the flux-phase are 
given by the relations (3). The field + shifts the reference 
energy, which is important for our purposes, so that in what 
follows such terms will be dropped. 

The current along the bonds (for example, 1 and 2), tak- 
ing into account the equations of motion (12), has the form 

and the Green's function in the momentum representation 
has the form 
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where 

t(k) = 2 t(coskx+ cosk,) + x12exp(ik,) + xs4exp( - ik,) 

+ ~?~exp(ik,) + ~ $ ~ e x p (  - ik,), 

and the Green's function in the site representation is obtained 
via Fourier transformation, 

where the indices n and n' run over the sites of a square 
lattice. 

When nearest neighbors are taken into account in the 
tunneling between the L and R systems (this is not for our 
results, but greatly simplifies the discussion), the expression 
for the tunneling current assumes the form 

where T L R = T I I t =  .... =T,, and fLVR(&) are the single- 
particle distribution functions with the chemical potentials 
shifted by the amount of the applied voltage 
( P L - P R = ~ V ) .  

All nontrivial information about the structure of the flux- 
phase is contained in the off-diagonal elements of the density 
matrix in the tunneling current. Modulating the magnitude of 
the tunneling current when one system is shifted relative to 
the other by the lattice constant (Fig. 2) yields the quantity 
(per unit cell of the square lattice) 

where the currents I+  and I -  correspond to situations when 
the currents along the neighboring edges (Fig. 2) in the L and 
R systems flow in the same and opposite directions, respec- 
tively. We have introduced the notation 

The fermion spectrum has the form 

E,(k)= +lt(k)l. 

Therefore, according to Eqs. (25), the modulation of the tun- 
neling current accompanying a displacement of the lattices 
with respect to one another by the lattice constant has the 
form 

The structure of the tunneling current can be interpreted 
as follows. The off-diagonal elements of the density matrix 

L p,,,, (similarly for the R system) represent the transition 
amplitude from site n to site n'. The off-diagonal matrix 
elements (for example, T ~ ~ ~ ~ ~ T ~ ~ ~ ; ,  , ,) describe transitions 
from a site { l L - + 2 L + 2 ' R ~ l ' R - + l L )  (Fig. 2). Transi- 
tions from sites (1 ' R -+ 1 L) and (2L-t 2 ' R) are and depend 
on the relative phase at sites 1,2 and 1 ' ,2'. This same value 
of the relative phase at the sites determines the presence and 
the direction of the current flowing along the bonds. Under 
displacement by the lattice constant, the relative phase is 
reversed, and accordinglythe direction of the currents flow- 
ing along the bonds located beneath one another changes. 
Therefore, tunneling electrons feel the relative phase (direc- 
tion of the currents) between sites in the L and R systems. 

4. CONCLUSIONS 

Modulation of the tunneling current under a relative dis- 
placement by the lattice constant formally results from the 
off-diagonal elements of the density matrix, which are pro- 
portional to the hopping integrals between sites within each 
system (the latter are present in the single-particle problem). 
However, such modulation does not occur in the single- 
particle problem. The single-particle hopping integrals are 
given by the matrix elements associated with the overlap of 
the site orbitals 

All single-particle overlap integrals have the same 
since all single-particle atomic orbitals +i at sites have the 
same phase. The phase +i should not be confused with the 
phase of the characteristic Bloch wave function of a single- 
particle state, which is associated with translations. The 
change in the hopping integral as a result of many-particle 
effects (as follows from Eq. (lo), xij is an additive correc- 
tion to the single-particle hopping integral) is given by 

The choice of phase for different pairs of neighboring sites is 
not unique, and is fixed by the interaction, so that this choice 
would correspond to minimum energy (the conditions of an 
extremum with respect to xij at the saddle point). The phases 
xij become "frozen in", and there is no latitude in choosing 
them. The interaction (in the language of the effective single- 
particle states) results in additional entanglement of the 
single-particle Bloch wave functions with specially chosen 
phases inside the cells. 

Therefore, in tunneling between two orbital antiferro- 
magnets, the tunneling current is sensitive to the relative di- 
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rection of the spontaneous currents in the L and R systems 
and not to the relative orientation of the magnetizations, as 
would be the case for spin antiferromagnets. 

In a pure spin magnetic ordering in the needle and the 
crystal, the tunneling current contains a component propor- 
tional to the scalar product of the magnetizations. As shown 
in Ref. 15, however, because a semi-infinite crystal (bounded 
by a surface) does not possess a center of inversion, the 
magnetic ordering and exchange magnetization of the elec- 
tron spins result, to the extent of the spin-orbit interaction, 
in the appearance of a toroidal moment and a spontaneous 
current related to it as j= [V[VT]]. This fact will inevitably 
lead to the appearance of terms in the tunneling current pro- 
portional to the local product of the currents. This makes it 
impossible to distinguish the pure current contribution from 
the pure spin contribution to the tunneling current, and the 
relative magnitude of these contributions differs only nu- 
merically. The impossibility of making such a separation is 
of fundamental significance. Magnetic spin ordering gener- 
ates a magnetic field that influences not only the spin of an 
electron but also its orbital motion. In addition, in contrast to 
the effect on the spectrum via the spins and the spin-orbit 
interaction, the orbital contribution is not relativistically 
small. Correctly taking into accountthe effect of a magnetic 
field on the orbital motion of Bloch electrons (electrons in 
the periodic potential of the lattice) leads to the problem of 
Ref. 8, where the electron spectrum consists of an infinite 
number of energy bands (the number of bands is finite only 
for special values of the magnetic field). Taking the effect of 
the magnetic field on the orbital motion into account should 
also result in the appearance of spontaneous currents. The 
question of the symmetry of such currents is still not com- 
pletely clear. However, the answer for free electrons is 
known (the periodic potential is equal to zero). In this limit, 
in the absence of a center of inversion, the magnetic field 
introduces an asymmetry in the spectrum for a wave vector 
perpendicular to the magnetic field.16 The appearance of the 
toroidal moment is associated with the asymmetry of the 
electron spectrum. In addition, the asymmetry of the spec- 

trum in a magnetic field is a general property of surface 
groups.'7 For a nonuniform distribution of the magnetic field 
(for example, for antiferromagnetic ordering), the spontane- 
ous currents will be nonuniform on the scales of a cell. 

For orbital spontaneous currents in a cell in the flux- 
phase state, these currents will inevitably result in magneti- 
zation of the electron spins and a spin-dependent contribu- 
tion to the tunneling current. Even in this case, therefore, it is 
impossible to distinguish the "spin" and "current" contribu- 
tions to the tunneling current. 
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