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Spectra of excitations with frequencies wo have been observed in the dielectric crystal Eu2Cu04 
over a broad temperature range, including the vicinity of the Ndel point TN, for 
electromagnetic waves in the microwave range. These spectra are uniform (with a wave vector 
q=O) and well-defined (with a damping y+wo). In the absence of a static external 
magnetic field, an antiferromagnetic resonance (a gap in the spectrum of excitations) is observed 
in a critical region in which there are 2D antiferromagnetic spin fluctuations with large 
correlation radii 6 in the crystal. Uniform, well-defined spin excitations can exist in quasi-2D 
Heisenberg antiferromagnets when there is a pronounced anisotropy ( & 4 &  where i& is 
the radius of the correlation among spins due to the anisotropy) of a certain symmetry. Some 
specific mechanisms for the anisotropy for Eu2Cu04 are discussed. A phase state diagram is 
constructed. O 1995 American Institute of Physics. 

1. INTRODUCTION 

In this paper we examine the spin dynamics of the anti- 
ferromagnetic dielectric crystal Eu2Cu04 for electromagnetic 
waves in the microwave range. We study the temperature 
dependence and the frequency dependence of the dynamic 
magnetic and electric susceptibilities at frequencies of 10-40 
GHz over the temperature range 77-350 K for various ori- 
entations of the components of the alternating electromag- 
netic field with respect to the crystal axes. There is no static 
magnetic field. 

The compound Eu2Cu04 belongs to the class of crystals 
R2Cu04 (R is either La or one of the rare earth elements Pr, 
Nd, Sm, Eu, Gd), which serve as models for high T, super- 
conducting compounds. In addition, the dielectric crystals 
R2Cu04 are quasi-2D Heisenberg antiferromagnets whose 
structure is based on Cu02 planes. The latter consist of a 2D 
square lattice of spins (S=1/2) with antiparallel nearest 
neighbors. The R2Cu04 crystals with rare earth ions have 
tetragonal symmetry of the type T' (T4lmmm) over the en- 
tire temperature range.' A structural phase transition occurs 
in La,Cu04, from the tetragonal (higher-temperature) phase 
to an orthorhombic phase. 

Among the tetragonal R2Cu04 crystals, only Eu2Cu04 
contains an essentially nonmagnetic ion of a rare earth ele- 
ment, which has essentially no influence on the magnetic 
properties of the CuO, planes of the crystal. The 7 ~ o  ground 
state of the E U ~ +  ion is nonmagnetic. The first excited mag- 
netic state, 7 ~ 1 ,  of the E U ~ +  ion lies 300 cm-' from the 
ground state. The subsystem of E U ~ +  ions constitutes a Van 
Vleck paramagnet and has essentially no effect on the dy- 
namic magnetic properties of the crystal. 

We believe that the properties of isolated 2D Cu02 lay- 
ers are similar in many crystals of the R2Cu04 type. 

Strong antiferromagnetic correlations in the CuO, planes 
have been seen in experiments on inelastic neutron scattering 
in La2Cu04 (Refs. 2 and 3) and Y B ~ , C U ~ O ~ + ~  (Refs. 4 and 
5) over a broad temperature range, including T>TN. The 
authors have interpreted these correlations as well-defined 

spin-wave-like excitations with a wave vector q-Q-0, 
where Q is the antiferromagnetic reciprocal lattice vector. 

Two-dimensional Heisenberg antiferromagnets with 
S=1/2 were studied by Chacravarty et al. in Ref. 6; they 
were also studied in Refs. 7 and 8. It was shown in Ref. 6 
that 2D antiferromagnetic long-range order with TN=O can 
exist in isolated 2D Cu02 layers. At T>O, there are antifer- 
romagnetic, 2D, well-defined spin-wave-like excitations with 
a wave vector ql=q-Q at q ' p l ,  where 6 is the correlation 
radius of the spin fluctuations (antiferromagnetic spin-wave 
excitations). In the region q1[4l these excitations become 
purely dissipative, in accordance with general principles. In 
real La2Cu04 and YBa2Cu306+* crystals there is a quasi-2D 
long-range antiferromagnetic order with a finite TN. At 
T> TN , well-defined antiferromagnetic spin-wave excita- 
tions can exist under the condition q ' e l  according to the 
model of Ref. 6. 

In the present study, we have observed uniform, well- 
defined low-frequency excitations over a broad temperature 
range, including temperatures above TN, in the stoichio- 
metric dielectric crystal Eu2Cu04 in the absence of a static 
external magnetic field. The frequencies of these excitations 
are near 30 GHz. We assume TN- 150- 160 K for Eu2Cu04. 
Opinion is divided regarding the value of TN for Eu,Cu04 [it 
may be either 150-160 K (Refs. 9 and 10) or 250-270 K 
(Refs. 11 and 12)]. However, the experimental data of the 
present study, like the results of Ref. 13, can be interpreted 
only under the assumption TN=150-160 K. We will take up 
the question of the value of TN for Eu2Cu04 in more detail 
later on in this paper. 

The well-defined uniform spin-wave excitations which 
we observed are oscillations of the total moment of the an- 
tiferromagnet (ferromagnetic spin-wave excitations). As will 
become clear below, oscillations of the ferro- and antiferro- 
magnetic order parameters in an antiferromagnet are related 
to each other and have the same excitation spectrum. 

In the case q=O, however, in the hydrodynamic region 
of critical phenomena, only damped, diffuse excitations can 

By analogy with Ref. 14, in which the spin dynam- 
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ics in the critical region of dynamic scaling for 3D ferro- and 
antiferromagnets was discussed, we assume that the incorpo- 
ration of a pronounced anisotropy (such that a*5a*(, 
where a is the lattice constant, and 6, is the radius of the 
correlation among spins due to the anisotropy) makes pos- 
sible the existence of well-defined uniform spin-wave exci- 
tation. In other words, it leads to a gap in the spectrum of 
spin-wave excitations. The quantity 5 depends on the tem- 
perature, so we assume that the anisotropy is strong at tem- 
peratures at which the conditions a 9 la* [ hold. A study of 
the dynamic magnetic susceptibility at frequencies close to 
the frequency of the gap in the spin-wave excitations yields 
values for the dynamic susceptibility which are considerably 
higher than the static susceptibility? At frequencies above 
the value of the gap in the spin-wave excitations, and in the 
case of weak but nonzero damping, negative values of the 
real part of the susceptibility arise. Both of these features of 
the dynamic magnetic susceptibility are observed in our ex- 
periments when the alternating magnetic field is oriented 
along the c axis of the crystal (hllc). 

In addition to the dynamic magnetic susceptibility, we 
studied the dynamic electric susceptibility, so we were able 
to monitor the conductivity and dynamics of the lattice. 

This paper is organized as follows: In Sec. 2 we describe 
the experimental apparatus and the method for determining 
the magnetic and electric susceptibilities. In Sec. 3 we 
present experimental results. In Sec. 4 we offer a theoretical 
analysis of the conditions under which uniform, well-defined 
spin-wave excitations can exist in the critical region. In Sec. 
5 we construct a phase state diagram for a Eu2Cu0, crystal, 
and we interpret the experimental results. We also discuss a 
problem which arises in connection with an experimental 
determination of TN for Eu2Cu0,. 

2. EXPERIMENTAL PROCEDURE; METHOD FOR 
CALCULATING THE MICROWAVE MAGNETIC AND 
ELECTRIC SUSCEPTIBILITIES 

The frequency dependence and temperature dependence 
of the magnetic and electric susceptibilities were studied 
over the frequency range 10-42 GHz and the temperature 
range 77-350 K. We used a standard microwave spectrom- 
eter layout with a TE,, ,  (p=2-8) transmission cavity. We 
measured the temperature dependence of the resonant fre- 
quency and the Q of the cavity with and without the test 
sample, at frequencies corresponding to the spectrum of 
natural modes of the cavity. The test sample was at the center 
of the cavity, at a position corresponding to an antinode of 
the magnetic field for even p or to an antinode of the electric 
field for odd p. In the first case we measured the magnetic 
susceptibility of the sample, and in the second the electric 
susceptibility. 

Electrodynamic parameters of the sample were calcu- 
lated in the quasistatic approximation by the perturbation- 
+I.-..,... ,,,,,, i;:c:hd.15 The corresponding expressions for the 

magnetic and electric susceptibilities of the sample are 

Sw* 
Rex:=- ( 8 ~ 7 7 -  ) Re- w* 

Here ,y,* is the complex magnetic (electric) susceptibility of 
the test sample. We are using Gaussian units, in which the 
susceptibilities are dimensionless. Here S d  = w* - o, , 
where o*  and w, are the complex frequencies of the cavity 
with and without the test sample, respectively; V,/V, is the 
ratio of the volumes of the test sample and the cavity; and 
the parameter v reflects the difference between the mean 
field in the sample and the peak value of the field for a 
sample of nonzero dimensions. For small offsets ( S A W )  we 
have 

Here So=w-w,, 6Q=Q-Q,; wand Q (w, and Q,) are 
the resonant frequency and quality factor of the cavity with 
and without the sample, respectively. 

The expressions for the parameter 7 for the components 
e,, h,, and h,  of the microwave field as functions of the 
geometric parameters of the sample and the cavity are 

Here A,L and a,l are the dimensions of the cavity and the 
sample along the x and z axes, respectively. We used test 
samples with typical dimensions of 1 X 1 X0.2 mm. For such 
samples, at an antinode of the magnetic field, the admixture 
of the electric-field component at the maximum working fre- 
quency (p = 8) is (ey)2/(h,)2< The same estimate ap- 
plies to the admixture of the magnetic component when the 
sample is at an antinode of the electric field in measurements 
of the electric susceptibility. 

The demagnetization (depolarization) (n) was taken into 
account with the help of the formulas for an ellipsoid of 
revolution.16 In this case (depolarization), the formulas for 
the susceptibilities are 

The measurement apparatus was calibrated with the help 
of a standard polycrystalline A1203 sample, whose electric 
susceptibility had been measured previously by the 
dielectric-cavity method. The different between the values of 
the electric susceptibility found by this method and those 
calculated from expressions (2.5) and (2.6) on the basis of 
measurements of the parameters of the cavity in our method 
did not exceed 10%. 
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x : .  lo3 FIG. 1 .  Temperature dependence of the real (a) and 

16 imaginary (b) parts of the dynamic magnetic suscep- 
1 tibility at a frequency of 30 GHz, for two orientations 

3. EXPERIMENTAL RESULTS ture region beyond the maximum of x:, we have a ratio 

14 

x:,/x;, - 0.2. 
Figure 1 shows the temperature dependence of the real For the orientation hLc (curves I ) ,  we see no anomalies 

(x ; )  and (x:)  parts of the magnetic in the temperature dependence of Xmpl T-120 K. At 
susceptibility. There is no static external magnetic field. 

T-150 K ,  there are maxima in xkpl and xkpl .  At 190-200 
We first note that the values of the dynamic susceptibil- 

ity from these measurements are two orders of magnitude K there are anomalies in both the real and imaginary parts of 

greater than the static magnetic susceptibility for Eu,CuO,, the planar dynamic susceptibility. With a further increase in 

for both orientations of the alternating magnetic field (Ref. the temperature (at T>200 K), x k p l  becomes inde~en- 

9). dent of the temperature, remaining positive. In this tempera- -,- 
We see in Fig. 1 that in the orientation hllc (curves 2)  ture region, the values of ~ k c  and xkPi (the difference in 

there is a sharp &ange in X k , ,  including a &ange in its sign is being taken into account here) and those of ~ 1 ,  and 
sign, at T-120 K, accompanied by a maximum in x:,. As X l p 1  are essentially the same. 
the temperature is raised further, xkC remains negative and Over a broad temperature region including T> TN , there 
depends weakly on the temperature up to the highest tem- thus exist magnetic excitations for which the real parts of the 
perature in these measurements, T=350 K. In the tempera- dynamic magnetic susceptibility are significantly larger than 

b . *.. + 
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FIG. 2. Temperature dependence of the real part of 
the dynamic magnetic susceptibility for the orienta- 
tion hllc at several frequencies in the 8-mm micro- 
wave range. 1-26 GHz; 2-30 GHz; 3-36 GHz; 
4-42 GHz. 

the imaginary parts of the dynamic magnetic susceptibility, 
and also significantly larger than the corresponding static 
magnetic susceptibilities? At T> TN we are probably dealing 
with well-defined natural modes of magnetic excitations with 
q=O-an analog of an antiferromagnetic resonance at 
T< TN . The induction of antiferromagnetic long-range order 
by a static external magnetic field Ho has been observed 
previously17 at T> T N .  In our own case we have Ho=O. 

We carried out a frequency study of the dynamic mag- 
netic susceptibility in the 3-cm and 8-mm microwave ranges. 
It turned out that the measured values of 6do at 10 GHz are 
considerably smaller than in the 8-mm range (for a given 
sensitivity of the spectrometer) and do not exceed the mea- 
surement errors. The corresponding values of x,, are less 
than and we assume that there are no high-Q magnetic 
excitations at 10 GHz. 

Figure 2 shows the temperature dependence of x;, for 
several frequencies in the 8-mm range. We see that the 
abrupt onset of negative values of ~ 6 ,  at T-120 K depends 
on the frequency. As we have already mentioned, there is 
essentially no abrupt change of this sort at the frequency of 
10 GHz. At 26 GHz (curve 1 in Fig. 2)  the value of x;, is 
considerably smaller than at higher frequencies, and it goes 
negative at a higher temperature. Nevertheless, we observe a 
maximum near T-120 K again at this frequency. We did not 
observe an effect of a static external magnetic field HOG 1.5 
T (applied either along the c  axis or in the CuO, plane) on 
the dynamic magnetic susceptibility at room temperature. 

Figure 3 shows the temperature dependence of the real 
and imaginary parts of the electric susceptibility at a fre- 
quency of 33 GHz for two orientations of the alternating 
electric field: along the c axis and in the ab plane. We did 
not observe a frequency dependence of the electric suscepti- 
bility over the frequency range 23-40 GHz. It can be seen 
from Fig. 3 that in the case elc there is a jump in xLpl at 
T=120 K ,  accompanied by a maximum in at the same 

temperature. A slight anomaly is also observed at T-270 K 
in the behavior of xLp,. Beginning at T-270 K, the quantity 
x : ~ ,  increases. For the orientation ellc up to T-270 K, both 
xLc and x:, are essentially independent of the temperature. 
Again, there are no structural features at T-120 K. At 
T>270 K, both the imaginary and real parts of x,, begin to 
increase. 

Anomalies in the electric susceptibility similar to those 
observed here in ,yepf(T) at T-120 K are characteristic of 
structural phase transitions in crystals. 

The dielectric constant of the Eu2Cu04 crystal also de- 
pends weakly on the temperature over the temperature range 
in which a uniform magnetic-resonance mode exists; it is 
characterized by values eLpl = 1 + 4 7 - r ~ : ~  = 5 .4  and 

= 4 7 ~ ~ : ~ ~  = 0.5 in the plane perpendicular to c and by 
values E L ,  = 2 .2 ,  and ezc = 0.1 for the c axis. 

The negative value of x;, which we observed cannot be 
attributed to a trivial effect of the conductivity-to currents 
induced in the ab plane by an alternating field hllc. That 
interpretation is unlikely since, if we adopt the hypothesis 
that ,ykc is inductive, it becomes difficult to explain the 
frequency-selective nature of x;, in the narrow frequency 
interval in which we are working. It is also difficult to un- 
derstand why xkpl would be positive, close in value to 
xLc,  for the orientation hlc .  We will nevertheless estimate 
the inductive contribution to the susceptibility for our case. 
According to Ref. 16, the inductive susceptibility of a con- 
ducting cylinder in the field of an electromagnetic wave, for 
the case in which the magnetic field is parallel to the axis of 
the cylinder, is 

Here R is the radius of the cylinder, a is the conductivity, 
and 6 = c / J G  is the skin depth. Expression (3.1) in- 
corporates the relation R<6, which clearly holds in our case. 

918 JETP 80 (5), May 1995 Golovenchits et a/. 918 



Assuming that dielectric losses are due entirely to conductiv- 
ity ~"=41r(+/w, and using R - 5 . 1 0 - ~  cm and ~ " = 6 .  lop2, we 

find xi,,* 6 . l o w 4 ,  i.e., a value much lower than the 
experimental value. 

In a dielectric crystal, the reason for the onset of a nega- 
tive real part of the dynamic magnetic susceptibility may be 
dispersion near resonant absorption. We know that the incor- 
poration of a small but nonzero damping near resonant ab- 
sorption leads to the onset of a fairly broad frequency region 
(w>wo) in which the magnetic susceptibility has a negative 
real part. An empirical formula for the dynamic correlation 
function G ( o ,  y), with two poles (w= +wo) and damping y, is 

FIG. 3. Temperature dependence of the real and 
imaginary parts of the electric susceptibility at 
33 GHz. 1-The orientation of the alternating 
electric field is eLc; 2-(lc. 

1 
Im G =  ax  + 

( x + ~ ) ~ + a ~  ( x -  

Here x = duo and a= ylwo. 
Figure 4 shows calculated values of Im G and Re G ver- 

sus the frequency x as the damping a is varied (a=O, 0.1, 

FIG. 4. Frequency dependence (x= do,,) of the 
real (curves I) and imaginary (curves 2) parts of 
the dynamic correlation function G(w,y) for 
various values of the damping parameter 
a=ylw,,: a--a=O; b--a=O.l; c-a=0.5; 
d-a= 1. 
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0.5, and 1 ) .  In the case a=O, the imaginary part of G is 
described by a Sfunction (at x =  1); at nonzero values of a, 
the Sfunction spreads out, and the nature of the dispersion of 
Re G changes. At a small value of a, the frequency range 
do,> 1 in which G has a negative real part becomes broader 
than in the a=O case. On the other hand, as a increases, 
approaching unity Re G becomes positive over the entire fre- 
quency range. The quantity Re G is always positive as 
doo-+l for arbitrary values a>O. We have discussed the 
pole singularity for the correlation function G. In principle, 
however, there could be singularities of other types, e.g., 
branch points. 

Analysis of these experimental data thus leads us to con- 
clude that uniform (q=O), well-defined spin-wave excita- 
tions with a negative value of x&, exist in the dielectric 
crystal Eu2Cu0, over a broad temperature range T> 120 K, 
including the range T > T N ,  for the orientation hllc. These 
excitations arise abruptly at T-120 K and then remain inde- 
pendent of the temperature up to T-350 K (the measurement 
limit). At T-120 K, we find anomalies in the real and imagi- 
nary parts of the electric susceptibility (for e l c ) ,  which are 
characteristic of structural phase transitions. 

In the case k l c  at T3200  K we observe a positive value 
of x & , ~ ,  which depends weakly on the temperature and 
which is close in magnitude to x;, . At T-150 K there are 
maxima in the quantities xkpl and xLpl. 

4. THEORETICAL ANALYSIS OF EXISTENCE CONDITIONS 
FOR WELL-DEFINED SPIN-WAVE EXCITATIONS IN AN 
ANTIFERROMAGNET IN THE CRITICAL REGION 

In this section of the paper we discuss the existence of 
well-defined spin-wave excitations in an antiferromagnet in 
the critical region. For a 2D Heisenberg antiferromagnet with 
S= 112, the concept of well-defined antiferromagnetic spin- 
wave excitations was introduced in Ref. 6 ,  and the spectrum 
of excitations and the damping for them were discussed. The 
critical dynamics of a 3D antiferromagnet was studied in 
Ref. 14. 

Only antiferromagnetic spin-wave excitations were dis- 
cussed in Refs. 6  and 14. Since we measured oscillations of 
the total moment, we are interested in the possible existence 
of well-defined ferromagnetic spin-wave excitations, includ- 
ing some with q =O. In this section of the paper we examine 
well-defined ferro- and antiferromagnetic spin-wave excita- 
tions with q =O for 3D and 2D Heisenberg antiferromagnets. 
By analogy with Ref. 14, we assume that spin-wave excita- 
tions of this sort can exist in the critical region when there is 
a pronounced anisotropy of a certain symmetry. 

Let us outline this section of the paper. We first consider 
a 3D Heisenberg antiferromagnet in the exchange approxi- 
mation at low temperatures; we write ferro- and antiferro- 
magnetic dynamic magnetic susceptibilities and the natural 
frequencies of excitation. We introduce some definitions, and 
we examine the conditions for the existence of well-defined 
ferro- and antiferromagnetic spin-wave excitations in the 
critical region. We then show that incorporating a pro- 
nounced anisotropy of a certain symmetry makes possible 
the existence of well-defined uniform ferro- and antiferro- 
magnetic spin-wave excitations in the critical region. 

A corresponding procedure will be carried out for a 2D 
Heisenberg antiferromagnet at T>O. 

4.1. Three-dimensional Heisenberg antiferromagnet 

Exchange approximation 

We first consider a 3D Heisenberg antiferromagnet with 
the Hamiltonian 

We assume that the exchange integral J  is zero except for 
nearest neighbors. We assume that there is a simple cubic 
lattice and staggered magnetization. For an antiferromagnet 
it is convenient to introduce two sublattices (A and B) and to 
define spin operators in terms of Bose operators for the two 
sublattices in different ways (Ref. 8, for example). For sub- 
lattice A we have 

s , f = a i f i ,  S [ = a + f i ,  s f = ~ - a + a .  , , . (4.2) 

For sublattice B we have 

S , f = b , ? f i ,  S[=bi&?, s f = - s + b , f b i .  (4.3) 

Equations (4.2) and (4.3) hold at low temperatures. Hamil- 
tonian (4.1) takes the following form in terms of Bose op- 
erators in the q representation: 

We define the ferromagnetic ( D M  = - xM)  and antiferromag- 
netic ( D N =  - xN) susceptibilities as follows: 

D ~ ( q , t ) =  - i / 4 ( [ s , ( q , t )  + s , ( q , t ) ; s ; ( q , ~ )  

+s , ' (q ,o ) i )e ( t ) ,  (4.5) 

D ~ ( q . t )  = - i([si(q,t)-S,(q,t);s,f(q,~) 

+ s , ' ( s , o > l ) ~ ( t ) ,  (4.6) 

with B(t) = l  for t>O and B(t) =O for t<O. Here the [. . .I  
denote a commutator. From (4.2)-(4.6) we easily find the 
following expressions for D M S N ( q , o )  in the o representation: 

S 2 [ ~ ( 0 )  - J ( q ) l  
Dnr(q.w)= 0 2 -  w; 

4 s 2 [ J ( 0 )  + J ( q ) l  
(4.7) 

D N ( ~ , w ) =  w 2 - W 2  , 
4 
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L I 1 
0 K 

4" 4' 
FIG. 5. Schematic diagram of the natural frequen- 

y < <  0 y<<  W y < <  W cies of spin-wave excitations in the critical region as 

w =qiR ~ c c q , ) ~  ~ o d q ? ~ ~  a function of the quantity q',  for various relations 
among q' ,  q a ,  and K. See the text proper for an 

y o c ~ ' ~  y o c ~ 3 R  . ~ C C K ~ ~  explanation. 

1 1 magnetic spin excitations with q=O. In neutron studies, it is 
D ~ ( q , o ) =  - 

J(O)+J(q) ' 
D N ( ~ , O )  = - customary to examine antiferromagnetic spin excitations 

J(o)-J(q) with qf=q-a+o. 
(4.8) 

According to the results of Ref. 14, for a 3D antiferro- 

w:= s ~ [ J ( o ) ~ - J ( ~ ) ~ ]  (4.9) magnet in the critical region, in the hydrodynamic approxi- 
mation, i.e., with q 'a ,  ~ a e l ,  and under the condition 

J(q) = J(cos q,a + cos q,a + cos q,a) . (4.10) q ' B ~ = l / t ,  there are well-defined antiferromagnetic spin- 
wave excitations with a frequency and damping 

Let us discuss these expressions. First, we see from (4.7) 
that both susceptibilities (DM and DN) have singularities in 
the case o = O  at two points in the Brillouin zone: at q =O and 
q=Q, where Q=(.rrla   la , d a )  is the antiferromagnetic vec- 
tor of the reciprocal lattice. The singularity in the expression 
for DM at q=O corresponds to oscillations of the total mo- 
ment of the antiferromagnet; that at q = Q  corresponds to 
oscillations of the antiferromagnetic vector. The structure of 
the singularities in the expression for DN is just the opposite: 
the singularity at q =O corresponds to oscillations of .the an- 
tiferromagnetic vector, and that at q = Q  corresponds to os- 
cillations of the total moment of the antiferromagnet. Only 
the correlation function DN was discussed in Ref. 14, so our 
region of small values of q '  (more on this below) corre- 
sponds to their region of small values of q.14 That these types 
of oscillations differ in nature can be seen from the expres- 
sions for the static susceptibilities. The expression for DM 
has a singularity at q=Q, and that for DN has one at q =O. In 
the dynamic susceptibilities, the residue in the expression for 
DM vanishes at q=O, and that in DN vanishes at q=Q. The 
reason why the singularities are of this nature is that the 
critical order parameter in an antiferromagnet is the antifer- 
romagnetic order parameter, not the uniform magnetization. 

In 3D Heisenberg antiferromagnets there are thus three 
types of natural excitations with frequencies (4.9). For D M ,  
these are oscillations of the uniform magnetization of the 
antiferromagnet with a wave vector q (ferromagnetic excita- 
tions) and oscillations of the antiferromagnetic order param- 
eter with the wave vector q '  =q-Q (antiferromagnetic exci- 
tations). In the exchange approximation, with q,q1 =0, there 
are two soft modes: at the center of the Brillouin zone and at 
its edge. Only the antiferromagnet order parameter with the 
soft mode at the boundary of the Brillouin zone is critical for 
an antiferrornagnet. 

For studies of microwave absorption at natural frequen- 
cies of the antiferromagnet at T< TN, one measures an anti- 
ferromagnetic resonance: the gap in the spectrum of ferro- 

In the hydrodynamic region of critical phenomena, with 
~ ' G K ,  antiferromagnetic spin-wave excitations are relaxing 
entities. 

Let us assume that the same situation prevails for ferro- 
magnetic spin-wave excitations, i.e., that there are well- 
defined ferromagnet spin-wave excitations with the fre- 
quency and damping in (4.1 l), with q' replaced by q ,  in the 
critical region, in the hydrodynamic approximation, and un- 
der the condition ~ B K .  In the hydrodynamic region of criti- 
cal phenomena, there are only diffuse modes in the case 
qeK. 

In the exchange approximation, in the hydrodynamic re- 
gion of critical phenomena, spin excitations with q ' = q = 0 
are thus relaxing entities for a 3D Heisenberg antiferromag- 
net in the exchange approximation. 

Incorporation of anisotropy 

Incorporating anisotropy for a 3D Heisenberg antiferro- 
magnet may alter the situation and make possible the exist- 
ence of well-defined uniform ferro- and antiferromagnetic 
spin-wave excitations in the critical region. When the anisot- 
ropy in a 3D antiferromagnet in the critical region is taken 
into account, an additional microscopic length scale ta arises 
(in addition to the correlation radius of the spin fluctuations 
in the exchange approximation 8. This new length scale 
characterizes the radius of the spin correlations due to the 
anisotropy. According to Ref. 14 we have 

6a=a (4.12) 

Here a is the lattice constant, Tmf is the temperature charac- 
terizing the mean field (in the exchange approximation we 
have T,~= 6JS2, T,  = K,s*, and K, is the anisotropy con- 
stant. 

Depending on the relations among q', K, and qa= I/(,, 
the natural frequencies of the excitations may differ in na- 
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ture. These frequencies are shown in Fig. 5. In the case 
q , < ~  (the upper diagram in Fig. 5) there are spectra of ex- 
citations in the region q ' % ~  with a frequency occ(q')312. At 
q ' < ~  there are only damped modes. In the case q , % ~  (the 
lower diagram in Fig. 5), a solution arises in the case q ' 4 ~  
which holds in the critical region in the case q ' % ~  ; i.e., we 
have ~ c c ( q ' ) ~ / ~ ,  but with the replacement by o~ccq;'~. This 
solution propagates into the region q ' e ~ ,  all the way to the 
point q '  =0, from the region ~ < q '  49 , .  

We assume that the same situation prevails for ferromag- 
netic spin-wave excitations with q '  replaced by q. 

If the anisotropy satisfies two conditions, then well- 
defined uniform ferromagnetic (q =0) and antiferromagnetic 
(q' =0) spin-wave excitations with the frequency and damp- 
ing 

312 
Wm4a , y c ~  6- 312 (4.13) 

arise in a 3D Heisenberg antiferromagnet. These two condi- 
tions are as follows: first, the anisotropy has a symmetry 
which leads to a disruption of the rotational invariance of the 
spins that prevails in the exchange approximation (e.g., a 
uniaxial easy-axis anisotropy or an cubic anisotropy). Sec- 
ond, the anisotropy is strong enough to satisfy the conditions 
a 4 t a < 5 .  (these conditions can always be arranged suffi- 
ciently close to TN). 

In the case of a weak anisotropy, with $ S t ,  the situation 
is the same as for an isotropic 3D Heisenberg antiferromag- 
net. 

4.2. Two-dimensional Heisenberg antiferromagnet 

Exchange approxima tion 

Let us analyze the situation with well-defined spin-wave 
excitations in a 2D Heisenberg antiferromagnet with S= 112 
on the basis of the model of Ref. 6, in which Hamiltonian 
(4.1) is considered. According to that model, a 2D Heisen- 
berg antiferromagnet with S =  112 can have 2D antiferromag- 
netic long-range order at T=O. At T>O there exist 2D anti- 
ferromagnetic spin fluctuations with large correlation radii ,$? 

Here Cc=0.5 (Refs. 6 and 7), and 2mpS is the spin stiffness 
(2rrpS-1250 K for La2Cu0,; Refs. 2,3, and 6). At T= 150 K 
we have 5-2000a. 

It was shown in Ref. 6 that an antiferromagnet with a 
dimensionality D (2<DS4) can have well-defined antiferro- 
magnetic spin-wave excitations with a frequency and damp- 
ing 

~ c c ( ~ ' ) ~ ' ~ ,  ycc ,$-Dl2 (4.15) 

in the critical region, in the hydrodynamic approximation, in 
the case q ' % ~ .  For a 2D Heisenberg antiferromagnet, at tem- 
peratures T>O and at q '  values such that the conditions 
a 4 1 lq ' 4 5 hold, there exist antiferromagnetic spin-wave 
excitations with a linear dispersion relation 

but the quantities pS( l lqf ) ,  x,(llqf), and c ( l / q1 )  (the spin- 
wave velocity) are determined on a local scale l/ql. In the 
case q ' p l ,  these antiferromagnetic spin-wave excitations 
are well-defined: 

where w is some exponent. In the limit q ' t i l  we have 
ylw-t 1. The values found for y from Eqs. (4.15) and (4.17) 
in the approximation q l p l  are not the same, although for 
both formulas ylo< 1 at q l p  1. 

In the case qr6<1, in the hydrodynamic region, only 
damped diffuse excitation spectra can exist in 2D Heisenberg 
antiferr~ma~nets.~ According to the calculations of Ref. 7, 
the damping of antiferromagnetic spin-wave excitations in 
the case q ' 64 l  is described by y-+yo=const in the limit 
9 ' 4 0 .  

We assume that the situation for ferromagnetic spin- 
wave excitations in 2D Heisenberg antiferromagnets is the 
same as for antiferromagnetic spin-wave excitations. In other 
words, the frequency and damping of the ferromagnetic spin- 
wave excitations are described by Eqs. (4.15)-(4.17), with 
q'  replaced by q, in the critical region, in the hydrodynamic 
approximation, and under the condition 9 % ~ .  In the hydro- 
dynamic region of critical phenomena, with q 4 ~ ,  there are 
only damped modes. 

Incorporation of anisotropy 

Anisotropy of a 2D Heisenberg antiferromagnet was not 
considered in Ref. 6. Here we assume that the effect of an- 
isotropy for a 2D Heisenberg antiferromagnet is analogous to 
the effect in a 3D antiferromagnet, which was studied in Ref. 
14 for antiferromagnetic spin-wave excitations, and which 
was generalized in the preceding section of this paper to 
ferromagnetic spin-wave excitations. For example, we con- 
sider a uniaxial easy-axis anisotropy with a characteristic en- 
ergy Th = K ~ s ~ .  By analogy with (4.14), the quantity $ is 
then given by 

We assume that if the anisotropy is strong enough that a 
< 6: < 6, then there can exist ferro- and antiferromagnetic 
spin-wave excitations with frequency (by analogy with the 
lower diagram in Fig. 5) 

and damping 

y = ~ t - ' = ~ ~ .  
Since q , % ~ ,  we have ylwo<l. In other words, ferro- and 
antiferromagnetic spin-wave excitations of this type are well- 
defined. This is the situation down to values q,ql=O; i.e., 
this is also the situation for uniform ferro- and antiferromag- 
netic spin-wave excitations. 

We thus assume that under the conditions q , q ' % ~  there 
exist well-defined ferro- and antiferromagnetic spin-wave ex- 
citations in the critical region. The dimensionality of the an- 
tiferromagnet is not of fundamental importance, since the 
phenomena in 2D and 3D Heisenberg antiferromagnets are 
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essentially similar. However, it is far simpler to satisfy the 
conditions q , q ' S ~  in 2D antiferromagnets in which there is 
a broad region along the temperature scale in which 6 is 
large. For 3D antiferromagnets, the correlation radii of the 
spin fluctuations are usually large only in the immediate vi- 
cinity of TN, and an experimental study of well-defined spin- 
wave excitations is difficult. In their insulating phase, crys- 
tals of the type R2Cu04 and YBa2C~306+b which contain 
antiferromagnetic 2D Cu02 planes, present a unique oppor- 
tunity for an experimental study of well-defined ferro- and 
antiferromagnetic spin-wave excitations at T> TN . Crystals 
of this type are being studied quite actively in connection 
with the problem of high T, superconductivity. One com- 
pound in this class is the crystal which we are studying here, 
Eu2Cu04. However, there is a problem here. The nature of 
the anisotropy (if sufficiently pronounced) in L%Cu04 and 
YBa2Cu306+s (in its insulating phase), both of which have 
an orthorhombic symmetry, allows the existence of well- 
defined uniform spin-wave excitations. The situation in the 
tetragonal Eu2Cu04 crystal, in contrast, with an easy-plane 
anisotropy, is more complicated. We will discuss the specific 
situation in the Eu2Cu04 crystal in the next section. 

5. PHASE DIAGRAM OF STATES OF THE Eu2Cu04 CRYSTAL; 
INTERPRETATION OF EXPERIMENTAL DATA ON 
UNIFORM SPIN DYNAMICS 

Proceeding in accordance with the experimental data in 
Sec. 3, and making use of the theoretical situation discussed 
in Sec. 4, we assume that uniform, well-defined, ferromag- 
netic spin-wave excitations arise at a temperature TS120 K 
for the orientation along the c axis. We assume that these 
excitations exist up to high temperatures. 

On the other hand, Eu2Cu04 is to have an- 
tiferromagnetic order at T< TN ; the spins lie in the xy plane. 
In other words, an easy-plane anisotropy is predominant in 
this crystal at these temperatures. As we have already men- 
tioned, an easy-plane anisotropy cannot lead to well-defined, 
uniform, ferromagnetic spin-wave excitations. The fact that 
such spin-wave excitations arise at T3120 K suggests that 
there is a change in the sign in the anisotropy at T-120 K 
(easy-planejeasy-axis). According to Ref. 13, it is at 
T2120 K that an orbital-glass state arises in Eu2Cu04. It is 
natural to suggest that at T2120 K the nature of the anisot- 
ropy of the spin subsystem may change, from easy-plane to 
easy-axis. We will adopt this assumption and attempt to 
reach an understanding of this situation by working from the 
Hamiltonian 

H=Z JS,S~+Z /,sisk+Z K , S : S ~ + A ~  S f a f .  (5.1) 
i j ik  i j  i 

Here we have taken into account, along with 2D Heisenberg 
exchange, with the constant J ;  an interplanar exchange with 
a constant J, (the subscripts i and k refer to nearest neigh- 
bors in adjacent planes); an easy-plane anisotropy, with a 
constant K, ; and a spin-orbit interaction, with a constant A. 
Here a is the projection of the orbital angular momentum of 
the cu2+ ion. 

Since the in-plane exchange and the interplanar ex- 
change are both antiferromagnetic, the exchange constants 
satisfy J > O  and J,>0. 

In the case S =  112 (cu2+), there is no single-ion anisot- 
ropy, so we have written a uniaxial ion-ion anisotropy (an- 
isotropic exchange) in (5.1). In the case K,>O (for the se- 
lected sign of the constant J) ,  this anisotropy is an easy-plane 
anisotropy. 

As in Ref. 13, we adopt a degenerate tetragonal doublet 
a;'=? 1 as the orbital ground state of the cu2+ ions, and we 
assume that the spin-orbit interaction outweighs the orbit- 
phonon interaction. 

We assume JSJ, , K,, X. In this case we have J,-K, 
and A>J, , K,. In the zeroth approximation, when we take 
only the 2D Heisenberg exchange into account, we have the 
model of Ref. 6. The effect of each of the slight interactions 
will be discussed independently. 

When an interplanar antiferromagnetic exchange 
~ , - 1 0 - ~  J is taken into account (according to Ref. 6, we 
have J, 4J for La&!u04), a quasi-2D state with a finite TN is 
established in the crystal: 

If we assign Eu2Cu04 the same values of J and J, as for 
La2Cu04 (Refs. 2 and 3), specifically, J-1250 K and 
~ , - 1 0 - ~  J ,  we find TN--110 K. At T>TN, isotropic 2D 
antiferromagnetic spin fluctuations with correlation radii 5 
given by (4.14) arise over a wide temperature range. The fact 
that J, is small in comparison with J has essentially no 
effect on the state of the 2D antiferromagnetic layers at 
T> TN , but it does give rise to a finite TN and to a narrow 3D 
antiferromagnetic critical region.6 There have been no theo- 
retical papers on the nature of the quasi-2D spin fluctuations 
for a Heisenberg antiferromagnet at T< TN . 

Incorporating an easy-plane anisotropy along with 2D 
Heisenberg exchange in isolated layers leads to a Kosterlitz- 
Thouless Specifically, a characteristic tempera- 
ture 

arises, below which there is an antiferromagnetic spin stiff- 
ness with an infinite correlation radius in the layers. At 
T> TKT there are 2D antiferromagnetic spin fluctuations with 
a finite correlation radius. Since we have K,<J, at T> TKT a 
weak easy-plane anisotropy, like a slight interplanar ex- 
change J, , discussed above, has essentially no effect on the 
state of the isolated 2D layers. 

A spin-orbit interaction in Eu2Cu04 was taken into ac- 
count along with 2D Heisenberg exchange in Ref. 13. Under 
the assumptions adopted in Ref. 13, which are listed above, it 
was shown that at temperatures T> TN, at which there are 
isotropic 2D antiferromagnetic spin fluctuations in the crys- 
tal, an orbital-glass state exists in the crystal in the case of 
orientation along the c axis. 

As a result of the analysis of the effect of weak interac- 
tions on a 2D Heisenberg antiferromagnet with S =  112 car- 
ried out above, it can be assumed that at some sufficiently 
high temperature T>TN, TKT we are dealing with isolated 
layers with isotropic 2D antiferromagnetic spin fluctuations 
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FIG. 6. Schematic temperature dependence of 
the natural frequencies (curves I and 2) and the 
damping (curves 3 and 4) of spin-wave excita- 
tions in a Eu2CuO4 crystal. The inset shows the 
temperature dependence of the density of states 
in an orbital glass according to Ref. 13. See the 
text proper for an explanation. 

with correlation radii 5 as in (4.14). There are an easy-plane 
anisotropy and a spin-orbit interaction. We assume X+K,, 
and that Hamiltonian (5.1) reduces as a result to the Hamil- 
tonian discussed in Ref. 13: 

In second-order perturbation theory in the parameter XIJ we 
find an effective Hamiltonian for a;': 

Here SS = ( - 1 )"ill; , with ni =O or 1, depending on the 
particular sublattice to which the given site belongs. 

According to Ref. 6, for an antiferromagnet of dimen- 
sionality D we would have 

It was shown in Ref. 13 that at T>TN an orbital-glass states 
arises in Eu2Cu04 by virtue of the long-range orbit-orbit 
interaction (of alternating sign) 

which is described by the second term in (5.5). A random 
field h:=X(af) arises in the spin subsystem in this case. 
This random field may be stronger than the easy-plane an- 
isotropy. The anisotropy due to the random field h: is an 
easy-axis anisotropy. As a result, the temperature at which 
the orbital-glass state arises in the orbital subsystem is simul- 
taneously the temperature at which the spin anisotropy 
changes sign. 

However, the proposed description of the state of the 
crystal is inconsistent with experiment. Specifically, in this 

description the orbital-glass state and the change in the sign 
of the anisotropy should occur at T> TN (150-160 K), while 
experiment shows that the corresponding temperature is 
T'-120 K. To clarify this situation, we examine the state of 
the crystal at T< TN . 

We assume that at T< TN we have 3D antiferromagnetic 
long-range order with spins lying in the a b  plane. In this 
case we have (Sf)=O, but there are isotropic 3D antiferro- 
magnetic spin fluctuations, and the interaction V i j ,  which is 
responsible for the onset of the orbital-glass state, is nonzero. 
At T 4 T N ,  however, the correlation radius 
5= a[l T- T~IIT,] -0.7 of the 3D antiferromagnetic spin 
fluctuations is on the order of the lattice constant. It was 
shown in Ref. 13 that a necessary condition for the onset of 
an orbital-glass state is that the interaction V . .  be long-range. 

In a 3D critical region, the value of t3"is considerably 
higher. As a result, at some temperature T' < TN the interac- 
tion V i j  becomes of sufficiently long-range that an orbital- 
glass state can arise. With a subsequent increase in tempera- 
ture, in a transition from a 3D critical region to a 2D state, 
we have t2D~t3D [compare (4.14) and (4.11)], and the 
orbital-glass state persists in the 2D region up to high tem- 
peratures. 

We thus assume that an orbital-glass state can arise even 
in the 3D critical region, by virtue of 3D antiferromagnetic 
spin fluctuations, if the correlation radius t3D is sufficiently 
large. The temperature dependence of the density of states of 
the orbital glass, found in Ref. 13 and shown in the inset in 
Fig. 6, does indeed have two maxima: a comparatively small 
one at T-T, and an absolute one at T-250 K. An easy-axis 
anisotropy due to the random field h: prevails over the entire 
temperature range in which the orbital-glass state exists. 

We also note that some structural features characteristic 
of structural phase transitions in crystals have been observed 
at Tr-120 K in the temperature dependence of the dielectric 
constant (see Fig. 3). We believe that the change in sign of 
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the spin anisotropy and the onset of an orbital-glass state at 
T3120 K are accompanied by structural distortions in the 
lattice without a change in the space group of the crystal. In 
other words, we believe that an isostructural phase transition 
occurs. 

Returning to the intrinsic excitation spectra of the 
Eu2Cu04 crystal for the entire temperature range, we show in 
Fig. 6 the gross temperature dependence of the natural fre- 
quencies and the damping. At T < T r  there is 3D antiferro- 
magnetic long-range order, and an easy-plane anisotropy is 
predominant. Along the c axis of the crystal there is a gap 
Am:,,, in the spectrum of spin waves (an antiferromagnetic 
resonance; curve I in Fig. 6): 

P o i F m =  dm. (5.7) 

There is gapless branch of an antiferromagnetic resonance in 
the easy plane. If we take the magnitude of the easy-plane 
anisotropy to be Ta-0.1 K (a typical value for crystals of 
this type), we find that the value of A@:,, at T=O is on the 
order of 400 GHz. As T- t  T N ,  the gap vanishes 
( A  w:,,-+O), in accordance with the temperature depen- 
dence of the antiferromagnetic order parameter. At 
T 2  TI-120 K ,  well-defined ferromagnetic spin-wave exci- 
tations with a frequency wo=cqa arise in the crystal (curve 2 
in Fig. 6). In our experiments for the c axis of the crystal, we 
see a transition region from an antiferromagnetic resonance 
do:,,, to uniform, well-defined, ferromagnetic spin-wave 
excitations with a frequency oo=2X 10" Hz. If we take the 
spin-wave velocity to be c-0.4X lo6 cm/s (as in Refs. 2-4 
for La2Cu0,), we can calculate ea; we find -200a.  Using 
(4.14) and this value of to, we can estimate the magnitude of 
the easy-axis anisotropy to be -250 K. 

In the a b  plane, in which there is essentially no anisot- 
ropy, the frequency of the antiferromagnetic resonance is 
close to zero at T< TN . For this plane, there are no uniform, 
well-defined, ferromagnetic spin-wave excitations. There is 
only a diffuse mode with a relaxation frequency y-ct-' of 
the antiferromagnetic order parameter (curve 3 in Fig. 6). In 
the exchange approximation, this relaxation frequency is the 
same for both orientations of the crystal. As a result, a 3D 
critical region is manifested near TN in the hLc orientation: 
we see maxima of xkpl and xLPl near 150 K (Fig. 1). The 
corresponding relaxation frequency for the 3D critical region 
is shown by curve 4 in Fig. 6. It can be seen from Fig. 1 that 
the temperature T'= 120 K is in the 3D critical region and 
that the values of the susceptibility xmpl are fairly large at 
T =  T' . In the planar orientation, we see structural features in 
the temperature dependence of xkpl and x : ~ ~  at a tempera- 
ture T =  Tr'-190-200 K, which we link with the point of the 
crossover (T" in Fig. 6) from 3D critical fluctuations to 2D 
antiferromagnetic spin fluctuations. In the a b  plane at T> T" 
there are only diffuse modes, which can be described by 
independent relaxers as follows: 

where 7 is the relaxation time. If o& 1 (and this condition 
holds in our case, since we have o-oo for a well-defined 
mode along the c axis, and the damping is identical for the 

two orientations), then we have xr=xO and )(I=orxO. In 
other words, X' is independent of the temperature, and we 
have f l e x ' ,  in agreement with experiment. 

It can be seen from an analysis of Fig. 6 that a situation 
with well-defined uniform spin-wave excitations is not com- 
mon to all crystals of the R2Cu04 or YBa,Cu,O,+, types. 
The temperature-independent size of the gap of ferromag- 
netic spin-wave excitations is essentially determined by the 
magnitude of the anisotropy, since the velocities of spin 
waves can be assumed to be approximately the same for all 
crystals of the R2Cu04 type. In the exchange approximation, 
we can also assume that the relaxation frequency y increases 
exponentially with the temperature for this entire class of 
crystals. Whether well-defined uniform ferromagnetic spin- 
wave excitations can exist will depend on the relation be- 
tween TN and the anisotropy: the lower TN and the larger the 
anisotropy, the wider the temperature range over which well- 
defined ferromagnetic spin-wave excitations with q =O exist. 

We now return to the question of the value of TN for 
Eu2Cu04 crystals. As we pointed out in the Introduction, 
opinion in the literature is divided on the value of T N ,  which 
has been found in different experiments [TN = 150- 160 K 
(Refs. 9 and 10) and TN=250-270 K (Refs. 1 1  and 12)]. In 
Ref. 10, a value TN-K was found by the Mossbauer-effect 
method for Eu2Cu04 crystals lightly doped with co2+ ions, 
which assume cu2+ sites in the lattice. A study was made of 
the temperature dependence of the intensities of the lines of 
the hyperfine lines which arise at T S  T N .  The conversion of 
these lines into a paramagnetic doublet at T-TN was also 
studied. 

In a study of the static susceptibility x0 of a Eu2Cu04 
crystal? the temperature dependence of ,yo in the plane per- 
pendicular to the c axis (xOpr) was found. It has the same 
shape as the temperature dependence of the intensity of the 
[112, 112, 01 Bragg antiferromagnetic peak in Ref. 12. At 
T-150 K ,  there is an abrupt decrease in xopl, and the inten- 
sities of the [1/2, 112, 01 Bragg peak amount to about 10- 
15% of the value at T=4.2 K. Later on, at T>150 K, we 
observe a linear decrease in xOp1 without any structural fea- 
ture at T-270 K. The subsequent decrease in the intensity of 
the Bragg peak accelerates as we approach T-270 K, which 
was taken to be TN in Ref. 12. A fairly sharp decrease in the 
intensity of the Bragg peak was also found in Ref. 1 1 ,  first at 
T-150 K and then at T-250 K. 

A discussion of the experimental results of this study 
showed that the situation can be understood only if we adopt 
a value TN-  150- 160 K .  

In the integrated-intensity method on the two-crystal dif- 
fractometer in Ref. 12 it was the total intensity from the 3D 
antiferromagnetic [112, 112, 01 Bragg peak and from 2D an- 
tiferromagnetic correlated regions at T> TN which was mea- 
sured, in our opinion. We know (Ref. 5 ,  for example) that the 
intensity of Bragg elastic scattering is proportional to (s,)' 
and vanishes as T - + T N .  The strong intensity from Bragg 
scattering and from scattering by 2D antiferromagnetic cor- 
related regions, on the other hand, is proportional to S(S+ 1) 
-1. Since we have (S, ) - (0 .35-0.40) ,uB (where ,uB is the 
Bohr magneton) in R2Cu04 ~ r ~ s t a l s ~ - ~  the contribution from 
elastic Bragg scattering is =lo-15% of the total contribu- 
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tion. A jump of just this magnitude was observed in the scat- 
tering intensity at T- 150 K in Ref. 12. 

At T>150 K, the scattering near the Bragg peak is due 
primarily to scattering by 2D antiferromagnetic correlated 
regions with a scale 6. At temperatures at which the damping 
of the antiferromagnetic order parameter is slight (ycl), 
the scattering by 2D antiferromagnetic correlated regions is 
quasielastic. As the temperature is raised, and the damping y 
exceeds the values of the natural frequencies of well-defined 
spin-wave excitations in 2D antiferromagnetic correlated re- 
gions, the scattering by them becomes diffuse. Using Eqs. 
(4.14) and (4.18), along with the experimental values of wo 
and t?, we find that w, and y become comparable in mag- 
nitude at a temperature -250 K (the temperature T* in Fig. 
6) - 

No data regarding an analysis of the scattering geometry 
at T> 150 K were reported in Ref. 12. At these temperatures, 
the jump in the intensity of Bragg antiferromagnetic peak has 
already occurred. No distinction was made among the con- 
tributions of the total intensity from the 3D elastic Bragg 
peak and the 2D antiferromagnetic correlated regions. Ac- 
cordingly, we do not believe that it is possible to draw a 
definitive conclusion regarding the value of TN for Eu2Cu04 
on the basis of the data of Refs. 11 and 12. 

In summary, uniform (q =0), well-defined, ferromagnetic 
spin-wave excitations have been observed experimentally in 
this study over a broad temperature range, including the re- 
gion T> TN , in the stoichiometric dielectric crystal Eu2CuO4 
in the absence of a static external magnetic field. These ex- 
citations essentially constitute an antiferromagnetic reso- 
nance in a critical temperature region and a gap in the spec- 
trum of spin-wave excitations at T> TN . 

It has been shown here that incorporating an anisotropy 
of a certain symmetry and magnitude leads to the possible 
existence of uniform, well-defined ferro and antiferromag- 
netic spin-wave excitations, which are usually characteristic 
of the hydrodynamic region, but which are realized in the 
critical region under the conditions a 4  5,4 5. 

Taking account of the specific interactions characteristic 
of the Eu2Cu04 crystal, we have constructed a phase state 
diagram of the crystal over a broad temperature range. This 
diagram explains the observed experimental data. 
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