
Steepening and collapse in hydrodynamics and gasdynamics 
N. A. lnogamov 

L. D. Landau Institute of Theoretical Physics of the Russian Academy of Sciences, 11 7940 Moscow, Russia 
(Submitted 23 January 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 107, 1596-1625 (May 1995) 

The dynamics of a simply connected mass of liquid or gas bounded by a free surface is studied. 
Analytically (for the case of an incompressible liquid) and numerically (for the cases of 
incompressible liquids and gases with small values of the Mach number) it is shown that in the 
general formulation, starting from arbitrary initial data which are everywhere infinitely 
differentiable, singularities develop on this surface after a finite time in the course of evolution. 
Their occurrence is associated with the motion of singularities of the analytical continuation 
of the potential beyond the bounding free surface. It is found that in the process of the motion these 
singularities can approach the bounding surface and touch it. This is called hydrodynamic 
collapse. In the space-time neighborhood of the contact point the functional dependence of the 
variables steepens. As a result of collapse the bounding surface breaks up and a piece of 
a new free surface appears on it. Thereafter the bounding surface includes a bubble which expands 
into the interior of the fluid, and two spikes located at its edges. The bubble and the spikes 
separate from the singular point. The initial stages of this separation are self-similar. The piece of 
new surface is the surface of the bubble between the spikes. To put it another way, if the 
free surface was initially painted, then after a certain time unpainted regions of finite size appear 
on it. The spikes remain singular points on the bounding surface at which the spatial 
derivatives are singular for the entire infinite time of the subsequent evolution of the system. It is 
shown that this singular behavior does not depend on the presence or absence of a 
gravitational field. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Self-steepening and collapse play an important role 
among problems that arise in investigations of nonlinear phe- 
nomena (see Refs. 1 and 2 and work cited therein). In this 
connection we recall, e.g., the breaking of Riemann waves3 
and Langmuir collapse?-6 In hydrodynamics there are sev- 
eral classes of problems related to steepening and concentra- 
tion. Here it is worth recalling the broad class of cumulation 
problems, the vortex merging discovered by  ref?^ and sin- 
gularities on fluid surfaces. Such singular behavior is fre- 
quently caused by the choice of initial conditions. For ex- 
ample, in connection with cumulation this behavior is due to 
the strict symmetry (e.g., spherical), while for vortex merg- 
ing it is due to their special initial separation.') This is the 
origin of the important difference between the self- 
steepening regime studied in the present work with a broad 
class of capture determined by the initial data and these fa- 
miliar examples. 

In problems involving singularities at the surface of a 
liquid treatments have previously been published in which 
such singularities are associated with the crests of gravita- 
tional waves9 or liquid spikes for free fall in the absence of 
a~celeration.'.~ In the present work collapse is observed with 
a completely new kind of singularity localization. Specifi- 
cally, the peaks form not in the maxima of the liquid as in 
gravitational waves but rather in the troughs between the 
maxima. Furthermore, we are talking not about static fea- 
tures but about features that develop during the course of 
time. In problems involving singularities on a surface treat- 
ments are also well known in which the singularities are 

already present on the surface initially. Examples include 
problems involving collisions of liquid or gas wedges or 
cones. The present work, however, is devoted to the study of 
the spontaneous development of collapse on a surface. 

It is worth saying a few words about the physical as- 
sumptions under which the study of the surface dynamics of 
a liquid is of essential importance. Problems of current inter- 
est in physical hydrodynamics can be classified into internal 
and boundary. The former include turbulence of rotational 
fields in the bulk of the liquid, while the latter include tur- 
bulence near solid boundaries and the problem of the dynam- 
ics of a free surface treated in the present work.2) The need 
for a detailed study of surface dynamics arises in many 
promising physical applications. It suffices to recall the 
Richtmyer-Meshkov, Kelvin-Helmholtz, and Rayleigh- 
Taylor instabilities in the physics of high energy densities 
(inertial fusion,'0*" the physics of e ~ ~ l o s i o n s , ' ~ - ' ~  ultrahigh 
magnetic fields,15 and other applications), a ~ t r o ~ h ~ s i c s , ' ~ - ' ~  
and atmospheric and oceanic physics.'9 (In this connection 
see also the reviews in Refs. 20 and 21.) 

To conclude these introductory remarks we further note 
that in what follows we are primarily interested in cases in 
which the free-fall acceleration g is directed away from the 
liquid surface (Rayleigh-Taylor instability) or is absent 
(Richtmyer-Meshkov instability). For motions such as 
standing gravitational waves, when this acceleration is di- 
rected toward the liquid, singularities do not develop in the 
troughs for small ( u 6  Jglk) and moderate (u= Jglk) 
amplitudes. For them to appear it is necessary that the initial 
velocities u be at least a factor of ten greater than the gravi- 
tational velocity m. It is fairly obvious that for u 
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S the case of standing gravitational waves in the initial 
part of the motion is close to the case of the Richtmyer- 
Meshkov instability. 

2. STATEMENT OF THE PROBLEM 

Consider the boundary-value problem specified by the 
following f a ~ n i l i a r ~ , ~ ~  kinematic and dynamic boundary con- 
ditions: 

where y = g(x,t) defines the bounding surface and we have 
written ft=dfldt, fx=df/dx, cp is the potential (Acp=O), 
v=Vcp, v2= (p:+cp;, f l , , . = f ( ~ , ~  = 7.t). and the x and y axes 
are chosen so that only the y component of the acceleration g 
is nonzero. The liquid extends in the direction of negative y. 
The perturbations are localized in a layer at the surface 
[cp(x,y -+ - m,t)-+O] and fall off exponentially away from 
g. In the steady state d,= 0 it follows from Eqs. (1) and (2) 
that the farnilid'22 boundary conditions for steady flow 
hold: cpyl ,= %cpx\ ,,. or d,=O, where $is the stream function 
and v21 ,,.= 2g g. 

In hydromechanical applications this formulation applies 
to gravitational waves and to Rayleigh-Taylor and 
Richtmyer-Meshkov instabilities at surfaces. We have 
g = - 1 in gravitational waves, g = 1 in the Rayleigh-Taylor 
instability, and g = 0 for the Richtmyer-Meshkov instability. 
The latter occurs when a shock wave passes through a den- 
sity discontinuity.2324 The shock wave starts perturbations 
growing with velocities - cak, where c is the speed of sound 
behind the wave front or the velocity of the wave itself (as is 
well known, these velocities are comparable), a is the initial 
perturbation amplitude, and k is the wave number. From the 
standpoint of fundamental investigations the most interesting 
case, as is usual for instabilities, is that in which initially 
linear perturbations grow. In this important limit the pertur- 
bations grow with velocities small compared to the speed of 
sound. The incompressible fluid approximation is therefore 
completely appropriate to describe the flow. 

Let us consider the periodic case, when g(x+ 2 ~ r , t )  
= g(x,t) and cp(x+ 2~r ,y , t )  = cp(x,y,t) hold. We use a sys- 
tem of units in which I g l  = k= 1 holds to analyze the dynam- 
ics of the heavy fluid and I vol = k = 1 in the case of the 
Richtmyer-Meshkov instability; here u o  is the amplitude of 
the initial velocity perturbation. In what follows we will ap- 
proximate the Fourier expansions by truncating the series 
after a finite number of terms, and we will study the conver- 
gence of the results as a function of the harmonic number N. 
The truncated Fourier expansion of g takes the form 

The constant Po vanishes because $"g(x,t)dx=Mlp 
holds, where M and p are constants. The expansions of the 
complex potential f and its real part cp which satisfy the 
obvious symmetry and periodicity conditions and vanish at 
y+-m take the form 

where z = x+ iy and a,(t) are real functions. 
Let us discuss the relation that holds between the con- 

vergence of these expansions and the location of singularities 
of the potential. Consider the set of y-coordinates of these 
singularities. Let ydown be the smallest of these coordinates. 
The expansions (4) converge in the limit N-+m if y<ydown 
holds. This is because the asymptotic expressions for the 
Fourier amplitudes a, in the limit nS- 1 take the form 

where we have written c=exp(ydow,) and cl(n)  is an ampli- 
tude whose growth in the limit n S  1 is bounded by some 
algebraic function. 

We will study the result of substituting expansions (3), 
(4) into the boundary conditions (I), (2) and of expressing 
these conditions in terms of the amplitudes a, and P, . 

3. THE EQUATIONS, THEIR INTEGRATION, AND THE 
RESULTS OF ANALYZING THE TRAJECTORIES 

We begin with a brief description of how the equations 
will be derived. Writing cp in the form (4) satisfies the equa- 
tion Acp=O and the conditions of periodicity, symmetry, and 
damping at infinity. It remains to deal with the boundary 
conditions (I), (2). Consider functions K(x,y,t) and 
D(x,y,t) of the form 

K= gt+cpxvx- cpy , D =  cpt+v2/2+plp-gy. 

Let us examine their behavior at the boundary. Set 

Now consider the functions k(x,t) and d(x,t), which are 
associated with the kinematic and boundary conditions, re- 
spectively, as can be seen from (1) and (2). From (1) and (2) 
it follows that the solutions of the problems satisfy k= d = 0 
for all x. We regard k and d as functions of x. We expand 
them in Taylor series in x about the point x,, , using k, and 
d, for the coefficients of the corresponding expansions. In 
terms of these coefficients the conditions k= d = 0 for all x 
imply k, = 0,  d, = 0 to all orders in n. It remains to evaluate 
k, and d, as functions of a, , p, and i~,, , &, . This gives rise 
to a system of ordinary differential equations. Let us now 
carry out this program. 

3.1. Derivation of the dynamical system 

The Fourier expansions (3), (4) with real amplitudes a, 
and p, describe spatially periodic solutions with alternating 
peaks and troughs (Fig. I). By virtue of the symmetry under 
inversion in x it suffices to consider the half-period 
O s x S ~ r .  The choice of the point x,, in the half-period is 
important. For an arbitrary choice we obtain a differential 
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FIG. 1 .  Shape of the boundary y = ~(x, ! ) .  The liquid is indicated by hatch- 
ing. A periodic sequence of crests and troughs is shown. The minimum point 
of 7 in the trough is indicated by the letter A and the top of the crest of the 
liquid by the letter T. In the text the laboratory and proper coordinate frames 
are important. The former is shown in this figure and the latter is attached to 
the point A .  

system which approximates the boundary-value problem. We 
expand the conditions (I), (2) in Taylor series about the point 
A shown in Fig. 1, from which it follows that x,,= 0. We 
discuss the basis for this choice and the closely related ques- 
tion of the interpretation of the results in Sec. 5. 

In what follows we will need the power-series expansion 
of the function v(x,t) about the point x=O. We write this 
using the following notation: 

The coordinate system attached to the point A also plays an 
important role. In the laboratory system this point has coor- 
dinates x=  0 ,  y = 770 [see Eq. (7)]. The laboratory and proper 
coordinate systems are displaced by an amount vo equal to 
the displacement of the minimum of a trough (Fig. 1). The 
expansion (4) in the proper coordinates is equal to 

where we have written F = @ + i?, A, = a, exp(n vO), and 
the relations Z = z - i 70,  X = x, Y = y - qo determine the pas- 
sage from the laboratory ( 2 )  to the proper (Z=X+ iY) co- 
ordinates. In the limit Y 4  -co the expansion (8) yields a 
uniform flow moving with velocity V=V@= (0,- eo). 

Let us expand the function k(X, t) given by Eq. (6) about 
the point X =  0. In view of the symmetry in the expansions of 
k(X,t) and d(X,t) only the even coefficients are nonzero. 
The expansion takes the form 

N 

Expression (9) is found by substituting the Taylor series of 
the functions sin(nX), cos(nX), and enY. Consequently, it is 
evident that the amplitudes A enter into Eq. (9) through the 
moments 

Multiplying the sums that appear in Eq. (9), transposing 
to the left-hand side terms containing derivatives with 
respect to t, and identifying successive powers of x2, after 
lengthy calculations we find the desired equations for G, in 
the first seven orders of the expansion (ko=O, 
k l  = 0,. . . , k6= 0). These equations constitute half of the de- 
sired differential system (the other half gives equations for 
A,). They take the form 

here and in what follows we use curly brackets to indicate 
the number of terms in the corresponding polynomial expres- 
sions. 

Let us evaluate the equations for A,. They follow from 
the dynamic boundary condition d(x,t) = 0 [Eq. (6)] and the 
condition that the pressure p ( x , ~  ,t) 1 ,= 0 on the boundary be 
constant. The coefficients d, consist of three components. 
They are the kinetic energy, the acceleration potential, and 
the gravitational potential. We list them here in order of de- 
creasing computational complexity. Consider the first of 
these. Taking q in the form (4), we calculate the components 
of V q ,  starting with u2(,. We express the amplitudes a, in 
terms of A,. As in the calculation of k, we expand the cosine 
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and exponential functions in X and Y that enter into the 
resulting expression. After doing this we arrive at 

Then we raise (n +- m )  to the appropriate power and multiply 
the resulting series. We eliminate the summation over n and 
m by means of the expressions (10) for the moments. As a 
result the moments M, enter into the equations instead of the 
amplitudes A,, and the equations themselves acquire a more 
compact form. The final expressions, prepared for expansion 
in x2 ,  assume the form 

Here for simplicity we have written M, as M(n) . 
Now we calculate the acceleration potential. We perform 

the calculation in the laboratory coordinate frame and then 
express it,, in terms of A, and A, using the formula 
&,=(A,- n i7aAn)exp(- n aO). We eliminate & using the 
first equation of the subsystem (11). Going over to moments 
we find 

Now we have everything necessary to derive the second 
half of this system. Substituting Eqs. (12) and (13) and the 
expression for the gravitational potential, which is propor- 
tional to (7), into d(X,t) and expanding d(X,t) in a Taylor 
series and collecting the time derivatives on the left-hand 
side of the equations, we find in the first seven orders of the 
expansion 

Here the pairs of numbers in braces represent the number of 
terms on the left- and right-hand sides of the corresponding 
equations. Note that the first equation in this subsystem 
should be omitted. The point is that it corresponds to the 
zeroth order in the expansion of d(X,t), while the boundary 
condition d(X,t) = O  holds (as is well known) only to within 
an arbitrary homogeneous function of time. Note also that 
the first equation in the subsystem (11) can be integrated 
after the other equations in the system ( l l ) ,  (14), since the 
unknown function 70 does not enter there. Consequently, for 
N =  6 we must integrate six equations simultaneously from 
the subsystem (11) and six equations from the subsystem 
(14); for N = 5  there are ten of these simultaneously inte- 
grated equations, and so on. To derive systems of lower order 
it is necessary to omit the corresponding higher-order equa- 
tions in the subsystems (11) and (14). 

Let us express the system ( l l ) ,  (14) in terms of the am- 
plitudes A,. For this we substitute for M, using Eq. (10). 
After lengthy calculations we reduce the differential system 
to the following form: 
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i = 1,2,. . . ,N, and the matrix elements of the two- and three- 
dimensional matrices G ,  M, and D are polynomial functions 
only of the boundary surface function v ( x , t )  specified by the 
quantities v1 , . . . , vN . We start by giving the equations for G 
and D. They take the form 
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In writing these expressions we have tried to standardize 
their information content. Analysis of the expressions G i j  
and D i j  reveals that the structure of the polynomials changes 
only from one column to the next. Within a column only the 
coefficients for the corresponding terms change. We have 
also tried to make the notation compact. Consequently, we 
have given complete expressions for the first elements in a 
column, and have written the others where necessary with 
ellipses. 

Now we write down expressions for the matrices Mijk  
associated with the kinetic energy. They take the form 

Here in place of Mijk  we have used the notation M ( i j k ) .  The 
three-dimensional matrix Mijk  is symmetric in the second 
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and third subscripts. Therefore we have only given the diag- 
onal and subdiagonal elements in these indices. As in the 
case of the G and D matrices the structure of the polynomial 
elements of M  varies only as a function of the first subscript. 
Therefore we have given complete expressions only for the 
elements M  (i 1 1 ) , and the other elements have been abbre- 
viated where necessary. 

We make two additional important comments and then 
proceed to the integration of the differential system (15), (16) 
and to the analysis of the properties of the trajectories. 

In order to go over to a system with the lowest order of 
approximation it is necessary first to discard the highest 
equations with i=N in the subsystems (15) and (16) and 
then in the other equations to set AN = 0 and pN = 0. 

After integrating Eqs. (15) and (16) we find the Fourier 
amplitudes P I  , . . . ,PN+ I of the bounding surface [Eq. (3)] in 
terms of the coefficients q,, p ,  , ..., p N .  TO find them we 
must solve the linear system of equations 

N+ 1 

which is found by expanding the series (3) about x=O in 
powers of x2. Note that if we express p, in terms of p, using 
Eq. (17), A ,  in terms of a, and 770 using Eq. (S), and 170 in 
terms of p, using Eq. (17), then in place of Eqs. (15) and 
(16) for the unknowns p, and A,  we find an equivalent 
system in the unknowns p, and a , .  

3.2. The equations and their analysis for N= 1 

Consider Eqs. (15) and (16). For N =  1 this system can 
be studied without difficulty. We use the autonomous prop- 
erty of Eqs. (15) and (16) and eliminate the time. Writing 
W = A l  and U = w2 and using the curvature K of the bound- 
ary at the extremal point x=O as the variable, we find 
K = 1 IR = 2 p1 , where R is the radius of curvature. The func- 
tion W is equal to the velocity of the boundary at the extre- 
mum, since the first of Eqs. (11) implies Go= M o ,  and the 
moment is M o = Z A ,  [Eq. (lo)]. For N =  1 we have 
Z A ,  = A ,  , since 770 = A ,  holds. Hence it follows that W = &. 
After these transformations Eqs. (15), (16) reduces to a 
single ordinary differential equation of the form 

This equation enables us to find a complete qualitative de- 
scription of the system (15), (16) in terms of the KU phase 
plane. We consider separately the cases g = - 1 , g = 0,  and 
g= 1. Let us begin with gravitational waves. 

3.2.1. The case g=-I ,  N=I. The structure of the phase 
plane is clear from Fig. 2a. It is more convenient to return to 
the variables W ,  K in place of U, K. The system has a sin- 
gular point at the center (W = K = 0). The center corresponds 
to hydrostatic equilibrium. This singular point is a focus. It 
develops as a result of the intersection of the isoclines W =  0 
(the K axis; see the figure, where dWldK = w) and K = - w2 
(the parabola p ,  on which dWldK=O holds). The crests of 
the waves correspond to negative values of the curvature K, 
and the troughs to positive values. Equations (15) and (16) 

FIG. 2. a) Standing-wave oscillations. The physical picture is symmetric 
about the K axis, so only the upper half plane is shown. The trajectories I 
and 2 which are closed in the entire plane differ from the amplitude oscil- 
lations (see text). Frames a, b, and c are not drawn to the same scale. b) 
Linear (labeled by I), transitional (2). and asymptotic (3) stages in the 
development of the Richtmyer-Meshkov instability in the N= 1 model. In 
the limit t - t m  trajectories of the form 1-2-3 are attracted to the pencil of 
curves which enters the node 3. When this happens the curvature approaches 
113, the shape of the boundary stops changing, the velocity decays according 
to W E  l l t ,  and the displacement of the extremum grows logarithmically: 
main t [see Eq. (21)]. c) Rayleigh-Taylor instability. Of physical interest is 
the pencil of trajectories entering the node U =  K = 113, starting from the 
vicinity of the hydrostatic equilibrium point U =  K=O. See also Fig. 12d. 

describe the motion of gravitational standing waves. In a 
small neighborhood of the center the trajectories are close to 
circles, since here I w I - I K 14 1 holds and Eq. (18) in the 
variables W ,  K can be written approximately in the form 
dWldK= -KIW. The crests and troughs of the standing 
waves are nearly symmetrical (trajectory 1 in Fig. 2a). The 
deviation from circular shape is a second-order effect in am- 
plitude. At larger amplitudes the asymmetry of the trajectory 
becomes apparent. The crests and troughs are no longer sym- 
metrical: now the crest amplitudes and their curvatures are 
larger than those of the troughs. Hence the circular trajecto- 
ries are transformed into oblate closed curves shifted to the 
left of the center (trajectory 2 in Fig. 2a). These closed 
curves are bounded on the right by the isocline K = 113, so in 
this approximation the curvature of a trough cannot be 
greater than 113. At the points a and /3 in this figure, which is 
drawn for W=O, the motion goes to zero and the velocity 
changes sign. 

3.2.2. The case g=O, N= l .  This constitutes a dynamical 
model of the Richtmyer-Meshkov instability. The phase 
analysis of the system is given in Fig. 2b. In contrast to the 
case of gravitational waves here there are two singular points 
of different character. One of these is a node (U = 0,  K = 1 l 
3), while the other (U=O, K =  1) is a saddle. They arise 
when the isoclines K = 113 and K =  1 on which d U l d K =  
holds intersect with the isocline U = 0 on which dUldK = 0 
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holds. The phase diagram is symmetric with respect to inver- 
sion U - l -  U .  Since U =  w 2 > 0  holds, in Fig. 2b only the 
upper half is shown. 

Equation (1 8) for g = 0  takes an especially simple form: 

The variables in it are separable and it can readily be inte- 
grated. The general integral takes the form 

Hence it follows that in the U K  plane the motion can be 
described by a single trajectory. The other trajectories are 
found from it by a simple change of scale in U .  Only trajec- 
tories of the form I+2+3 are physically meaningful (see 
Fig. 2b). 

The time dependence is found from the original equa- 
tions (15), (16), which in this case take the form 

Using the general integral (19) to eliminate the velocity W  in 
the second of these equations, we find after integration the 
evolution of the curvature: 

To be specific we have chosen the constant of integration 
here so that for t = 0  the curvature vanishes. 

Now we turn to the function W ( t ) .  Expressing K  in 
terms of W  in the integral (19) and substituting the resulting 
expression in the first of Eqs. (20) we find after integrating 
over W  

Here the constant has been chosen so that W ( t = O ) =  W o  
holds. From these expressions we find near the node, i.e., for 
t - 1 ~ ,  the following asymptotic expressions: 

Note that the behavior of the trough v O ( t )  given by (21) 
inside the fluid is logarithmic (rather than algebraic with a 
small exponent). 

In summary it should be pointed out that in Fig. 2b the 
physical trajectories have the form 1 4 2 4 3 .  Small values of 
K  correspond to the linear stage of the instability. Then a 
gradual approach to steady state occurs. The transition from 
the linear to the steady stage corresponds to the region 2  on 
this trajectory. Steady state, i.e., the node 3 ,  is approached 
asymptotically in the limit t + ~ .  The shape of the trough 
and, in the case of several Fourier amplitudes in the poten- 
tial, the ratios of these amplitudes also become time- 
independent. But the velocity and the amplitudes themselves 
continue to depend on time. 

3.2.3. The case g=I ,  N=I .  This is applicable to the 
Rayleigh-Taylor instability. Its phase diagram is shown in 
Fig. 2c. We analyze it briefly. There are three isoclines: the 
straight lines U = K  (the bisectrix) and the vertical lines 
K =  113 and K =  1. On the lines U = K  and K =  113 the right- 
hand sides of Eqs. (15) and (16) vani~h.~)  Consequently, their 
intersection point is a stationary point of this system. On the 
line K  = 1 the matrix Gi j  becomes degenerate, going over to 
the subsystem (15). For N =  1 this implies that the coefficient 
of A ,  vanishes in this subsystem. Equation (18) for g = 1 has 
two singular points U = K =  113 and U = K =  1 lying on the 
bisectrix. The first of these is a node and the second is a 
saddle point, with separatrices having slope dUldK equal to 
w and 112. The asymptotic form of the pencil of trajectories 
entering the stationary point U = K  = 1 I3 parallel to the ver- 
tical lines is 

Here the parameter c runs through the incoming trajectories. 
The center U =  K =  0 is the hydrostatic equilibrium point: 
( U  = 0 )  describes the liquid at rest and (K = 0 )  is the planar 
boundary. Points near the center represent deviations from 
equilibrium, where K  is the deviation in the boundary and U  
corresponds to velocity perturbations. 

Motion along a trajectory describing the displacement of 
the trough A (Fig. 1) toward the interior of the liquid is 
initiated in the vicinity of the center and goes from the center 
toward the node. It should be noted that on the portions of 
the trajectories above the bisectrix (see Fig. 2c) the velocity 
decreases, as occurs in the Richtmyer-Meshkov stability. 
This is an effect due to the next order beyond linear4) and is 
absent from the linear theory of the Rayleigh-Taylor insta- 
bility. 

Only the half-plane U>O with real velocities W  
( U =  w') is physically meaningful. At the point where a tra- 
jectory intersects the K  axis the motion stops and turns 
around. According to the trajectories depicted in the KU 
plane in Fig. 2c, the motion can proceed in either direction, 
both from left to right and in the opposite direction. The 
points in the region K<O and those moving toward decreas- 
ing K  describe the growth of the spikes T (Fig. 1). 

Also, as described in Sec. 3.2.2, a trajectory consists of a 
linear part:) a transition, and an asymptotic part. It is a cu- 
rious fact that the limiting curvature in the trough at the point 
A (Fig. 1) attained in the limit t  = CQ is the same in the cases 
of the Rayleigh-Taylor and Richtmyer-Meshkov instabili- 
ties. 

Note that treatments of the Rayleigh-Taylor instability 
frequently concern themselves with the model g = 1, N =  1 
described above. The reasons for this are, first, it is simple, 
and secondly, it gives a good description of the results of 
crude6) numerical calculations. This is called the Layzer 
model or This model has been improved upon 
somewhat here. The improvement consists of making it sim- 
pler and more transparent. This has the side effect of permit- 
ting it to be augmented by a detailed general analysis. This is 
possible because by making substitutions we have reduced 
the problem to the simple7) equation (18), thereby permitting 
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the analysis to be carried out in terms of the phase plane. 
This analysis is what leads to the conclusions regarding the 
general structure of the solutions. 

But we have not studied the case g = 0. By virtue of the 
homogeneity of the subsystem (15) in amplitude for g = 0, 
this case is found to admit complete integration. This a new 
result. It is interesting that the qualitative behavior of the 
models in Secs. 3.2.2 and 3.2.3 is similar; in particular, for 
g = 0 there can also be a time-independent asymptotic state. 

Now we turn to cases with N> 1. We start with the sim- 
plest of these, connected with N = 2  and the homogeneous 
(g = 0) subsystem (15). 

3.3. Richtmyer-Meshkov case for N=2 

As we proceed to the analysis of the situation that arises 
in higher orders of approximation, it should be noted that (as 
will become apparent below) there is a qualitative difference 
between the behavior of the system for N =  1 and for N> 1. 
This difference consists in the following. While a solution of 
Eqs. (IS), (16) exists for N =  1 for all t  from 0 to (see 
Secs. 3.2.2 and 3.2.3), for N> 1 matters are different. It is 
found that for g = 0 and g = 1 all trajectories of physical 
interest beginning from an arbitrary neighborhood of the hy- 
drostatic equilibrium point display singular behavior. What 
happens is that at some finite time t ,  on the boundary a 
singularity develops at the minimum of the trough. If we 
follow the trajectories of the system (15), (16), then we can 

see that at this time the plot of a point moving along the 
trajectory is blocked by a hypersurface SG on which the ma- 
trix of the coefficients Gij given by (15) becomes degener- 
ate. The formation of the singularity is inevitable because the 
trajectories and the hypersurface are so constructed that the 
latter attracts the trajectories. 

The simplest system that displays singular behavior is 
obtained for g =  0, N =  2. Because the system is autonomous 
and homogeneous in the amplitudes A ,  as follows from the 
condition g  = 0, it can be reduced to a system with a three- 
dimensional phase space. Let us again write K  = 2 q l .  In or- 
der to make use of the homogeneity we introduce the ampli- 
tude ratio p=A21A1 in place of one of the amplitudes. 
Specifically, we write A2 = A l p  in Eqs. (15), (16). After this 
we find 

where i =  1,2 and \ G I  is the determinant of the matrix G. It 
is already clear that the equation for A ,  separates from the 
rest of the system. Substituting the expressions (22) for G,  
M, and D from Sec. 3.1 and using the differential d K  in 
place of d t ,  we find 

Consider the p, R, K  space of Eqs. (22) or the equiva- 
lent system (23). They are two geometrical (i.e., connected 
with the shape of the boundary) variables and K, and one 
variable p that results from the Fourier amplitudes of the 
potential expansion. At the stationary points of Eqs. (IS), 
(16) with g =  0 and an arbitrary value N  the amplitudes Ai 
are equal to ~ i ' ~ / t ,  where the A:'" are constants. The ampli- 
tude ratios AilAj and the geometrical variables qi (except for 
q,) are also constant. For q, we have 

For Eqs. (22) or (23) the constancy of these variables 
requires Q = qil + q i2p=  0, i = 1,2. After performing linear 

operations to eliminate p and v2 from this algebraic system 
we find an equation determining the unknown K at the sta- 
tionary point. It is equal to 

and has no real roots. Consequently, the system (22) or (23) 
has no stationary points. The right-hand sides of Eqs. (22), 
except for I G I  = 0, contain polynomial expressions and have 
no singularities in the finite region. The singular behavior of 
the solutions (22) can therefore be attributed only to the van- 
ishing of I G 1 .  

Let us turn to the investigation of the surface SG in 
which JGJ = O  holds. The elements of the matrix Gij depend 
only on the geometrical variables, so the surface SG is par- 
allel to the p axis (see Fig. 3a). This forms a "partition" in p, 
Q, K space, separating it into two parts. Hence it follows 
that it is convenient to treat projections on the K ,  Q and K ,  
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p planes (see Figs. 3b and c). Another important fact is the 
following. We will study the evolution of the system in the 
case when the initial perturbation is given by the first har- 
monic alone. In this case only the initial values of the vari- 
ables A, and (or) P, are nonzero [see Eqs. (3), (4), and (8)]. 
The important thing here is that since A, drops out of Eqs. 
(22) and we have A2(t = 0) = 0,  it suffices to treat trajectories 
that start only on a line lying in the K% plane (i.e., in the 
plane p=O or A2=0) given parametrically by the relations 
K = pl , v2=P1/24, which follow from the power-series ex- 
pansion of cos x about zero; see Fig. 3b. This permits us to 
narrow the class of initial points. 

The results of integrating Eqs. (23) are shown in Figs. 3b 
and 3c. As can be seen, for a broad class of initial data the 
dynamical system approaches the surface SG . 

Now let us extend the analysis of Eqs. (15), (16), to 
other values of N. To conclude the description of the case 
g=O, N= 2 we note that it was treated in a separate subsec- 
tion only to make clearer the attractive properties of the sur- 
face SG with respect to a pencil of trajectories embracing a 
broad region of initial data. To obtain persuasive evidence in 
favor of the assertion that the singularity touches the bound- 
ing surface and about the behavior of the higher approxima- 
tions and especially their convergence is much more impor- 
tant, of course. 

3.4. Integration of the higher multimode approximations 

The equations (15), (16) derived analytically above have 
been integrated for all cases in the range 1 6 N 6 6 .  The val- 
ues g = 0, + 1 have all been investigated. A wide class of 
combinations of values of the first amplitudes Al and PI 
were chosen as initial conditions [see Eqs. (3), (4), and (8)], 
to which were added higher harmonics with amplitudes 
small in comparison with the first. 

We briefly characterize the integration scheme. The 
Runge-Kutta method was used. In calculations of Eqs. (15), 
(16) the first subsystem (15) of these equations was written 
in the form G ~ ~ A ~ = ( ~ . ~ . S . ) .  At each integration step it was 
treated as a system of linear equations for the unknowns A j .  

We will now present the results of the integration. To 
avoid repetition we restrict ourselves here mainly to a verbal 
description, since the corresponding plots will be needed be- 
low in discussing the convergence of the approximations and 
in comparing these results, which we will call analytical, 
with the first numerical simulation. And so the calculations 
reveal that the trajectories closely approach the surface SG . 
The absolute value of I G I  decreases by two or three orders of 
magnitude. The functions I GI/[ Go( of t are shown in Fig. 4; 
here lGol gives the value of the determinant at the initial 
time. The function [GI at N =  6 is not shown, since in con- 
sequence of the enormous complexity of this expression 
problems arise with memory in the FORTRAN compilation. 
The smallness of the distances to which the trajectories ap- 
proach SG is determined by the numerical sources of error 
due to truncation and roundoff. This was the case for all 
values of N except8) N =  1 and, as already noted, over a 
broad class of initial data. 

FIG. 3. Shape of the surface S, and trajectories in the case g = O ,  N = 2 .  
This case is noteworthy because its small spatial size allows the surface S, 
to be depicted and because it shows how the trajectories approach S, . a) 
Projection of the surface SG on the K m  plane. This projection is a curve on 
the latter plane, since S, is parallel to the p axis. The curve is labeled with 
1. The motion of interest to us occurs in the subregion of this plot located 
between the zero and the maximum of trace 1 (see Fig. 3b). b) Projections of 
the trajectories on the K R  plane (a family of curves 3). The trajectories 
approach the surface S, (trace I). The initial points are on the line 
v 2 = K / 2 4  (the broken trace labeled 2). In the text it is explained why they 
are on this line. c) Projections of the trajectories on the Kp plane (the family 
of curves labeled 3). The trajectories start at the p=O plane (the K* plane), 
which in this projection appears as the K axis. For this example we use the 
same trajectories as in Fig. 3b. The sharp increase in p is  due to the approach 
of the singularity to the boundary. It occurs at the same time as the approach 
to the surface S, . 
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FIG. 4. Approach to the hypersurface SG as IGI+O. The numbers indicate 
the value of N. 

4. TRAJECTORY APPROXIMATIONS AND THEIR 
CONVERGENCE AS A FUNCTION OF N 

From the above it follows that in all cases9) the trajecto- 
ries of Eqs. (15), (16) have a terminal point in time, associ- 
ated with the surface S G .  It might be asked, what relation 
does this have to the continuum system (I), (2)? To be sure, 
a conclusion reached by means of a single finite-order ap- 
proximation must be regarded as hypothetical, even if the 
approximation is of high order. It becomes rigorous only in 
connection with an investigation of convergence. Let us now 
treat this important question. 

The analytical solution of Eqs. (I) ,  (2) was obtained by 
expanding the dependent variables in a complete orthogonal 
basis. The exact solution was approximated by means of a 
Galerkin truncation of this expansion. Let 

be the coefficients of this truncation. Here the superscript N 
indicates the adjustable order of the approximation. 

The boundary-value problem (I), (2) was approximated 
using the difference system dldt(kN)=fN(kN). The calcula- 
tions were performed up to high values of N (N= 6;  see Sec. 
3). A great deal of attention was devoted to the question of 
convergence. The dependence of the deviations 

as a function of N was carefully analyzed. The functions 
ky(t) and the partial deviations 

are shownI0) in Figs. 5-8. As can be seen, the trajectory 
approximations converge exponentially even when the itera- 
tion step q of the corresponding geometrical progression 
(hN+l=qAN) is large. This step is shown in the form of a 
vertical segment of length 9-4.7 in Fig. 5b. The sharp 
downward-pointing peaks in the lower figures 5b, 6b, 7b, 
and 8b result from the intersection of the functions shown in 
the upper figures 5a, 6a, 7a, and 8a; the lower figures display 
the functions log IkDt) - ky-'(t)l, which go to -m for 
k y  = ky-' . The typical examples shown in Figs. 4- 8 were 
calculated for the case g = 1. Initially the boundary was pla- 
nar. The initial velocity field was given by a single harmonic 
with amplitude A (0) = 0.1 1 2. Convergence is observed 
over the entire range of r on which a continuous solution is 
found. 

The divergence of the trajectories approaching SG (see, 
e.g., Fig. 8a) and the decrease in J G I  enable us to estimate 
the time t,. In particular, for the examples shown in Figs. 
4-8 we find tc=3+0.5. 

5. WHAT THE FAILURE OF THE APPROXIMATION MEANS 

In Secs. 3 and 4 it has been shown that there exists a 
time I, at which the trajectory terminates. In the limit t ~ t ,  
the system (15), (16) ceases to give a good approximation to 
the conditions (I), (2). In order to understand what this ob- 
servation implies we should pause briefly to consider the 
technique employed. 

It turns out that it has a direct relation to the widely used 
collocation technique. In this technique collocation points 
{xi) are distributed on the symmetric half of a period. Let 
xo = 0 <xl < . . . <xN (see Fig. 9a). The shape of the boundary 
is given by the set of values vO,A1 ,...,AN, where 
?lo= v(xo,t) and hi= vi- 70 ,  vi= v(xi ,t). We expand the 
potential in a series c p = ~ r = l  A, cos nx exp(nA)ln, where 
A = y - 70. Then the equations that follow from the condi- 
tions (I), (2) take the form 

7jO= - A,, A ~ =  x A,- 2 A , c ~ ~ ~ " * ;  

A, - lg MY 
1 2 3 4 5 r  5 t FIG. 5. a) The function A,(r) is shown. The 

values of N are given by the labels on the 
-0.2 - -  

6 curves. The trajectories begin to steepen as they 
approach SG . The initial data are given in the 

, 5 -3 text; here g = 1 .  b) Exponential convergence of 
-0.4 -- the approximations as a function of N. The la- 

bels give N in accordance with the definition 

a N= 1 (24). 
-0.6 - 

-6 
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where Cni=cos nxi , Sni=sin nxi , Ao=O. Function q0 and 
function c ( t )  connected with calibration in the Eq. system 
(26) are dismissed by subtracting the equation with i =O from 
the equations with i $0. The coefficients bm are found from 
the linear equations = X bm Cm . 

Since the line L (y = ydown), which limits the singularities 
(5), is far from the collocation points a,b, ... (Fig. 9a), the 
method works and the approximations converge. As the per- 
turbations grow the line L approaches the fluid (cf. Fig. 9a 
and 9b). But if one collocation point lies beyond this line 
(Fig. 9b), then we cannot use a Fourier expansion to calcu- 
late the cp that appears in it. Consequently, Eqs. (25), (26) no 
longer approximate the conditions (I), (2). 

Each set {xi} corresponds to its own system (25), (26). 
Consider systems obtained in the limit in which the colloca- 
tion points approach a limit, xi+xa,. As the distance be- 
tween the points xi decreases, for calculations with a fixed 
number of bits in the mantissa the accuracy decreases. In 
order to avoid this, we consider linear combinations of the 
collocation equations: 

FIG. 6. a) The variation of A, ( [ ) .  b) The varia- 
tion of log A A : ( ~ ) .  Here the numbers indicate 
the value of N. 

These are differences of successively increasing order. In 
place of the system u,=O, u2=0,  ... we arrive at the system 
al=O, a2=0,  ... . It is quite obvious that the latter corre- 
sponds to algebraic approximations of the conditions (I), (2). 
We approach it asymptotically as the points xi converge. It is 
therefore natural to call the method based on Eqs. (15), (16) 
the method of asymptotic collocations. In order to emphasize 
the difference between these two methods we will call the 
method based on Eqs. (25), (26) ordinary collocations. 

Consider the problem of detecting the approach of a sin- 
gularity to q using the method of asymptotic collocations. It 
is evident that if the point x,, is located somewhere outside 
the point A,  e.g., on the crest T or at the point B (Fig. 9c), 
then detection will be impossible. In fact, the failure of the 
approximation using the equations (15), (16) associated with 
this location of x,, would still not suffice to prove that con- 
tact had taken place. The trouble is, there will be no way to 
ascertain whether the singularity moves along trajectory I or 
trajectory 2 (Fig. 9c). The only exception occurs when the 
point x,, lies in the trough A. In this case the failure of the 
approximation implies that the singularity has reached q at 
the point A (see below). 

6. BEHAVIOR CLOSE TO CRITICALITY 

Assume x,,=O. In the limit t+t, the trajectories ap- 
proach SG , A,+@J, and the series (4) and (8) diverge. Since 
these series converge for y <ydown, then, as noted above, this 
implies that the lower singularity closely approaches v. It 
approaches q at the minimum of the trough (see Fig. 9c), i.e., 
at the point A. 

In fact, if the singularities slowed down in the course of 
time and stopped at locations fixed with respect to q and at 
finite distances from q, then the integration of Eqs. (15). (16) 

FIG. 7. a) The variation of q,(r) .  b) The variation 
of log A  q t ( t ) .  Here the numbers indicate the value 
of N. 
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with respect to time would last an infinitely long time for all 
N. This follows from the fact that, as is well known," the 
time-independent form of Eqs. (15), (16), which is found 
from these equations for A,= 0 and il,= 0 ,  describes a solu- 
tion which is continuous and stationary everywhere. In the 
limit t+m this solution would be approached. 

The approximation of Eqs. (15), (16) would still hold 
even if the singularity approached 7 somewhere on the lat- 
eral surface at a higher distance from the point A. This pos- 
sibility is illustrated in Fig. 9c, trajectory 1. 

Consider the sub- and supercritical space-time vicinity 
of the point and the time of approach. In order to deal with 
what happens, let us analyze the following problem. 

For t = 0 let a wedge-shaped indentation with a rounded 
vertex be made in the fluid (Fig. 10a,ar). Assume that the 
pressure in the indentation satisfies po=m, while the pres- 
sure at infinity is p,=O. Hence Vp in the vicinity of the 
rounded point is a finite quantity. Let the initial velocities be 
equal to zero. 

It is not hard to see that the separation between isobars 
become smaller near the vertex of the indentation, so that Vp 
and the associated acceleration of the fluid is largest at the 
vertex. Consequently, the wedge can become sharper spon- 
taneously (see Figs. lob and lob'). If so, then there exists a 
time t, such that the curvature at the vertex diverges. For 
t>t,  7 becomes discontinuous and forms a new piece of 
surface 7 consisting of Lagrangian particles located at the 
vertex point at time t ,  (Fig. 10c). 

For the concave case the motion of the fluid is accom- 
panied by elongation of its boundary 7. From the above 
comments it follows that this elongation is not continuous 
everywhere. A discontinuity of the boundary implies that if 
we color 7 then after some finite time an uncolored portion 
of finite extent develops on 7. This portion consists of a 
segment separated by the two points A and B (Fig. 10c) from 
the colored part of 7. If a and b are points (Fig. lob and 10c) 
located on opposite sides of the collapse point on 7, then 
with continuous elongation we have I 8rab(t) 1 = f (t) 
/Srab(0)l, where we have written Gra,=ra-rb and f(t) is a 
function which increases, possibly exponentially. When dis- 
continuity develops this relation breaks down, since when 
6rab(0) contracts to zero it is not necessary that the segment 
Srab(t) also contract to zero for t>t, (see Figs. lob and 
10c). 

Even after discontinuity develops the vertex of the in- 

FIG. 8. a) The variation of q,(t). b) The variation of 
log A $(r). Here the numbers indicate the value of 

dentation remains in the region of enhanced values of Vp. 
Hence the motion of its neighborhood should outstrip the 
other parts toward the interior of the fluid. Consequently, in 
the region of the vertex a leader forms, which points into the 
fluid in the direction of the densest isobars. 

It is evident that in our case the trough is in some sense 
equivalent to an indentation in the fluid. Specifically, in the 
case of a trough the curvature is also largest at the point of 
minimum depth. Consequently, this problem is likely to be 
related to our case. 

For additional confirmation of the above account and to 
study the neighborhoods of the points on the new surface 
which are adjacent to A and B of the old (Fig. lOc), we turn 
to two-dimensional hydro- and gasdynarnic codes. 

FIG. 9. The approach of the singularities and the failure of the approxima- 
tion. Here the coordinates of the collocation points are indicated by y. The 
singularities are above the line L, indicated by the wavy line. The potential 
expansion converges in the half-plane below L for y <y,,,, . Conventional 
(a,b) and asymptotic (c) collocations are shown on the symmetric half- 
period [O,?r]. The shape of the boundary at r ,  (a) and for t,>r, (b) is given. 
b) liquid on the lower side (see also Fig. 1). a) The points of the conven- 
tional collocations a,b ,... . Their coordinates are (x,, 7,). (x, , 7,) ,... . Their 
coordinates on the x axis are labeled by 0,1, ... . b) Elongation of the liquid 
spike as a function of time and approach of the singularities and therefore of 
the line L to the liquid. The situation is shown in which one of the colloca- 
tion points (the point x,) is beyond the line L. Consequently, the point x, is 
found in the half-plane in which the Fourier expansions (4) and (8) for the 
potential diverge, so that the values of the potential and velocity cannot be 
calculated by means of these expansions. c) Locations of the point x,, at 
which the power-series expansion is canied out in the asymptotic colloca- 
tion technique, in connection with the problem of detecting the approach of 
a singularity to 7. If x,,#O holds, e.g., let B be a collocation point. The fact 
that Eqs. (15) and (16) no longer approximate (1). (2) still does not imply 
that the singularity has reached q. Specifically, it can move tangent to q as 
shown in trace I or past it as shown in trace 2. Traces I and 2 depict the 
lowest singularity. 
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FIG. 10. Initial shape (a) and curvature K(x,t=O) 
(a') of the boundary. The fluid is indicated by 
hatching. b, b') Illustration of the hypothesis that 
the sharpness of the spike increases with time. At 
time t ,  a sharp wedge develops. c) At t = t,+ 0 the 
point of the wedge breaks up and a new surface 
forms between the points A and B. 

7. NUMERICAL SIMULATION and magnitude of g, the density ratio p of the liquids at the 

We begin with the properties of the Eulerian codes used. 
In order to make the results more reliable we checked them 
by using two different algorithms. One of these is well 
known. It is based on the particle-in-cell (PIC) method:* 
which is widely used in gasdynamics. At low Mach numbers 
this algorithm approximately describes the dynamics of an 
incompressible liquid. The code was written by A. Yu. 
Dem'yanov. The other algorithm applies directly to the in- 

interface, the grid spacing, the Courant number which lim- 
ited the time step, and the boundary conditions at the upper 
and lower limits of the domain of the calculation. Any de- 
tailed discussion of the numerical treatment would go far 
beyond the scope of the present work. Here we present only 
a summary of the main results. 

The typical evolution of 7 is shown in Fig. 11. In this 
case we took p=1/10, p=p l Iph ,  and the calculation was 

compressible case and is related to the artificial-viscosity performed using the artificial-viscosity technique with 
method, generalized by A. V. Chekhlov to an inhomogeneous A (0) = 0.1 1, A,(O) = 0,  n > 1 , ~ ~ ( 0 )  = 0,  m 2 0,  and g = 

The results obtained using these two codes agree. A + 1. These initial data correspond to the case whose analyti- 
series of calculations was carried out in which we varied the cal solution is shown in Figs. 4-8. Here and in what follows 
initial conditions over a wide range. This includes the sign ph and pl represent the density of the lower (heavy) and 

FIG. 11. Evolution of 7, collapse, and for- 
mation of a discontinuity as found in nu- 
merical simulation. The values of the param- 
eter are given in Sec. 7. The time is shown 
in the upper left comer. Collapse occurs at 
time t,-3 at the bottom of the trough. For 
r > r ,  there is a bubble B and spike C 
(marked with an amw). ?he figure shows 
the symmetric half of a period. Half of the 
bubble B and of one of the two symmetric 
spikes are missing. 
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upper (light) fluids, respectively. The mesh spacing in x  and 
y in this case was a,= a,= A/ 1 10. The displaced density 
contours are shown on which the density is equal to the 
average intermediate value (ph+ p l ) /2 .  

The principal content of the present work is related to 
the study of hydrodynamic collapse. The continuous evolu- 
tion of the system has been followed analytically up to the 
time of collapse at the minimum of a trough. Here we com- 
pare the analytical calculations with the results of the nu- 
merical simulation for t<t,  and compare the values of t ,  
obtained analytically and numerically. Because of space limi- 
tations we can devote less attention to questions here regard- 
ing the form of the solution after the time t, and about the 
effect on the solution of finite values of the parameter p. 

Let us analyze Fig. 11. Two noteworthy occurrences are 
revealed here. The first takes place at time t r =  1.5, while 
the second is at time t,=3. The event that occurs at t =  t, is 
similar to the collapse studied analytically above. Evidence 
for this comes from the agreement between the analytical 
and numerical solutions for t< t ,  and the agreement in the 
localization of the collapse and the values of the time t ,  . The 
point x, at which collapse is localized is equal to zero. We 
see that at t ,  the surface ?I breaks up and a bubble is initial- 
ized on it between the point C and the minimum of the 
trough. A spike C develops at the point where the new sur- 
face makes contact with the old one. Thereafter the area of 
the new surface grows, since the spike moves away from the 
minimum point. 

It can be shown that what happens at t=  t r  at the point 
xF=.rrl2 is related to the fact that p#O. The codes used here 
do not allow the case p=O to be simulated. To minimize the 
influence of p we therefore chose the smallest possible val- 
ues of this parameter. It is well known that for p#O mush- 
room shapes develop. The event that occurs at tF is probably 
related to the onset of this process. This question must be 
discussed in a separate publication. Here we will only point 
out some isolated details. 

A detailed comparison between theory and simulation 
was performed. In the forms of the codes used the evolution 
of the Fourier components of the potential, which is intended 
for the future, was not implemented. We therefore restrict 
ourselves here to transforming v(x , t ) .  Figure 12a shows a 
comparison between the theoretical and numerical shapes at 
time t  of this quantity for t r< t< t , .  At times t < t r  these 
shapes are essentially identical over the whole range of val- 
ues x  E ( 0 ,  T). For t> tF  they remain very close to one an- 
other in the subinterval x  E ( 0 , ~ : ) .  But in the neighborhood 
of the tip T of the spike the aerodynamic drag due to the 
low-density fluid begins to have an important effect on the 
motion of this spike. This is because the parameter p is 
nonzero. As a result, the shapes d x , t )  begin to differ for 

M 
XE(X,  ,.rr). 

The situation is similar for the other initial data as well. 
As a result, the theoretical and numerical shapes of 7 before 
collapse (t< t,) agree with one another. Rather naturally, this 
also implies that the theoretical and numerical values of t ,  
agree. Because of its importance we discuss the information 
obtained regarding this point in more detail. The correspond- 
ing plots are shown in Figs. 12b, c, and d. They display the 

FIG. 12. a) Comparison of the theoretical (broken trace, N =  6) and numeri- 
cal (solid trace) forms of r ] ( x , t )  at time t=2.  The values of the parameters 
are as in Fig. 11. b) Termination of the theoretical curve and kink on the 
function - r] , (r )  obtained numerically. The values of the parameters are as 
in Fig. 11. In figures b), c), and d) the solid traces are found theoretically and 
the broken ones from the simulation. c) Comparison of the times r ,  on the 
numerical and theoretical curves. The initial data associated with the pairs of 
curves 1, 2, and 3 are given in the text. d) Theoretical curves for N> 1 
(curve a ,  calculated for N= 6) and for N= 1 (curve b). Curve b continues to 
t = m ;  see Fig. 2c. For t < t ,  trajectories with different values of N are es- 
sentially identical. We also give curves found numerically for appropriate 
(curve a , )  and coarse (curve b ,) grids. As can be seen, the times t ,  agree on 
curves a and a , .  In addition, curves b and b, agree. 

time variation vO( t )  of the displacement of the minimum of 
the trough. The plots in b and c and trace 2 in Fig. 12c refer 
to the initial data for A ,(O) =O. 1 1 ,  presented above. Traces 
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I and 3 in Fig. 12c were obtained for A ,(0) =0.055 and 
A 1(0) = 0.22, respectively. The solid traces indicate the 
theoretical dependence obtained for N= 6 (see also Fig. 7a). 
The broken traces indicate the results of the theoretical simu- 
lation. For N> 1 all the theoretical curves terminate at time 
r, , indicated by the arrow in Fig. 12b. At approximately the 
same time on the surface g a bubble and spike form (see Fig. 
11). The plot of - go(t) obtained from the numerical simu- 
lation shows that this is accompanied by an enhanced rate of 
increase of the quantity - go (Figs. 12b, c, and d). The times 
at which the theoretical curves terminate agree satisfactorily 
with the formation times of the spike and bubble for various 
initial conditions (Fig. 12c). 

The theoretical trajectories for N= 1 do not have termi- 
nation points (cf. Fig. 12d, trace b). For O<t< t, the trajec- 
tories referring to different values of N (including N= 1) are 
essentially identical. In any case, on the scale shown in Fig. 
12d the difference between the curves is not discernible. 

The results of the numerical simulation depend on the 
grid spacing used (Fig. 12d, traces a ,  and b ,). This variation 
is as follows. Let N, be the number of cells in a square 
lattice per wave period. There exists a minimum value 
(Nx) tht  which separates the grid resolution which is unsuit- 
able to describe the discontinuity and that in which the grid 
is sufficiently fine to describe it. For Nx>(Nx),, the depen- 
dence on N, drops out. The value of N, was varied over a 
wide range from 20 to 200. It was found that the magnitude 
of the threshold is given by (NJth-50, depending on the 
numerical scheme used. 

The comparison between theory and simulation shows 
that the results on coarse grids agree with the theoretical case 
N= 1 (cf. traces b and bl  in Fig. 12d). But the results ob- 
tained with grids appropriate for describing the discontinuity 
agree with the multimode theory (cf. traces a and a in Fig. 
12d). 

8. IS THE PROBLEM WELL-POSED? 

In the foregoing treatment we have considered the prob- 
lem of a free surface in the case when the amplitudes A, and 
g, of the harmonics in the series (8) and (3) drop off expo- 
nentially at t=O [cf. Eq. (5)]. We ask whether the small- 
scale modes with n+ 1 can effect the evolution of modes 
with n- 1. Let us treat the time evolution using the WKB 
approximation, which gives an upper limit to the amplitudes 
of the small-scale modes. As a result we obtain the estimate 

The definitions of c and c l  are given in Eq. (5). Here we 
have used an expression for the Rayleigh-Taylor growth rate 
y= Jgk(l - p ) I ( l +  p )  in units such that g =  k= 1. From 
this estimate it follows that A,(t,)-1 occurs at time 
t,(n) - 6. Thus, we arrive at the conclusion that the 
evolution of the long-wavelength modes can be studied in 
this manner. 

9. CONCLUSION 

In this work we have studied the evolution of the free 
surface of a liquid. To be specific we have treated the case of 
a periodic perturbation. Then a periodic sequence of alternat- 
ing spikes and troughs develops. We propose a hypothesis 
that for a broad class of initial conditions a singularity de- 
velops at the bottom of a trough. Its formation requires a 
finite time. We have described the basic features of the solu- 
tion at the end of this time. It is probable that the spatial 
periodicity of the solutions is not important in connection 
with the singularity. Specifically, similar phenomena should 
be observed as well for quasiperiodic and also for spatially 
localized initial data such that an isolated trough develops. 
Note that, as mentioned in Sec. 8, these results only hold for 
initial data which drop off exponentially as a function of the 
order of the harmonic. 
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' ) ~ e m b e r s h i ~  in the class of initial data admitting vortex collapse, is still the 
subject of extensive discussion. 

2 ) ~ o t e  that in the extremely nonlinear regime (not treated here) boundary- 
layer turbulence occurs in this case, which eventually leads to fragmenta- 
tion of the originally compact mass of liquid. 

3 ) ~ h e  line U = K corresponds to free fall, in which case the effect of pressure 
is irrelevant. 

"The change in the velocity U from its initial value U, to the value U b  it 
has when intersection with the bisectrix occurs is small if the trajectory is 
near the center, (Uo-  u ~ ) = u ~ .  

')under the condition, of course, that it starts out from near the equilibrium 
point. 

')crude and precise numerical calculations will be discussed below. 
7)In Refs. 25 and 26 the equation is written in terms of the velocity and 

amplitude and the integration is carried out over time. In this form it is 
vexy involved and the general analysis is hard to do. 

 ere the cases g = 0 and g = 1 (the unstable cases) are referred to. The case 
of gravitational waves, g= - I ,  requires additional clarification (see be- 
low). 

')with the exceptions noted above regarding the cases N =  1 and g = - 1. 
I0)1t is more convenient to display the physical velocity fields themselves 

and the shape of the boundary separately. This will be done in connection 
with the comparison with the results of the numerical simulation. 
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