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The transition to the hydrodynamic limit is carried out for a certain class of external forces in a 
quantum relativistic many-particle system with N local conservation laws. It is shown that 
the hydrodynamic equations are nonlocal in space and time and that the hydrodynamic model is 
equivalent to the original quantum-statistical model. The kernels that enter into the 
constitutive relations are expressed in terms of current Green's functions. The hydrodynamic 
model satisfies the conditions of causality, dissipativity, and covariance. When the quantum field 
model is T-invariant the kernels are related by reciprocity conditions (analogous to the 
Onsager relations). The algebraic structure of the nonlocal hydrodynamics is analyzed in detail 
for a one-component quantum relativistic fluid. The relation between the classical transport 
coefficients and the hydrodynamic kernels is established. O 1995 American Institute of Physics. 

I. INTRODUCTION 

In many-particle theory the following three levels of de- 
scription are employed for physical systems: 1) statistical 
mechanics, a description in terms of a many-particle distri- 
bution function or density matrix; 2) kinetic theory, a de- 
scription in terms of a single-particle distribution function; 3) 
hydrodynamics, a description in terms of macroscopic fields 
of certain quantities. One proceeds from a higher to a lower 
level of description by reducing the number of degrees of 
freedom of the system. 

In deriving the equations of dissipative hydrodynamics 
from statistical  mechanic^'.^ or kinetic one custom- 
arily makes the following assumptions: A) no external forces 
act on the system in question; B) some sort of expansion in 
small gradients is applicable. Condition A implies that ex- 
plicitly or implicitly we are studying a Cauchy problem. Spe- 
cifically, for a dissipative hydrodynamic system without 
sources only the state of rest is defined along the entire tem- 
poral axis. Condition B implies that the model has local con- 
stitutive relations. 

However, the description of dissipative hydrodynamic 
processes in a systematic relativistic theory is associated with 
dropping locality (or at least dropping locality in time6-''). 
In a system which is nonlocal in time a Cauchy problem 
cannot be posed, and so it is natural to relax condition A and 
study a system with sources. Then condition B loses its 
meaning. 

~inarievl '  derived nonlocal hydrodynamic equations us- 
ing the nonequilibrium statistical operator of ~ubarev,' gen- 
eralized to the case in which sources are present. In the 
present work the nonlocal relativistic hydrodynamics of a 
quantum many-particle system is constructed by explicitly 
imposing a source in the equation for the density matrix, 
describing an external force acting on the system. The non- 
local kernels appearing in the constitutive relations are ex- 
pressed in terms of current Green's functions. The properties 
of the kernels that follow from those of the Green's functions 
are analyzed. Thus, the kernels satisfy the usual conditions of 
dissipativity,12 which hold in mechanical models with inher- 

itance. Because of nonlocality the presence of dissipative 
processes (in particular, viscosity and thermal conductivity) 
does not violate the theory's causality. If the original quan- 
tum field model is T invariant, then the kernels are related by 
the reciprocity conditions, an analog of the Onsager rela- 
tions. The algebraic structure of the constitutive relations is 
analyzed in detail for a one-component relativistic quantum 
fluid. 

Previously it was shown that in a certain class of sources 
the transition from relativistic kinetic theory to nonlocal hy- 
drodynamics is equivalent.9 Below an analogous assertion is 
also proved for the transition from quantum statistical me- 
chanics to nonlocal hydrodynamics. 

We use a system of units in which Planck's constant h, 
the speed of light in vacuum c ,  and the Boltzmann constant k 
are equal to unity. The Greek subscripts run over the values 
0, 1, 2, 3, corresponding to an inertial system of spatial and 
temporal coordinates xa, where xO= t is time; the Roman 
subscripts a ,  b, c run over the values 1, 2, 3, corresponding 
to spatial Cartesian coordinates xa; here da=dldxa. The 
space-time subscripts are raised and lowered using the 
Minkowsky metric (-)=diag (1,-1,-1,-1). The Roman 
subscripts A,  B, C run over the values 0,. . .,(N- 1 ), where 
N is the number of local conservation laws (1). Summation is 
understood over repeating indices unless otherwise specified. 

2. DERIVATION OF THE NONLOCAL RELATIVISTIC 
HYDRODYNAMIC EQUATIONS 

We will use the following notation: the function 
f = f (xa) has Fourier transform fF(ka) defined by 

where ko = w is the frequency. 
Consider a quantum many-particle system, which in the 

absence of interaction with the surrounding medium has a 
Hamiltonian H o  and possesses N local conservation laws 
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(energy, momentum, charge, etc.). If there is interaction with 
the surrounding medium, then the Hamiltonian assumes the 
form 

where the operator H I  = H I  (t) describes the influence of the 
surrounding medium and sources appear in the conservation 
equations: 

where J,&= JzH(xP) are Ccurrent operators in the Heisen- 
berg representation. 

Assume that the currents J,nH constitute a complete set in 
the sense that the equilibrium state is completely character- 
ized by the average values of the densities J:,. Furthermore, 
assume that the macroscopic fields generated by these den- 
sities (such as gravitation, electromagnetism, and so on) are 
negligibly small. 

In addition to the Heisenberg representation we will use 
the Schrodinger representation J,&= J&(xa) and the interac- 
tion representation J&= J,",(xP) for the current operators. 
These representations are related by 

From the definition of the interaction representation we 
have the local conservation laws 

Since the 4-current operators in the Schrijdinger repre- 
sentation are defined without regard to the interaction with 
the surrounding medium, in connection with Eq. (2) we have 
the equations 

Here, in order to avoid problems connected with Haag's 
theorem,13'14 it is convenient to set H ,(t) = 0 for t C a ,  a >O. 
Otherwise relation (3) does not hold, e.g., when the operator 
H I  is nonzero and time-independent. 

We define the evolution operator for a quantum system 
as the solution of the Cauchy problem 

The current operators in the Heisenberg representation and 
the interaction representation are expressed in terms of the 
current operators in the Schrodinger representation: 

From Eqs. (I), (3)-(5) we find the representation for the 
sources 

We assume that for tGa  there is an equilibrium state 
with density matrix 

where T =  P-' is the temperature in the equilibrium state. In 
the Heisenberg representation the state of the system (7) does 
not vary. In the Schrodinger representation the evolution of 
the system is described by the quantum Liouville equation 

For an arbitrary operator B we define 

We will consider states close to the equilibrium state (7) 
and restrict ourselves to the first-order perturbation with re- 
spect to the external force H I  (t) . Let us recall some standard 
formulas for calculating averages over states close to the 
equilibrium. ' 

We introduce the definitions 

where V is a small operator and B is an arbitrary operator. 
We define W(t) = Z ( -  t)VZ(t). 

Then we have1 

Then, if we assume the condition 

((B-(B)o)W(t+is))o-.O (12) 

for t-t - m, Eq. (1 1) can be transformed to1 

We will assume that the original quantum field model 
satisfies the following two conditions related to the local 
nature of the theory: 

a) for a spacelike 4-vector (xa- ya) 

[ J : , (~~) , J ,Y, (Y~)I=~~ (14) 

b) for p = p , [fl of the form (9), where 

a nonzero 3-vector (xa - y a) satisfies 

Let us direct our attention to the Cauchy problem (8). If 
we linearize it with respect to the external perturbations we 
find 
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We assume that the source term u(t) in Eq. (17) has the 
functional form (10) with 

Here hA(t,xa) are given functions which characterize the 
external forces. This assumption is central in the present 
derivation of the hydrodynamic equations. In order that the 
quantum field system be described by hydrodynamics the 
external forces should belong to a certain class. If this con- 
dition is not satisfied, then the processes that occur in the 
system are not describable by hydrodynamics. A similar situ- 
ation also obtains in kinetic theory? 

The problem (17) together with (18) has the simple so- 
lution 

~ ( t ) =  Z( t - t l )~ ( t l )Z ( t l - t )d t l  lo' 

~ ( ~ i ~ ( t l - t + i s , x ~ ) - ( ~ ~ ~ ) o ) p o .  (19) 

We introduce the hydrodynamic 4-currents: 

gf(xa) = (Jfs(xa) - (JAPS)O). (20) 

Knowing the density matrix (19) we can express them in 
terms of the external forces. To obtain an expression in com- 
pact form it is convenient to introduce the reduced 4-currents 
jil(xa) = J$[(X~) - (Jfs), ; the spectral functions ~;g(k,): 

s,"{(ky)=z;{F(ky), 

and the Green's functions for the currents, 

The properties of these functions needed in the exposi- 
tion which follows, as well as the properties of the corre- 
sponding spectral functions, are given in the Appendix. 

Substituting expressions (18) in (19) and using Eq. (13), 
we arrive at a representation of the hydrodynamic currents in 
terms of the external forces: 

In this case in the limit t+ - condition (12) takes the 
form (the principle of diminishing correlations) 

In the Fourier representation Eqs. (22) can be written in 
the form 

g fdka )=  (23) 

At first glance it appears from the definitions (21) and 
Eqs. (22) that causality is violated in the theory (superlumi- 
nal action of the external forces on the hydrodynamic vari- 
ables is possible). However, more careful analysis reveals 
that the kernels L,"; satisfy causality [see Eq. (A9) in Sec. 2 
of the Appendix]. 

From Eqs. (1) it follows that the hydrodynamic equa- 
tions with sources are 

The sources sA can be expressed in terms of the external 
forces by means of Eq. (6): 

~ A B ( x ~ ) = L ~ : ( x ~ ) I ~ o =  + O .  
(25) 

If we rewrite Eq. (25) in terms of Fourier transforms, 
then the definitions (21) and Eq. (A2) yield 

From Eq. (A9) we have rAB(xa) = 0 for a nonvanishing 
3-vector xa. Hence the hydrodynamic sources sA are related 
to the external forces hA by a local dependence. Conse- 
quently, the hydrodynamic variables g; are expressed caus- 
ally both in terms of the forces hA and in terms of the sources 
SA - 

Equations (24) can be used constructively to describe the 
dynamics of a system if we express the spatial currents g i  in 
terms of the charge g2, i.e., find the constitutive relations. 
Eliminating the quantity hA in Eqs. (23) and using the defi- 
nitions 

we find the desired constitutive relations: 

It is evident that in the coordinate representation the con- 
stitutive relations, which represent a combination of transfor- 
mations satisfying causality, satisfy causality themselves. 

Thus we have shown that from the equations of quantum 
statistical mechanics for a certain class of sources we can 
derive the equations (24), (26) of nonlocal hydrodynamics. 
Conversely, in this class of sources the hydrodynamic de- 
scription is complete. Specifically, if we know the hydrody- 
namic variables we can reconstruct the parameter hA [cf. Eq. 
(23)] and the density matrix (10). 

3. PROPERTIES OF THE HYDRODYNAMIC KERNELS OF 
NONLOCALITY 

In this section we study the properties of the coefficients 
in (26), which in the coordinate representation go over to 
kernels that characterize the nonlocal nature of the theory. 
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Where possible we will omit the subscripts A, B, ..., associ- 
ated with the labels of the conserved currents and use the 
matrix formalism. 

From Eqs. (A5) and (A7) we have 

From relations (A3) and (A6) we have identically 

Hence it follows that the coefficients in the constitutive rela- 
tions are related by 

We write Aa= CaA, B = ikaAa. It turns out to be techni- 
cally simpler to study the coefficients that enter into the op- 
erators Aa. These operators allow us to express the 3-currents 
g i  in terms of external forces such as f A =  fA(xa), which for 
a state p1 = pl  [fl of the form (9), (15) lead at each instant of 
time to the same values of the quantity gj: 

The transition from the operators Aa to the operator Ca can 
be carried out if the operator A is known. 

Using Eqs. (27), (28), (A5), and (A8), we obtain the 
matrix inequality 

The inequality (29) is the usual form of the dissipativity 
conditions for mechanical models with inheritance.12 

If the original quantum field model is invariant under 
time inversion (T-invariance, Ref. 14), then we can choose 
the currents so that 

where U ,  is the anti-unitary time inversion operator. 
Assume that the equilibrium state is T-invariant.  then^, 

Eq. (30) yields a relation for the spectral function: 

In turn it follows from this relation using Eqs. (A1)- 
(A7) that the reciprocity conditions for the components of 
the Green's functions are 

In addition, when (30) is satisfied we have a relation 
similar to (31): 

A A B ( ~ ~ ) = E A E B ~ B A (  -kc). (32) 

Now from (31) and (32) it is easy to find reciprocity 
relations for the coefficients that appear in the constitutive 
relations (26): 

Assume that the equilibrium state po is invariant under 
the group of spatial rotations SO(3). The requirement of 
invariance with respect to the action of this group imposes 
additional restrictions on the functional form of the matrix 
Aa : 

for arbitrary g E SO(3). Here R ,  is a representation of the 
group of rotations in the linear space of quantities of the 
form A;,. We recall that the subscripts A and B can also be 
transformed under the group SO(3). In the space we dis- 
tinguish a maximal set of linearly independent invariants 
with respect to the subgroup of rotations that conserve the 
vector ka :In=I'&(kb). These invariants can be chosen in the 
form of polynomials in ka such that 

Then we can find the most general functional form of the 
coefficient matrix AiB that satisfies Eq. (33): 

Here X,=X,(k,) are scalar quantities which are invariant 
under the action of the group of rotations. By virtue of Eqs. 
(Al) and (35) these functions satisfy the relation 
(X,(k,)) * =X,( - k,). This means that the functions X, are 
Fourier transforms of some real kernels Y, = Y ,(xff): Y,, 
= X , .  Since the theory is causal, the supports of these ker- 
nels lie on the future cone 

Substituting expression (36) in (29) or (33) permits us to 
obtain restrictions on the kernels that follow from the dissi- 
pativity or T-invariance respectively. 

In this theory the requirements of causality, dissipativity, 
T-invariance, and SO(3) covariance lead to the same restric- 
tions as in a purely phenomenological approach. It is of fun- 
damental importance, of course, that here these restrictions 
follow from first principles. However, one condition arises in 
the theory which would be less than obvious in a purely 
phenomenological approach. From the identity (28) and Eq. 
(A3) we have the sum rule 

In contrast to the other conditions, for the verification of 
which it is necessary to know the local values of the hydro- 
dynamic kernels in the space of Cmomenta, the sum rule 
(37) presupposes a knowledge of the functional form of the 
kernels globally. 

4. HYDRODYNAMlCS OF A ONE-COMPONENT QUANTUM 
FLUID 

Consider a model in which energy, momentum, and also 
some charge (e.g., baryon for a system of nucleons or elec- 
trical for an electron gas) are conserved. Let T~~ be the 
symmetric energy-momentum tensor and Qff the 4-current. 
In the notation of Sec. 2 we set 

The Hamiltonian for the equilibrium state (7) in this case 
takes the form 
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Here p is a chemical potential, v a  is a 4-vector satisfying the 
conditions 

which can be interpreted as the 4-velocity of the medium, 
and p is the chemical potential. It is not difficult to verify 
that expression (38) in the theory without sources is invariant 
under the orthochronic Poincar6 group. For this it suffices to 
rewrite expression (38) in the interaction representation and 
use the conservation laws (2). 

Thus, the equilibrium state is characterized by the pa- 
rameters p, v", p. When Eq. (39) is taken into account this 
amounts to five degrees of freedom. We set 

E = - p ,  x = - p u n ,  d=pp. (40) 

A functional relationship holds in the form: 

Now we study the constitutive relations (the matrices 
A') for perturbations of the rest state. In the rest state we 
have c=O. The perturbing forces fA(xa) (see Sec. 3) can 
naturally be interpreted as local variations of the right-hand 
sides of Eqs. (40). 

The constitutive relations are determined by the follow- 
ing coefficients AaAB with different transformation properties 
under the group S0(3):Aaoo, An049 An407 An449 Aaob, An469 
AabO, Aab4, Aabc. Hence, by virtue of the symmetry of the 
energy-momentum tensor we have, first, AabA=AbaA, and 
second, AaOA= AaA (since g:= - g:). 

Now it is not hard to write the representation of the form 
(36): 

f (ikaikdebcd+ ikbikdeacd)X17. 

Let us construct the matrix BAB= ikaAaAB . Here we will 
set A = - ?7abkakb : 

B a b = i k , i k b ( - X 1 4 + ~ X 1 5 - X 1 6 ) +  aabAX16. 

This matrix satisfies the dissipativity conditions (29). In 
particular, we have the inequalities 

If the quantum field model is T-invariant, then we as- 
sume e0=e4=1, &,= - 1.  Hence the reciprocity relations 
lead to the following restrictions on the kernels: 

We can simplify the constitutive relations considerably 
by assuming that the linear mapping (TA) is identical with 
the linearization of the functions (41). 

Let us consider this case in more detail. We introduce the 
notation e = (TO0),-, for the internal energy density, 
p = -(Tan), (no summation!) for the pressure, n = (QO), for 
the particle density, and h = E + p  is the enthalpy. From ther- 
modynamics we have the well-known differential relations 

From this follows the representation 

It is also easy to verify that 

AaA= h SaA . 
From Eq. (44) we immediately find 

From this and from the reciprocity relations (43) we have 

With this the study of the purely algebraic properties of 
the hydrodynamics of a one-component relativistic quantum 
fluid can be regarded as complete. Further progress in this 
model can be made through the actual evaluation of the 
Green's function for the currents (on the basis of some spe- 
cific field theory) or by postulating some properties for it. 

5. CONCLUSION 

To conclude this work it is appropriate to make a number 
of comments about the various stages of the arguments given 
above. 

It is obvious that the physically natural representation 
(49, (45) significantly narrows the set of unknown coeffi- 
cient functions necessary to make the models specific. Hence 
the assumption (15), which is associated with causality, is 
satisfied automatically. However, the proof of the represen- 
tation (44), (45) from first principles is difficult in connection 
with the possibly complicated structure of the Schrijdinger 
terms in the commutators for the currents. 

The assumption (18) is fundamental. If we impose exter- 
nal forces, e.g., through the Hamiltonian 

then by following arguments analogous to those of Sec. 2 we 
can derive equations identical in form with those of hydro- 
dynamics. The resulting theory is causal but not dissipative. 
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In the constitutive relations (26) one customarily distin- 
guishes the so-called equilibrium components 1: of the spa- 
tial currents.' It is evident that the exact definition of the 
equilibrium components does not change the final equations. 
In Refs. 1 and 11 the following definition was used (if we 
combine the appropriate notation with that of the present 
work): 

This expression yields a vanishing contribution to the 
left-hand side of the dissipative inequality (29). The alterna- 
tive definition 

yields vanishing dissipation only in the case when A does 
not depend on the wave vector ka . 

In relativistic hydromechanics the definitions of the ve- 
locity of the medium given by ~ckart"  and by Landau and 
~ i f sh i t z '~  are used. Intermediate definitions were considered 
in Ref. 5. In Sec. 3 we implicitly used the definition of the 
velocity of the medium given by Landau and Lifshitz. 

If we disregard nonlocality, nonlocal hydrodynamics of a 
one-component fluid can be introduced to the standard model 
of a viscous thermally conducting Navier-Stokes-Fourier 
fluid with bulk and shear viscosity coefficients v v ,  77, and 
with thermal conductivity K. The analysis of the dispersion 
relation for the homogeneous hydrodynamic equations al- 
lows us to establish the identification 

The inequalities (42) cause the quantities vs, 
( vv+  (413) vs), and K to be nonnegative, but do not guaran- 
tee the nonnegativity of the bulk viscosity. This is one of the 
most distinctive characteristics of nonlocal hydrodynamics. 
The nonnegativity of the bulk viscosity can be proved by 
starting from the condition that the entropy produced in a 
particle of the medium be positive.8 

The properties of the nonlocal hydrodynamics of a quan- 
tum relativistic many-particle system treated in the present 
work have a different level of significance. Causality, cova- 
riance, and dissipativity have a universal character. The reci- 
procity conditions (the Onsager relations) can be violated if 
T-invariance breaks down. This situation can occur, e.g., 
when weak interactions are taken into account. 

APPENDIX 

1. In the present section we present well-known proper- 
ties of the current Green's functions taken from the literature 
(see, e.g., Ref. 1). 

The Green's functions for the currents are real: 

(D;{(xY))* = D;~(xY), (L;~(xY))* = L;~(xY). 

This relation in the Fourier representation yields 

The Green's functions are related to the spectral density 

by 

The spectral function satisfies the relations that follow 
from the definition (17) and the relation (2): 

c :cg*s~~(kY)3  0, for arbitrary c;, ( A 9  

s;g(k y) * = sg:(k y). ('47) 

From (A3) and (A4) we find the relation 

2. In this section we give a proof of the assertion that for 
a spacelike vector xY we have 

Specifically, consider expression (15). Using Eq. (13) and the 
definitions (21), we see that this relation is equivalent to the 
condition that for a nonzero 3-vector xa we have 

Then, from condition (14) and definitions (21) it follows that 
in the range 0 <xO< ( - 7 7 a b ~ a ~ b ) 1 ' 2  the function L,";(xY) 
does not depend on xO. Comparison of this assertion with Eq. 
(AlO) leads to the relation (A9). 
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