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The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear 
amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner 
decay of second sound waves are found. Threshold amplitudes of second sound waves for 
these two processes are determined. O 1995 American Institute of Physics. 

1. INTRODUCTION 

In this paper we consider nonlinear processes in the hy- 
drodynamics of a superfluid with a free boundary. Such a 
system has conventional bulk wave modes (first and second 
sound) as well as surface waves propagating along the 
boundary and attenuating in the bulk. 

The most proper method to describe nonlinear processes 
is the Hamiltonian formalism. The two-component hydrody- 
namics equations have been shown to have the Hamiltonian 
form with the energy of the liquid playing the role of the 
~amiltonian.' 

We introduce the following system of coordinates. Axis 
is directed vertically, perpendicular to the surface of the 

liquid and to the rigid boundary bounding the system from 
below (the latter has zero z-coordinate). The unperturbed 
depth of the liquid will be denoted by h.  The equation of the 
free boundary is 

where r is a 2D-vector with coordinates ( x , y )  (to distinguish 
it from a 3D radius vector R) and 5 is the deviation of the 
z-coordinate of the surface from its equilibrium value z= h.  

In this coordinate system the Hamiltonian has the fol- 
lowing form: 

Here and henceforth p is the density of the liquid, ps and 
pn are its superfluid and normal components respectively, v, 
is the superfluid velocity, vn is the normal velocity, ii is the 
surface tension, E is the internal energy per unit volume, 
which depends on the entropy per unit mass s and momen- 
tum per unit volume P, measured in a frame of reference 
moving with velocity v,  : 

It was shown1 that an infinite superfluid can be described 
with three pairs of canonically conjugate variables (p,a),  
(S,P), and ($, y), where a is the superfluid velocity potential, 
S is the entropy density, P is a phase variable conjugate to S, 
and $ and y are Clebsch variables, responsible for the vor- 
ticity. 

The application of the canonical formalism with local 
variables to a liquid with a free boundary meets with diffi- 
culty. Indeed, the coordinates play the role of the indices in 
the Lagrangian description of the liquid. Since the free 
boundary is time-dependent, some variables appear and oth- 
ers disappear.2 To avoid this difficulty nonlocal variables 
should be introduced. For the simple case of a one- 
component ideal compressible liquid with a free boundary, 
appropriate variables were introduced in.2 These are the am- 
plitudes of the bulk and surface waves. In this paper we will 
determine corresponding nonlocal variables for a two- 
component liquid. 

Let us discuss the role of gravitation. Since the com- 
pressibility is small, one can neglect the influence of the 
gravitational force upon the propagation of bulk sound 
waves. The variation of the liquid density Aplp in the gravi- 
tational field on the scale of the wavelength is small, 
g k / c : 4 l ,  where c ,  is the velocity of first sound. In fact, in a 
real experiment a much stronger condition is fulfilled, 
ghlc:<l,  where h is the depth of the liquid. This means that 
the unperturbed density does not depend on the z-coordinate. 

2. EQUATIONS OF MOTION. HARMONIC APPROXIMATION 

For the reader's convenience, we reproduce here the 
well-known equations of hydrodynamics for a superfluid liq- 
uid without dissipation (see, e.g. Ref. 3). 

Here j is the mass flux, 

~ = P S V S + P ~ V ~  9 (6) 
and nik is the momentum flux tensor 

nik=~6ik+ ~ s ~ s i v s k + ~ n ~ n i ~ n k .  (7) 

The chemical potential per unit mass is denoted p. 
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For a nondissipative liquid, the boundary conditions at a 
rigid bottom are 

The conditions at the free surface are 

f = [ ~ ~ z - ~ ~ ~ ~ v 1 ~ = h + 5 = [ ~ n ~ - f u v n u 1 z = h + ~ ~  (10) 

where f,= Jfldx,, v= 12,  and 

Equation (10) means that the component of the velocity 
perpendicular to the surface at the free boundary coincides 
with the same component of the velocity of the liquid near 
the surface. We assume that the velocities v, and v, have 
equal components perpendicular to the boundary. Equation 
(1 1) is equivalent to the assumption of zero external pressure 
above the surface. 

The total mass flux j may be written as 

j=pv,+p,(v,- v,) =pVa+psVp,  

where potentials a and j? depend on the coordinates and 
time. The velocities v, and v, can be expressed in terms of a 
and p: 

We introduce the dimensionless variables @ and u char- 
acterizing the deviations of the density and entropy from 
their unperturbed values, which are denoted by the subscript 
"0": 

First we consider a simplified version of the theory with 
the coefficient of thermal expansion ~ ~ = ( d  In pldln 0 as- 
sumed to be zero. This coefficient is indeed small (lop2 in 
order of magnitude) over the full range of temperature from 
T=O to the A-point. At T =  1.15 K, the coefficient KO changes 
sign. Nevertheless for one parametric process (decay of sec- 
ond sound into two surface waves), this coefficient is crucial 
and should be taken into account. In this paper we restrict 
our consideration to other processes for which thermal ex- 
pansion is not significant. Neglecting thermal expansion, the 
velocities of first and second sound are given by well-known 
formulas: 

First and second sound show up as waves propagating 
along the surface with wave vector p, and a standing wave in 
the vertical direction. A general form of potential for such 
waves is: 

4= &k cos qlz exp i(pr- wt), (18) 

@=pk  cos qlz exp i(pr- wt), (19) 

$= *k cos q2z exp i(pr- wt), (20) 

u= cYk cos q2z exp i(pr- wt), (21) 

where 

4= ff+soP, 

and q,,, obey the following conditions: 
2- 2 

ki - 4i + p2, (24) 

ki=w/ci ( i =  1,2), (25) 

cot q l h =  - 
N P ) ~  1 

a2 ' 

sin q2h=0,  

and 

The relations between amplitudes can be found from the 
linearized equations of motion: 

- 41 - iw 
f =- sin q l h ~ = -  cos q1h&, 

i w A(P) 

Equations (24)-(27) define the dispersion w(k) and the 
discrete spectrum of q. Assuming the coefficient of thermal 
expansion to be zero, first sound can be treated as an adia- 
batic oscillation of density (pressure), while second sound 
comprises isobaric oscillations of temperature (entropy). For- 
mally it means that u=$=O for first sound, while @=+=O 
for second sound. Oscillations of the density can occur for 
purely real or purely imaginary q. The first case holds for 
first sound, and the second corresponds to surface waves. 

Putting q = i K for the surface wave, one can find a rec- 
ognizable relationship: 

N P ) K  
coth ~h = - 

w2 ' 

Usually the velocity of the surface waves is much lower 
than the velocity of first sound. From this, we find approxi- 
mately ~ = l p l .  The spectrum of surface waves in a two- 
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component liquid coincides with that in a one-component 
liquid. In the case of deep water, h-m, the spectrum is 
greatly simplified: 

K = P ,  W ' = ~ A ( ~ ) .  (33) 

chromatic solutions (18)-(21) are orthogonal with respect to 
these products if they belong to different modes or to differ- 
ent k. (Note that the surface integral in Eq. (42) vanishes in 
the harmonic approximation, but should be accounted for in 
nonlinear processes.) 

Let us normalize the function @, and Q2 by the condi- 
tions: 

(@ lk l '@ l k l )  = W k l  ' (43) 

3. THE HAMILTONIAN. ORTHOGONALITY RELATIONS 

It is easy to see that the linearized equations of motion 
can be described by the Hamiltonian 

where 

where 

A2 is the two-dimensional Laplacian: 
and k1 and k2 are wave vectors corresponding to first and 
second sound respectively. 

These conditions fix normalized amplitudes of first and 
second sounds and the surface wave: and the Poisson brackets are 

{4*(R,t) ,pofi(Rr, t))= a ( R - R r ) ,  (35) 

Here &= + I z =  , and other brackets equal to zero. We repre- 
sent the dynamical variables by two vectors @, and @,: 

Here A is the area of the free surface and o, is the frequency 
of the surface wave. The vector functions @,, Q2 can be 
represented as series: 

In terms of Q ,  and Q2,  the Hamiltonian (34) can be repre- 
sented as a sum of scalar products: 

H=(@1,@1)+(@2,@2) ,  (40) 

where the two bilinear forms (@ i ,@ l )  and (@; ,a2) are 
defined by 

where ak , bk and c p  are the canonical amplitudes of first and 
second sound and surface waves respectively. In such a rep- 
resentation, the Hamiltonian H acquires a standard diagonal 
form, 

The equation of motion derived from this Hamiltonian 
and the canonical Poisson brackets: 

{aZl .ak;)= - iak 1 1  k t ,  (53) 

(42) 

It is easy to check that the forms (41) and (42) satisfy all 
the conditions of a scalar product. The elementary mono- 

{c,* , c,,) = - i  aPpt , 

have the standard form: 
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4. NONLINEAR RESONANT PROCESSES 

Nonlinear effects such as parametric generation and de- 
cay of sound waves correspond to anharmonic terms in the 
Harniltonian. The coefficients of this expansion are propor- 
tional to the amplitudes of these processes. 

We consider only resonant processes that conserve en- 
ergy and momentum simultaneously: 

In a restricted geometry, only the components of mo- 
mentum parallel to the surface are conserved. For infinite 
depth, interaction amplitudes have been found by direct se- 
ries expansion of the Hamiltonian in the amplitudes. How- 
ever, for a system with a free boundary, we prefer to recon- 
struct the Hamiltonian step by step from the hydrodynamic 
equations and boundary conditions. 

To demonstrate our program, we find first the amplitude 
of Cherenkov radiation of the surface wave by second sound. 
In order to find it, we must write down the equations of 
motion and boundary conditions up to the next order in the 
amplitudes: 

where 

We have omitted terms of the same order that do not con- 
tribute to this process. The functions Il, and a contain the 
contribution of the incident and reflected waves and correc- 
tions of the next order: 

For the sake of brevity, we write b l  = bkl, 

= $kl, etc., and I$~), d2) ,  etc. are the second-order cor- 
rections. Substituting (62)-(65) into the equations of motion, 
a number of products of the amplitudes bki and cp  appear. 
We omit all such terms that contribute to the amplitude of the 
Cherenkov process except b2c3, (We mean that the incident 
wave has wave vector k,): 

Using the conditions of orthogonality and normalization, 
we find the amplitude of the Cherenkov radiation process: 

The conservation laws for this elementary process are 

where w, and p, are the frequency and wave vector of the 
surface wave. We assume ps-p I,,, so o , ~ w , , ~ .  This implies 
that w, and o, and hence k, and k2 are almost equal to one 
another, i.e., the wave vectors of second sound waves lie on 
some sphere in k-space; the difference between their ( x , y  ) 
components defines p,. Furthermore, we neglect the differ- 
ence between w, and q and denote them simply by w (simi- 
larly for moduli the vector k, = k2= k). 

After substituting (18) and (19) into (69), we find the 
expression for the nonlinear amplitude r of the Cherenkov 
process. In deep water, the leading term of this expression is 

Cher = W 

i P 2 ~ ( ~ d )  

In (71) we neglect all terms of order c;lc:, because this 
quantity is small over the temperature range between 0.8K 
and the X-point. Analogous calculations for a thin film yield 
an expression for r that differs from (71) by the presence of 
an additional factor (ph)'I2 on the right-hand side. 

Note that in both cases, the main contribution to the 
nonlinear amplitude comes from the surface integral in (69). 

As in our previous discussion, one can determine the 
nonlinear amplitude of other parametric decay processes of a 
second sound wave into two second sound waves (so called 
"inner" decay). The terms in the equations of motion that 
contribute to this process are proportional to 3, c? and rC,u. 
The equations of motion, to the required precision, read 
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2pso so d t  
(78) 

Pno ds 
(72) where 4, 8, are the attenuation of constants for second 

Here &,=di,!~lldx,, y=(d ln pnld In T), , v is the same as in 
(59), and we sum over repeated Greek indices. The functions 
q5 and a can be represented as a sum of one incoming and 
two outgoing waves 

To describe inner decay, only the products b2b3 should 
be included among the anharmonic terms in (72)-(73). After 
simple but lengthy calculations, we have 

Here 

and 

is the heat capacity per unit mass. We have used the conser- 
vation laws (57) and (58), and the z-components of the wave 
vectors are related by 

This obviously stems from the specula reflection of the 
wave by the boundary. 

The threshold amplitudes for the Cherenkov process and 
for the inner decay of second sound become 

sound and the surface wave respectively. These are related to 
the viscosity 17 and thermal conductivity K (see Ref. 3): 

w2 P S O  (: Pno K dT) a 2 ( w 2 ) = - . -  - ~j)+--- , 
2 ~ 0 ~ 2  Pno Pso T ds 

Substituting (79) and (80) into (77) and (78), we have 

Equation (81) shows that in the deep water, the threshold 
amplitude for Cherenkov radiation exceeds that for inner de- 
cay if 

Otherwise, the Cherenkov process dominates. 
In the opposite thin-film limit, the ratio of the threshold 

amplitudes differs from (81) by the absence of the factor 
(pSh)ln.  Therefore, Cherenkov radiation always dominates 
in a thin film. 

5. CONCLUSION 

We have described the parametric transformation of a 
second sound wave into two second sound waves (inner de- 
cay) and Cherenkov radiation of a surface wave. Our conclu- 
sion is that in the temperature range 0.8K<T< T,  , the Cher- 
enkov process dominates in a thin film of liquid helium, or 
more generally, in a layer with thickness h satisfying 

where w is the frequency of the incident second sound and 
w,  ,p,  are the frequency and wave vector of the surface 
wave. Otherwise, inner decay dominates. The amplitudes of 
these processes are given by equations (71) and (76). All 
processes described here are accessible to experimental ob- 
servation. For instance, under the experimental conditions 
described in Ref. 4, these phenomena can in principle be 
observed far from resonance frequencies. 
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