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Nematic liquid crystals confined in a cylindrical cavity under the anchoring condi!ions of various 
type are examined. The influence of the saddle-splay and splay-bend terms (the K24 term 
and the K,, term) on the axial director configuration stability is investigated. By using the Fourier 
expansion of director fluctuations over the azimuth angle our analytical method of attack 
enables the stability conditions to be found in terms of the stability of each fluctuation mode. Two 
methods of stabilizing the structure are explored: stabilization by a magnetic field and by 
the action of the boundary conditions. The restrictions imposed on the constants are determined 
to make the stabilization possible. The dependence of the resultant stability threshold on 
the surface-like elastic constants is calculated. The experimentally detectable effects due to the 
presence of the K,, term are discussed in detail. It is shown that the escaped-radial 
director structure exhibits some special features which are induced by the K13 term. O 1995 
American Institute of Physics. 

1. INTRODUCTION cently been given considerable attention. Physical effects 

It was shown in Refs. 1-3 that, in addition to the usual 
Frank terms (splay plus twist plus bend), the nematic free 
energy contains so-called surface-like elastic terms, i.e., two 
terms of the divergence form, which can be transformed into 
integrals over the boundary surface and which are propor- 
tional to the saddle-splay elastic constant, K24, and the splay- 
bend constant, K13. They can be written in the form: 

F 24- - - - "i4 IU du div[n div n+[n curl n]], (1) 

K13 
F 1 3 = 7  Iudv div[n div n], (2) 

where n is the nematic director field. 
The surface terms are irrelevant if we are interested in 

the bulk properties of NLC, but they are of considerable 
importance in the understanding of the physical properties of 
NLC confined in geometries more restrictive than bulk ge- 
ometries. Two points must be considered dealing with the 
surface elastic constant problem: Is it possible for the 
surface-like elastic terms to be taken into account in the 
framework of the liquid-crystal continuum theory unambigu- 
ously? What are the effects caused by the presence of the K24 
and K terms? 

Taking up first the K2,-problem, the case when the 
K13-term is disregarded, it is safe to say that the answer to 
the first question is affirmative and the problem of minimiz- 
ing the free energy with the K24 term was shown to be al- 
ways well posed, because this term does not contain the di- 
rector derivatives along the directions normal to the 
boundary surface.475 Hence the K2.4 term affects only the 
standard boundary conditions. The second question has re- 

whose very occurrence critically depends on the value of K24 
have been shown to exist?-7 and even estimates of the value 
of K24 have been given.89 

In contrast with the K24 problem, the issue concerning 
the K,, term is much more questionable. In the strict sense, 
the free energy functional with the K,, term has no lower 
bound, which accounts for the strong spontaneous substrate 
director  deformation^.'^ One way to avoid such an unphysi- 
cal effect, which was proposed in Refs. 11 and 12, is to 
search for the director distribution which minimizes the free 
energy functional among the solutions to the Euler- 
Lagrange equations. We will not discuss other ways of look- 
ing at the problem13*14 and will use the approach discussed 
above to study how the surface-like terms affect the stability 
threshold of the axial director configuration for NLC con- 
fined to a cylindrical cavity in the presence of a stabilizing 
magnetic field under various anchoring conditions. 

In Sec. 2, we analyze the stability in the one-constant 
approximation. Using the Fourier expansion of the director 
fluctuation over the azimuth angle, we derive unequalities 
which give the stability condition for the axial structure of 
each fluctuation harmonic. We explore two ways of stabiliz- 
ing the structure in question: stabilization by the magnetic 
field and stabilization by the action of boundary conditions. 
In each case we imposed restrictions on the values of K,, 
and K24 under the assumption that the configuration can be 
stabilized. The stabilization appears to be possible provided 
that the quantity K13/4K takes the values lying between 
424- (q24)1n and 424+ (q24)1'2, where the notation 424 de- 
notes K2,/2K. We also discuss whether the fluctuation mode, 
which defines the resultant stability threshold, can be 
changed by the magnetic field or by the anchoring energy at 
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the given values of K Z 4  and K13. The results of numerical 
calculations are presented. 

The escaped-radial director configuration is investigated 
in Sec. 3. The stability threshold to zero-numbered fluctua- 
tion mode is shown to describe the transition between the 
axial structure and the escaped-radial structure. A compari- 
son of the energies shows that there are the values of K,, at 
which the stability condition does not provide the global sta- 
bility of the axial pattern. The K13 term which was found 
may produce an additional degree of energy degeneracy, 
which in turn would result in the appearance of a disclination 
circle at the surface. 

Some additional comments on the K13 problem are made 
in Sec. 4. 

2. STABILITY OF AXIAL DIRECTOR CONFIGURATION 

Let us consider a nematic liquid crystal which is con- 
fined to the cylindrical cavity of radius R in the presence of 
a magnetic field applied along the cavity axis, H=He, . The 
nematic liquid crystal free energy may be taken in the stan- 
dard form 

Here we use an one-constant approximation, and 
q2= X a ~ 2 ~ ~  (q-I is the magnetic coherent length, and xa is 
the anisotropic part of the magnetic susceptibility, which is 
assumed to be positive). In Eq. (3) the energy of the interac- 
tion between the nematic liquid crystal and the cavity wall is 
given as a sum of two addends written in the Rapini- 
Papoular form.15 The first term is the anchoring energy under 
the homeotropic boundary conditions (the vector of easy ori- 
entation is normal to the confining surface) and the last term 
represents the anchoring energy under the planar boundary 
conditions (the vector of easy orientation is directed along 
the cavity axis). Beginning with the stability analysis, it is 
convenient to write the director in the cylindrical coordinate 
system (the z axis is parallel to the cavity axis) as follows: 

n= cos O cos @e, + cos O sin @eR + sin Oe, , (4) 

where O = O(r,cp), and @=@(r,cp). Evidently, the axial direc- 
tor distribution (no=e,) can be determined from Eq. (4) by 
setting 0=@=0.  Below we shall use the notation 6 and 4 
for small deviations of the angles O and @ from zero. 

To study the axial configuration stability, we must sub- 
stitute the director field given by Eq. (4) into the expression 
for the nematic liquid crystal free energy [Eq. (3)] and derive 
the second-order variation of the free energy functional as a 
bilinear part of the energy in the angle fluctuations 6 and 4. 
We can write the result in the form 

where 

The Euler-Lagrange equations for the functional 8 2 ~  
are given by 

where 

Since the angle fluctuations are 2~-periodic functions of 
the azimuth angle, they can be expanded in the Fourier series 
over cp. 

To solve the Euler-Lagrange equations we introduce the 
new Fourier amplitudes in the following way: 

Using Eqs. (9)-(ll), we can easily find the equations for 
these fluctuation harmonics amplitudes: 

where 

The solutions to the equations (12) are expressed in terms of 
modified Bessel functions:16 

where C', are the complex coefficients (Re C',=A',, 
Im C; = BL, and j =  1,2), I m ( x )  is the modified Bessel func- 
tion of order m. 

Inserting Eqs. (lo), ( l l ) ,  and (13) into Eq. (5) and per- 
forming rather routine calculations, we obtain 
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where x=qR, and W=Wh-2Wp. 
For the axial configuration to be stable, all the quadratic 

forms s2Fm(A) should be positive definite, so that the con- 
dition of the axial structure stability is given by a set of 
inequalities which describe the stability to each fluctuation 
harmonic specified by the number m. Standard algebraic 
analysis shows that the stability conditions for S 2 ~ ,  can be 
taken in the form suitable for subsequent discussion: 

where 

We used the following notation for the four dimensionless 
parameters: wh= WhR/2K, w,= WpR12K, qZ4= K24/2K, 
and q13=Kl,12K. 

Since the parameter wh is nonnegative, we can define the 
resultant stability threshold as the greatest lower bound of 
the quantities, which govern the stability of each fluctuation 
mode: 

if Tm(x)>O and pm(x)>O, 
TRm(x) = 0,  otherwise. 

(20) 

Then the stability condition becomes 

Let us consider the notation used above. It is clear that all the 
functions in Eqs. (1 6)-(21), except ym(x), am(x), and 
Pm(x), depend on the dimensionless parameters wp , 924 and 
q13, which were omitted in the notation for brevity. 

In what follows we consider whether it is possible for 
the axial director pattern to be stabilized either by applying 
the magnetic field or by increasing the anchoring energy Wp . 
Mathematically, the magnetic field fails to stabilize the axial 
configuration under the homeotropic anchoring conditions if 
W,(x)=O at wp=O for all x>O. In the other case of 
W,(O)=O for all wp>O we find the configuration to be un- 
stable, even though the boundary conditions make the mol- 
ecules of the NLC orient along the cavity axis. 

2.1. Influence of the K, term on the stability threshold 

In this subsection we consider the case of K13=0. First, 
it is useful to point out several simple properties of the func- 
tions ym (x) : 

a) Ymt1(0)=1; 
b) ym + , (x) > 1, y,-, (x) < 1 for nonzero values of x; 
c) y,,,(x) monotonically tend to unity as m goes to 

infinity. 
There is no need to make numerical calculation to con- 

clude that the axial structure cannot be stabilized by the mag- 
netic field if the value of q24 does not lie within the interval 
(0,l). In other words, it means that for a given value of x 
there is a number m such that either pm(x)<O or Tm(x)<O if 

takes the value which is outside the interval (0,l). To 
prove our contention, let qz4 initially be negative, so that 
p,(x)>O for any m. The expression for t,(x) can be derived 
from Eq. (18) by setting wP=ql3=O. 

Clearly, the sign of tm(x) is dictated by the first factor en- 
closed in square brackets. It is yet to be determined whether 
the factor goes negative if m is a sufficiently large number, 
since am(x) goes to zero as m 4 m  [see Eq. (17b)l. If 924 is 
greater than unity, it is sufficient to note that ym+ ,(x) is a 
monotonically decreasing function of m, which tends to 
unity as m4m,  and therefore the second factor in Eq. (22), 
which is enclosed in square brackets, goes negative, begin- 
ning with a sufficiently large number m, whereas the first 
factor is positive. 

In the case of stabilization by the action of the boundary 
conditions (x=O and wp>O) we easily come to a similar 
conclusion. Since am(0)=O and Pm(0) =m + 1, we obtain 
from Eq. (18) the expression 

It is clear that tm(0) goes negative at a sufficiently large 
number m, when 924 is outside the interval [0,1]. 

The same restrictions on 92, were found to hold in the 
case of a spherical geometry.17 These restrictions are more 
rigid than those given by  rickse en.'^ The latter can be rewrit- 
ten in our denotion as follows: O<q2,<2. Note that the val- 
ues of 924 extracted from the deuterium nuclear-magnetic- 
resonance experiments on submicrometer-size, nematic, 
cylindrical cavities typically fall in the range 0.5-0.8 for 
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FIG. 1. (a) The plots of TR, versus q R  in the 
w h - q R  plane for m=0-3 at qz4=0.8. The stability 
region is located below the lowest curves. (b) The 
stability diagram in the w h - q , ,  plane at qR=1-3. 
For a given value of qR the area of the stability is 
enclosed by the curve and the q2, axis. 

5 C B - P d 2  with ~ = 5 - 1 0 - ' ~  J/m, ~ , = 3 - 1 0 - ~  ~ / m ~ ,  and 
- 

q ' =  1.7 pm (H=4.7 T)?.'~ Clearly, the axial structure is 
unstable under the specified conditions. To have a stable 
structure one has to greatly reduce the anchoring energy W ,  
or to increase the magnetic field. For example, W ,  should be 
on the order of 5 - lop7 ~ / m ~  for a cavity radius R = q -  ' = 1.7 
Pm. 

The plots of TR,  in relation to x= q R ,  shown in Fig. la  
for q2,=0.8 and m=0-3 ,  illustrate how the curves TR,  
form the threshold line W ,  in the w - q R  plane. We see that 
the first fluctuation mode (m = 1 )  defines the stability thresh- 
old in the case of small magnetic field strength [TR ,(O)=O], 
but the number of the mode, which governs the threshold, 
changes to zero as the field strength increases. The modes, 
which contribute to the resultant stability threshold at various 
x ,  increases in number as the quantity 924 approaches zero or 
unity. Interestingly, TR,(x) are not equal to zero for all m ,  if 
924 takes a critical value ( 0  or 1) and x#O, but lim TR,=O 
as m m .  As a result, W,(x)=O for all x>O. Hence, high- 
order harmonics play an important part in the vicinity of 
critical values of K24, which causes the axial structure to be 
destabilized. The effect of destabilization is shown in Fig. 
lb, where the plots of W, as a function of 924 are shown for 
qR= 1,2,3. 

When the anchoring energy W ,  is altered in order to 
gain the stabilization of the axial director structure, the situ- 
ation which we encounter is quite different. Simple analysis 
shows that the fluctuation mode with m= 1 alone determines 
the stability threshold W,(O): 

It is therefore impossible to change the number of the fluc- 
tuation mode which contributes to the threshold. Nothing 
therefore prevents 924 now from being equal to zero or unity, 
and Wc(0)  is positive for all w,>O. 

2.2. Influence of the K,rterrn on the stability threshold 

Here we find out how the surface elastic constant K 1 3  
affects the axial pattern stability. We see from Eqs. (17a) and 
(17b) that the quantities p,(x) do not depend on K 1 3 .  Even 

if q2,>l,  the condition p,(x)>O can be satisfied by choos- 
ing either an appropriate value of the field strength or the 
anchoring energy, W p  . Thus one has to analyze the expres- 
sion for t , (x)  as it was done above. Let us first consider the 
case of x=0  and wp>O. From Eq. (18) we obtain: 

where 

The requirement A >O places some restrictions on the values 
913 and 924: 

From the inequality pl(0)>O we have the threshold for w ,  : 

The experimentally obtained estimate of K 1 3  gives 
q13=-0.2  for submicron nematic films2' and we can obtain 
a rough estimate for the threshold wp>0.33 at q2,=0.7, 
which implies ~ , > 2 . 1 0 - ~  ~ / m ~  for R= 1.7 pm and K = 5  
- 10-l2 J/m. 

Using Eqs. (27) and (28),  we can prove that the function 
TR,(O) is an increasing function of m for m a  1 ,  and there- 
fore W c =  TR,(O): 
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FIG. 2.  (a) The qR dependence of TR, in the 
w h - q R  plane for q2,=0.8 and q,,=0.5. The axial 
structure is shown to be unstable at q R < x , .  (b) 
The difference in energy of the escaped-radial con- 
figuration and the axial configuration, plotted as a 
function of the parameter z at q2,=2.0, q,,=1.2, 
wh=0.75, and w,=O (solid line); q24=5.9. q1,=7.0, 
wh=O.O, and wP=0.05 (dashed line). 

Setting q13=0, we have the result of the previous subsection: n= sin x(r)e,+cos x(r)eR,  
O<q2,<l is a direct consequence of Eq. (27). In the same 
way, Eq. (28) gives w,>O. The latter implies no threshold 
for w, at q13=0. %= 7rK loR [CoS2 x+ 2) 2] 

Looking again at the stabilization by the action of the 
magnetic field under the homeotropic anchoring conditions, + (1 + 2 q 1 3 - 2 q 2 4 + 2 ~ p - 2 ~ h ) ~ ~ ~ 2  x 
w,=O, we see that the restriction given by Eq. (27) remains 
in force, since the coefficient A of the quadratic polynomial 
in m in Eq. (25) differs from one in the case of nonzero 

[ 
-413 sin(2x)R - -2w,. 

magnetic field by quantities which tend to zero as m-+w. :IrzR 
Interestingly, there are no restrictions on the upper limit of The solution of the Euler-Lagrange equation is 
924 which must be positive. We see in Fig. 2a that, even if 
wh=O, the axial pattern is unstable until the strength of the p2-r2 
magnetic field reaches its critical value, x=x,,  which sin ~ ( r )  = n, 

D + r  (32) 

strongly depends on q24 and q 13. From Eq. (23) we find that 
tl(0)<O at w,=O. Therefore, it is necessary to apply a mag- where p is the integration constant. After substitution of Eq. 

netic field of finite amplitude to make tl(0) positive. In the (32) into Eq. (31) the free energy becomes 

presence of the K13-term both the magnetic field ( ~ ~ 2 0 ,  
w, =0) and the anchoring energy W,(x= wh = 0) must there- 
fore exceed their threshold values to make the axial structure 
stable. Here we have the effects which can be detected ex- 
perimentally. Both effects can be attributed to the appearance 
of a so-called spontaneously deformed state which arises as a 
result of the KI3-term. The latter was found to be realized in 
a planar nematic cell provided that W,d< 4K13 - 2K33 (d is 
the cell thickness)." Note that, contrastingly, we have the 
threshold for W, in all cases of nonzero K13. 

In closing this subsection, it is pertinent to note that, in 
contrast with the stabilization by the action of the boundary 
conditions, we found that the magnetic field can change the 
fluctuation mode which governs the stability, so that the 
statement holds in the presence of the K 13 term. 

3. THE ESCAPED-RADIAL STRUCTURE IN THE PRESENCE 
OF THE KIB TERM 

In what has been considered above, the K13 term is 
found to change the situation, both quantitatively and quali- 
tatively. To clarify the role of the term, let us consider how 
the surface-like elastic constants affect the escaped-radial di- 
rector structure.22 The configuration was examined in Refs. 9 
and 23 with the K24 term alone, but some new effects appear 
to be induced by the K13 term. The director field and the free 
energy for the structure under investigation are given by 

+2(1-q24+wP-wh+2q13)1-wp (33) 

where z=  ( ~ 1 ~ ) ~ .  It is easy to see that Eqs. (32) and (33) 
lead us to the axial structure, provided that z=0 and 
FA=2mKw,. Therefore, the stability of the structure is gov- 
erned by the sign of the term in the square brackets in Eq. 
(33). We see that the axial configuration is favorable in en- 
ergy over the escaped-radial one when the term is positive 
for all z>0. Interestingly, the stability condition wh<To(0) 
yields an increase of FER(z) at z=0, which means that the 
axial configuration is locally stable. If K13=0, this condition 
is sufficient, but as evident from Fig. 2b, in the presence of 
the K13 term the local stability does not imply the global 
stability. In effect, one can obtain that the bracketed qua- 
dratic polynomial has two positive roots if 

Taking into account the restrictions given by Eq. (27), it is 
easy to conclude that inequalities Eq. (34) can be satisfied 
under the planar anchoring conditions (wh=O) when q ,3 ex- 
ceeds its critical value q;3=6.41 (see Fig. 2b). Thus we en- 
counter here the effect which looks like a bistability caused 
by the K13 term and which is an explicit example of axial 
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structure instability under the planar anchoring to the confin- 
ing wall. For definiteness, we must point out the fact that Eq. 
(28) supplies a more rigid requirement for the axial configu- 
ration to be stable than the above-stated one, and it makes 
the difference F,,-FA positive under the planar anchoring 
conditions, so that there is nothing to contradict our stability 
analysis and the effect may be attributed to the existence of 
the threshold for wp . 

Another effect which must be considered is connected 
with the escaped-radial configuration degeneracy in energy. 
The structure is known to be doubly degenerate due to the 
mirror symmetry x--,-x, which accounts for the appearance 
of the point defects along the cavity axis.9 The K  term may 
cause an increase in the degree of degeneracy in the event 
that the energy F E R ( z )  reaches a minimum at z = zmh> 1 (see 
Fig. 2b). If so, the new configuration of the same energy can 
be defined in the following way: 

sin ~ ( r )  r<pmin. 
sin X- (r)  = 

- sin ~ ( r ) ,  pmhS r S R ,  

where sinx(r) is given by Eq. (32) with p=pmh 
= RI &. In the same manner as it had been shown for the 
mirror symmetry one can expect such kind of the degeneracy 
to produce circles of the disclinations at the surface. It must 
be emphasized that the K 1 3  term need not necessarily have a 
value of zmin greater than unity, but zmin must always be less 
than unity if the term is ignored. 

4. CONCLUSIONS 

The stability analysis presented in this paper provides an 
insight into the surface-like elastic constant problem. In par- 
ticular, the K2,  term is shown to be of great importance for 
the axial configuration stability and must be taken into ac- 
count to assure the stability. In contrast, we have found that 
the K I 3  term induces additional distortions, which result in 
the appearance of a threshold for the anchoring energy under 
the planar boundary conditions (no external fields) as well as 
for the magnetic field provided the surface is untreated (no 
anchoring). These effects can be tested experimentally and 
serve as evidence in support of the K 1 3  term or its disregard. 
In addition, the existence of the threshold for the anchoring 
energy is expected to be of some importance in the under- 
standing of the temperature-induced surface transitions, 
where the anchoring orientation goes from planar to homeo- 
tropic (or vice versa). Equation (28) gives the temperature- 

dependent threshold for the anchoring energy W p  , since the 
curvature constants K ,  K24  and K 1 3  depend on the nematic 
liquid crystal order parameter S .  We note that the model of 
the surface transitions, based on the destabilizing effect due 
to the K 1 3  term, was proposed in Ref. 24, where the authors 
have introduced a saturation elastic term to eliminate the 
discontinuity in the surface angles. 

Our last remark concerns the one-constant approxima- 
tion which is used throughout this paper for simplicity. There 
are no fundamental problems preventing a consideration of 
the elastic anisotropy to obtain more accurate quantitative 
results, but analytical treatment in this case, which leads to 
rather cumbersome expressions, can be shown not to change 
the effects qualitatively. We think it appropriate to refine the 
estimates on the basis of an experiment. 
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