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The effect of chain-shaped aggregates on the equilibrium and kinetic properties of magnetic 
liquids is analyzed under the assumption that the chains can be modeled as straight and rigid. The 
magnetization, relaxation time, and rheological properties of magnetic liquids with such 
chain-shaped formations are calculated. O 1995 American Institute of Physics. 

I. INTRODUCTION 

Magnetic liquids (or ferrocolloids) are suspensions of 
small single-domain particles, whose sizes are generally on 
the order of hundreds of angstroms, in a liquid carrier me- 
dium. These systems have attracted research interest because 
of a combination of factors: they have good fluidity, they 
respond actively to an external magnetic field, and one can 
control their physical properties by means of external fields. 
Early work on magnetic liquids is reviewed in Refs. 1 and 2. 

Many of the phenomena which occur in magnetic liquids 
result from a competition between the Brownian motion of 
the particles and their magnetic-dipole interaction, which is 
effectively manifested as an interparticle attraction. Foremost 
among these phenomena are a "gas-liquid" condensation 
phase separation in unbounded v o ~ u m e s ~ - ~  and the formation 
of domain structures in thin layers of magnetic 

Some statistical-thermodynamic models of undiluted 
magnetic liquids incorporating a dipole-dipole interparticle 
interaction were proposed in Refs. 3-6. Magnetic liquids 
were treated there as homogeneous phases; the formation of 
any heterogeneous structures in them was ignored. On the 
other hand, numerical simulations and actual experiments 
show that such structures form extremely frequently in dis- 
persions of dipole particles. It appears that the heterogeneous 
structures which arise in polar dispersions (this category in- 
cludes, in addition to magnetic liquids, suspensions of para- 
magnetic and multidomain particles, electrorheological sus- 
pensions, etc.) arise most frequently in the form of linear 
chain-shaped aggregates?-l2 

A first attempt to theoretically describe magnetic liquids 
with chain structures was undertaken in Ref. 13, but the en- 
tities considered there were not chains in the usual sense of 
the word but anisotropic homophase condensations of par- 
ticles. The distributions of chains with respect to the number 
of particles in them were calculated by chemical-kinetics 
methods in Refs. 14 and 15, but the effect of the chains on 
macroscopic properties of magnetic liquids was not analyzed 
there. 

An analysis of chain aggregates and their effect on mac- 
roscopic properties of magnetic liquids with the help of gen- 
eral considerations of the Frenkel theory of heterofluctua- 
tions was carried out in Ref. 16. The goals of that paper were 
to develop and refine the results of Ref. 16. It is not possible 
to carry out a rigorous theoretical analysis of the structure of 
undiluted magnetic liquids, especially if they contain differ- 

ent types of heterogeneous aggregates. In order to focus our 
attention specifically on the chains, we adopt the following 
assumptions. 

1. We treat the small magnetic particles as identical balls 
of radius a in which magnetic moments are frozen. The mag- 
nitude of these moments, m ,  is given and constant. 

2. We ignore the existence of heterophase structures 
other than linear-chain aggregates. Actually, there may be 
conglomerates of ferromagnetic particles (e.g., rings17 or 
droplets18) along with chains, but we cannot deal with all 
types of heterostructures in one study, and it is reasonable to 
take them up individually. 

3. We ignore fluctuations in the shape of the chains. We 
assume them to be straight, rod-shaped aggregates consisting 
of particles which are in contact (or nearly in contact) and 
which are bound exclusively by magnetic-dipole forces. We 
assume that the magnetic moments of the particles are di- 
rected along the line passing through their centers. This as- 
sumption must be justified for dilute magnetic liquids in 
which the small particles have large magnetic moments. The 
validity of this assumption will be established below. 

4. We assume that the ferrocolloid is so sparse that we 
can ignore any interaction between particles in different 
chains. We ignore interactions of single particles with chains 
or with each other. 

5. We restrict the analysis to systems for which the en- 
ergy of the magnetic-dipole interaction of neighboring par- 
ticles in a chain is much larger than that of the interaction of 
the particle with the magnetic field. If this condition does not 
hold, or if the opposite condition holds, then each small par- 
ticle interacts individually with the magnetic field, and the 
effect of the chains on the magnetic properties of the mag- 
netic liquid is very slight (although the presence of the 
chains may have substantial effects on optical, rheological, 
and other physical properties of magnetic liquids). 

2. FREE ENERGY OF A COLLOID 

We treat the chains as heterophase fluctuations. Using 
Frenkel's theory19 along with the assumptions just listed, we 
write the free energy per unit volume of the ferrocolloid as 
follows: 
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Here T is the absolute temperature in energy units, n is the 
number of particles in a chain, gn  is the number of such 
chains per unit volume, and f n  is a dimensionless "internal" 
free energy of a chain of n particles. The first term in square 
brackets in (1) is the entropy of a gas of n-particle chains due 
to their translational motion. 

To calculate f n  we use the nearest-neighbor method, 
which incorporates only the magnetic-dipole interaction be- 
tween directly adjacent particles in the chain. Straightfor- 
ward estimates show that for straight chains this approxima- 
tion leads to a relative error of less than 20% in the limit 
n+w. For short chains the error is even smaller. 

The dimensionless internal free energy of an n-particle 
chain is 

zn= exp a x  vi 
ri , i+ lIa2a ( i : l  ) 

Here H is the magnetic field, vi is a unit vector specifying 
the orientation of the moment of the ith particle, and U is the 
potential of the dipole-dipole interaction between two ferro- 
magnetic particles. 

To calculate fn  we need to adopt a convention about the 
word "chain." First, it is clear that if the magnetic particles 
and the stabilizing layers around them are essentially incom- 
pressible, then the probability for the formation of an aggre- 
gate of particles in physical contact with each other is zero, 
since any fluctuation will destroy the point contact between 
the particles. At a formal level, this means that if we require 
IriTi+ ll=2a in (2) then we obtain Zn=O and f n = w  as a result 
of the integration. Below we take the word "chain" to mean 
a linear sequence of particles in which neighboring particles 
are so close to each other that the energy of their magnetic 
interaction is larger than the thermal energy of the system. 
This definition ensures a strong correlation between the po- 
sitions and orientations of the particles. 

By virtue of our definition of a chain, the integration 
over rij  in (2) must be carried out over the entire volume v o ,  
which is equal to half the volume within which the energy of 
the magnetic-dipole interaction between the ith particle and 
the (i+l)st particle exceeds T in order of magnitude. The 
integration must be carried out over specifically half this 
volume, since for a fixed position of the ith particle, the 
(i+ 1)st particle must not enter the region belonging to the 
( i  - 1)st. 

To pursue this discussion, we introduce a dimensionless 
parameter of the interparticle interaction: y=m21 8 a T .  It is 
easy to see that ~ = 2 y  is the dimensionless energy of two 
particles which are in contact and which have parallel mag- 
netic moments, directed along the line connecting the centers 

of the particles. Clearly, chains can arise only if .s is signifi- 
cantly larger than one, and we will take this point into ac- 
count below. 

The most favorable arrangement of particles-that 
which minimizes the net potential energy of their interaction 
in the linear chain-is that of direct head-to-tail contact and 
the formation of a straight, rod-shaped aggregate. Noting that 
we have ES-1 and ES-a by virtue of the limitation adopted 
above, using the known approximation of the leading term, 
and noting that the available volume for a particle belonging 
to a chain is v o ,  we find the following result, working by a 
procedure analogous to that used in the van der Waals theory 
(Ref. 20, for example): 

zn- 
47r 

(3) 

Since we have En S- 1, we find, to logarithmic accuracy 

This approximation will be used below. 
Substituting (4) into (2), and then substituting the result 

into (I),  we find 

3. SIZE DISTRIBUTION OF THE CHAINS 

Let us calculate the distribution of chains with respect to 
the number of particles in them, g ,  . At equilibrium this dis- 
tribution function should minimize F under the normaliza- 
tion condition 

where p is the volume fraction of the disperse phase. The 
ratio plv is then the number of particles per unit volume. 

Minimizing (5) under (6), and carrying out some stan- 
dard manipulations, we find 

where A is an undetermined Lagrange multiplier. To find this 
multiplier, we need to substitute (7) into (6). As a result we 
find an equation for x: 

It is convenient to transform the left side of (8): 
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xn sinh( a n )  = (x exp a)"  - 2 [x exp( - a)]" 
n n n 

- x sinh a - 
1 -2x cosh a + x 2 '  (9) 

Substituting (9) into (8), we find the equation 

sinh a 
2cosh a+- ) +1=0 .  

Y 

A solution of this equation which satisfies the condition x< 1 
ensures the convergence of the left side of (8): 

2y cosh a+sinh a-J(2y cosh a+sinh a)2-4y2 
x =  

P).. 

In the absence of an external magnetic field (a--+O), we 
find, by combining (7) and (lo), 

1 +2p  exp E-  \I1 +4p exp E 
Xo = 

2p exp E 
(11) 

In a very strong field, a+ 1, we have 

The mean number of particles in a chain in an arbitrary 
magnetic field is 

Znngn - a p  exp E 
(n)= -- 

g Znxn sinh(an)n-I ' 

We transform the denominator in (13): 

sinh( a n )  

n 

(x exp a)"  -Z 1. exp(-ff)ln =I[? n n n 

1 1-xexp(-a)  
= - ln 

2 l - x e x p a '  

Substituting (14) into (13), we find our final expression 
for (n). For the case a = O  (no field), we have 

Under the conditions &+cup+ 1 we find 

a 
(n)-2p exp E 

ln(2ap) + E ' 

Let us now find the condition for the applicability of the 
model of straight, rod-shaped aggregates. We denote by Bij 
the angle between the magnetic moment of the ith particle in 

FIG. 1 .  Upper limit on the volume fraction of particles for validity of the 
model of straight aggregates, p, , as a function of the interparticle interaction 
parameter E. 

the chain and the radius vector connecting the center of this 
particle to the center of the jth particle. It is easy to see that 
in the absence of a magnetic field the mean value is, in order 
of magnitude, ( B ~ ~ + , ) - E - '  ( ~ 9 1 ) .  Using known results 
from the theory of ideal polymer chains, we can estimate the 
persistence length 1 of a chain of magnetic particles not in a 
field: 

where d-2a is the diameter of a particle. The model 
adopted here is valid under the condition l>d(n), i.e., (n) 
<&. 

Figure 1 shows values of p, for which we have ( n ) = ~  
according to calculations from Eq. (15). These values are the 
upper limits on p for the applicability of our model of 
straight, rod-shaped aggregates in the case a = O .  Since a 
magnetic field stretches a chain out along field lines, this 
model is clearly applicable in a nonvanishing field at p>p, . 

Figures 2 and 3 show (n) versus the dimensionless mag- 
netic field a and the total volume fraction of the particles, p. 
These curves agree qualitatively with the experimental re- 
sults of Ref. 11. It is a very complicated matter to make a 
quantitative comparison, since we do not find in Ref. 11 the 
information which we would need to determine the radius or 
magnetic moment of the small particles. 

FIG. 2. Mean number of particles in a chain, (n), versus the volume fraction 
of particles, p, for (r=5 and various values of E (the curve labels). The 
curves are cut off at p = p , ( ~ )  (Fig. 1). 
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FIG. 3. Mean number of particles in a chain, ( n ) ,  versus the dimensionless FIG. 4. Magnetization of the colloid, M', versus the volume fraction of 
magnetic field a for p=pc(e=5)=0.135 and various values of E (the curve particles, p, as calculated from Eq. (17) (solid curve; e=4)  and from the 
labels). Langevin magnetization M ,  (dashed curve). The dimensionless field is 

a=O.l. 

In very strong fields, in which the condition a>& defi- 
nitely holds, the plot11 of (n) versus a approaches a horizon- 
tal asymptote. This situation, however, lies outside the 
framework of the approximations adopted here. 

4. EQUILIBRIUM MAGNETIZATION 

The equilibrium magnetization I@ of a magnetic liquid, 
as the mean magnetic moment per unit volume, can now be 
correctly defined by 

where 

L,(x)=coth x- l lx  

is the Langevin function. 
In a very weak field (a4O) we would have 

If the parameter E ,  of the magnetic-dipole interaction of 
the particles, is large, we have 

xo-1-(p exp &)-'I2, p exp(&)%l, 

and expression (19) becomes 

If we assume at the outset that there are no chains 
(g,= 6,,plv, where qj is the Kronecker delta), then we find 
from (17) the ordinary Langevin formula for the magnetiza- 
tion of an ideal superparamagnetic gas, M L  : 

In the limit a 4 0  we find 

Comparing (20) with the latter relation, we see that the 
formation of chains in which the magnetic moments of the 
individual ferromagnetic particles are strongly correlated 
with each other leads to a substantial increase in the magne- 
tization of the colloid. This conclusion is illustrated by Fig. 
4, which compares calculations of the magnetization from 
Eqs. (17) and (21). 

We note that the functional dependence of M  on p, the 
volume fraction of the particles, is not analytic. Similar 
nonanalytic functions describing the behavior of physical 
properties as a function of the concentration of particles in 
systems with a large correlation radius are well known. They 
are encountered in the Debye-Hiickel theory of electrolytes, 
in polymer in the theory of critical phenomena, and 
elsewhere. In our own case, the correlation radius is on the 
order of the average length of a chain, which may be con- 
siderably greater than the size of an individual particle, as 
can be seen from (14)-(16). 

5. MAGNETIZATION RELAXATION IN ROTATING FIELDS 

A key problem in the physics of magnetic liquids is to 
calculate their behavior under nonequilibrium conditions. 
Macroscopic equations for the flow of dilute ferrocolloids 
and for the relaxation of their magnetization in varying ex- 
ternal fields were apparently derived most correctly in Ref. 
22. Numerical sir nu la ti on^^^ have demonstrated that this ap- 
proach is highly accurate. 

There have been a fairly large number of studies (e.g., 
Refs. 10, 24, and 25) aimed at determining how interparticle 
interactions influence the kinetics of the magnetization rever- 
sal of magnetic liquids in which the particle concentration is 
not small. It was concluded in Ref. 26 from an analysis of 
many experiments that the magnetic-dipole interaction of 
the particles has essentially no effect on the magnetization 
relaxation times. A similar result was derived theoretically in 
Ref. 27. However, the topic discussed in Ref. 27 was a ho- 
mogeneous magnetic liquid of moderate concentration, with- 
]out any heterophase aggregates. The magnetic liquids stud- 
ied in Ref. 26 apparently also had a homogeneous structure. 
On the other hand, it seems obvious that heteroaggregates 
which stem from the magnetic-dipole interaction of particles 

860 JETP 80 (5), May 1995 A. Yu. Zubarev and L. Yu. lskakova 860 



TABLE I. Parameters of the equations of motion of solid prolate ellipsoids. 

are capable of significantly influencing not only the equilib- 
rium but also the nonequilibrium characteristics of magnetic 

Below we analyze the relaxation of the magnetization of 
a ferrocolloid toward an external magnetic field which is 
changing in direction but not strength; we take account of the 
existence of straight chain aggregates. A straightforward 
analysis shows that the nature of the relaxation processes 
should depend strongly on the relation between the dimen- 
sionless magnetic field a and the parameter E,  of the inter- 
particle interaction. Specifically, if a %-&, then each particle 
of a chain in a rotating field should rotate in a process which 
is independent of the other particles. In this case, only the 
hydrodynamic interaction of particles will affect the kinetics 
of the reorientation of the particles (as in the cases discussed 
in Refs. 26 and 27). If the condition a < E holds, in contrast, 
the chains rotate as a whole in a field. This is the case which 
we will look at. 

In order to derive some understandable results and to 
develop a method of study, we restrict the analysis to the 
slightly nonequilibrium situation, and we ignore hydrody- 
namic forces which would break up the chain as it undergoes 
reorientation. It is a straightforward matter to derive a con- 
dition under which this approximation can be realized. We 
denote by w  the field rotation frequency. In the zero-delay 
approximation, which is essentially always valid for mag- 
netic liquids, the angular rotation velocity of a chain which 
does not become deformed and which does not rupture is 
also equal to w. In order of magnitude, the hydrodynamic 
force which displaces neighboring particles with respect to 
each other is given by Fh- 7 , 1 ~ w d ~ ,  where q, is the viscosity 
of the carrier medium, and d  is again the diameter of the 
particle. When the displacements of two neighboring par- 
ticles make small angles 0  with the chain axis, the force of 
their magnetic interaction is Fm--&Told. If the chain does 
not rupture, we have Fm= Fh and thus 0 - q y i 3 w l ( e ~ ) .  A 
chain can be assumed to be a straight, rod-shaped aggregate 
if B(n) + 1. We then estimate an upper bound on o: 

TE 

For aqueous colloids with particles on the order of 100 .& 
in radius, at room temperature, this inequality holds if 
w<106~l(n)  s-'. In experiments of which we are aware, the 
field rotation frequency was very often far below lo6 Hz. 

We thus again assume that the chains are straight, rod- 
shape aggregates, with the distribution with respect to the 
number of particles given in (7), (10). 

In a description of the hydrodynamic interaction of a 
rod-shaped chain with the surrounding medium, we model 
the chain as an ellipsoid of revolution whose semimajor axis 
is equal to nu (where n  is again the number of particles in 
the chain), and whose semiminor axis is a .  A point of fun- 
damental importance is that the volume of this ellipsoid is 
equal to the total volume of the particles making up the 
chain. The volume fraction of these ellipsoids is therefore 
equal to the volume fraction of disperse particles in the col- 
loid. 

We introduce ~o,(e), which is a normalized distribution 
function of the unit vector e, which is itself directed along 
the magnetic moment of the particles in a rigid chain of n  
particles. The Fokker-Planck equation for cp,(e) takes the 
following form in the approximation of the chain as an ellip- 
soid of revol~tion:~' 

d2 v n  e .e  - 
de,  de,dej 
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Here D, is the coefficient of rotational diffusion of the 
ellipsoid modeling the chain, u is the average macroscopic 
flow velocity of the suspension, and 6, is a coefficient, 
whose value is given in Ref. 28 and also in Table I of the 
presentpaper. A repeated index in (22) and below means a 
summation. 

We now consider a system which is macroscopically at 
rest (u=O). Multiplying both sides of (22) by the compo- 
nents of the vector e, and taking an average over all possible 
orientations of this vector, we find (cf. Ref. 28) 

The components of the macroscopic magnetization vec- 
tor M are given by 

As mentioned above, gn  can now be chosen in the same 
form (7), (10) as for a magnetic liquid at equilibrium. The 
problem is thus to calculate ( e k )  under nonequilibrium con- 
ditions. 

It is not possible to solve Eq. (22) analytically for arbi- 
trary a (some asymptotic solutions are given in Ref. 28). At 
this point we adopt the effective field approximation, as de- 
veloped in Ref. 22 in an analysis of relaxation phenomena in 
dilute ferrocolloids. 

We seek a solution of (22) as a function corresponding to 
the equilibrium distribution of orientations of the chain, but 
in some effective field Hen rather than in the actual field H: 

There is nothing new in the form of (25) itself: we have 
simply replaced the unknown cp, by the new unknown Hen. 
We can take a fundamental step forward by assuming (as 
Ref. 22) that Hen is a constant, independent of e. Also using 
our approximation that deviation from equilibrium is only 
slight, we assume that the strong inequality SHn<H holds, 
where SH, =Hen-H. Using (25), we find, in the linear ap- 
proximation in Sanla, 

Here and below, a superscript zero denotes the equilib- 
rium value of a moment calculated with the help of function 
(25), with the effective field Hen replaced by the actual field 
H. 

Substituting (26) into (25), we find 

After calculating the equilibrium moment (ekej)' (de- 
tailed formulas for equilibrium moments of this type are 
written out in the Appendix), we find 

Here the 11 and I denote the components of the vectors 
which are respectively parallel and perpendicular to the ex- 
ternal field H. 

We can determine the parameters Sqln and SaLn by us- 
ing the second equation in (28). As a result we find 

Using (29) to eliminate the components of Sa  from (28), 
we find relaxation equations for the components (e), : 

With n= 1, Eqs. (30) become the results of Ref. 22. 
When multiplied by mn, Eqs. (30) describe the relax- 

ation of the magnetic moment of an n-particle chain in a 
rotating magnetic field. Our problem now is to go over from 
the characteristics of individual chains to the characteristics 
of the suspension as a whole. Since it is difficult to find a 
compact solution of this problem for the general case, we 
will discuss one special (but typical) case. We assume that 
the magnetic field is rotating at a constant frequency w in the 
x ,  y plane [i.e., hx=cos wt ,  h, =sin wt ] .  Using the known 
solution for the motion of the magnetization of a magnetic 
liquid in rotating fields (see, for example, Refs. 1,2, and 28), 
and also using (30), we find 

Multiplying both sides of (31) by mng,, summing over 
n, and using (24), we find 
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FIG. 5. Plot of tan $ vs the dimensionless magnetic field a according to 
calculations from (34) for ~ = 4 , 5  (solid curves) and with Eq. (35) (broken 
curve); p=0.13. 

From Eqs. (32) we can determine the angle @ between 
the magnetization M and the rotating field. For this purpose 
we rewrite (32) as follows: 

A cos *=x L 1gn 

,, l+02~Lnq1n' 

A sin *=C L~gnmrln 

1 + ~ ~ ~ l n q l n  ' 

We thus find 

tan *= 
ZnnLlgno~,n( 1 + ~ 2 ~ , n q l n ) - 1  

ZnnL,gn(l + ~ ~ r , ~ q ~ ~ ) - ~  - (33) 

At low rotation frequencies, expression (33) simplifies, 
becoming 

tan $=o 
Znn.r,nLl(ffn)g, 

ZnnL,(ffn)gn . 
In the absence of chains (gn=canl)  we find a known 

result: 

tan *=or1,. (35) 

Figure 5 shows results calculated for tan qh from Eqs. 
(34) and (35). It can be seen from these curves that tan (I, 
increases with E ,  the parameter of the magnetic-dipole inter- 
action. This increase can be explained on the basis of an 
increase in the relative number of longer chains, for which 
the magnetization-reversal time scales T, increase with in- 
creasing n. The nonmonotonic behavior of tan cjl as a func- 
tion of the dimensionless field a is explained on the basis of 
a competition between two mechanisms. On the one hand, an 
increase in a is accompanied by an increase in the average 
length of the chains. This increase leads to a decrease in the 
rotational mobility of the chains and thus an increase in 
tan @. On the other hand, each chain is oriented to a greater 
extent by the field along the field, and this effect reduces 
tan #. 

Using (33,  we can determine the transverse relaxation 
time T- = W-' tan 1+4 of a magnetic liquid with chain aggre- 
gates, by analogy with the relaxation time of a ferrocolloid 
with particles which are not in aggregates. It is easy to show 
that T- increases with increasing E. This conclusion contra- 
dicts the results of Ref. 10, where it was assumed that all the 
chains have an identical, fixed length. The latter assumption 
is a very crude one, and it may even lead to qualitative er- 
rors. 

6. RHEOLOGICAL PROPERTIES OF A MAGNETIC LIQUID 

The effect of chain structures on the rheological proper- 
ties of polar dispersions-magnetic liquids, magnetorheo- 
logical and electrorheological suspensions, etc.-has been 
studied by many i n ~ e s t i ~ a t o r s ? . ' ~ . ~ ~ ~  Detailed numerical 
calculations of the viscosity of magnetic liquids whose par- 
ticles were collected in identical chains, with a length as- 
sumed known, were carried out in Ref. 12. 

Our purpose in this section of the paper is to analytically 
calculate rheological characteristics of magnetic liquids with 
chain aggregates which contain random numbers of particles, 
in a steady-state external magnetic field. We assume that the 
flow of the system is in a steady state, is laminar, and is so 
slow that we can ignore the effect of the deviation from 
equilibrium on the dimensions and shape of the chains. A 
condition for the validity of this approximation can easily be 
established by comparing the hydrodynamic force Fh , which 
tends to decouple two particles, with the magnetic-adhesion 
force of the particles, F,. In order of magnitude we have 
Fh= % d 2 ~  and F ,=6T~ld ,  where E is the gradient of the 
flow velocity. The condition under which a chain cannot be 
broken up is 

and the condition under which it cannot be deformed is 

The condition we are seeking is thus 

It can be concluded from the estimates derived above in 
the analysis of the magnetization relaxation in rotating fields 
that this strong inequality often holds in real situations. 

Again, we treat the chain as a sequence of particles in 
contact with each other. To incorporate the hydrodynamic 
interaction of the chain with the surrounding medium we 
model the chain as a prolate spheroid with semiminor axis a 
and semimajor axis nu. Using known results from the statis- 
tical hydromechanics of dilute suspensions of spheroidal 
particles:8 we write an expression for the components of the 
average viscous stress tensor a in the linear approximation in 
the components of the tensor gradient of the average flow 
velocity u: 
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Here again, 

Hi n - 1  
h i = - ,  i ,  j ,  k ,  S ,  x i ,  x j = x ,  y ,  z ,  A,=- H n + l '  

The tensors d and d are the symmetric and antisym- 
metric parts of a, the superscript zero again means the equi- 
librium moments of the unit vector e ,  and G j  is the Kro- 
necker delta. The parameters p, , a , ,  P, , 5, , and X,  were 
calculated in Ref. 28 (where, however, the subscripts n were 
not written on these parameters; otherwise they are denoted 
here as in Ref. 28). For reference, we show in Table I the 
values of these parameters taken from Ref. 28. 

Since we are assuming that the chains do not rupture and 
are not deformed, we can calculate the distribution function 
g , ,  used in (28) in the determination of the mean values 
( ( a * . ) ) ,  in the same way as for the equilibrium situation, in a 
first approximation [see Eqs. (7),  (8) ] .  Accordingly, expres- 
sions (32) and the data in Table I make it possible to calcu- 
late all the quantities which appear in the definition of d. To 
calculate the components of the antisymmetric tensor d, on 
the other hand, we need to find the components of the non- 
equilibrium vector moment (e), , as can be seen from (36). 

To determine (e) ,  exactly, we need to solve Eq. (22) for 
the orientation distribution function cp,(e) of an ellipsoidal 
magnetic particle in an steady-state external field and in a 
medium in shear motion. Exact analytic solutions of the 
equation can be derived only in the limits of very strong and 
very weak fields (the mathematical problems which arise are 
discussed in detail in Ref. 28). 

At this point we make use of some ideas from the 
effective-field method. Remaining in the linear approxima- 
tion in yij and w i j ,  we write the nonequilibrium distribution 
function cp,(e) in the form 

a n  
4~ sinh( a n )  

( e i e j -  (eiej)O) yi j  

The function (on is normalized (to one); furthermore, for 
irrotational flows (wij=O) this function is an exact solution 

of steady-state equation (22). We find the quantity b ,  from 
the equation for the first moment of the function cpn, which 
is, in the steady-state case, 

Substituting (37) into (38),  and carrying out some simple 
calculations, we find b ,  and ( ex , ) ,  : 

Here and below, the z axis is directed along the external 
magnetic field H. 

Using (39) in (36),  we find the components of the anti- 
symmetric stress tensor: 

Substituting (40) into (36),  we find our final expressions 
for the tensor a in the linear approximation in yij and wij . It 
is not difficult to see that this representation can be written in 
the form of a Leslie-Eriksen tensor, and Parodi's relation 
holds. 

To illustrate the results we consider two examples of 
simple shear flow. 

1. The flow velocity u is perpendicular to the field H, 
and the gradient of this velocity is directed along H: 

In this case we have y,,= y,,= ox, = - oZx= E / 2 ,  and 
the other components yij and oij are zero. 

Using these relations in (39), ( 4 ) ,  and noting that we 
have h,= l  and h,=h,=O by virtue of our choice of coor- 
dinate system, we find, after some straightforward manipula- 
tions, 

Here 7, is an effective viscosity of the colloid for the type of 
flow specified above, and 7 S, and 7; are components of 7 ,  
corresponding to symmetric and antisymmetric stresses. The 
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FIG. 6. Values of the effective viscosity 7 ,  calculated from Eq. (41) (solid 
curves) and calculated under the assumption of isolated particles (dashed 
curve). The curve labels are the values of p; &=4. 

equilibrium moments in (41) can easily be calculated with 
the help of the relations given in the Appendix. 

Figures 6 and 7 show results calculated for 71, in com- 
parison with corresponding quantities found in Ref. 22 for an 
extremely dilute colloid with isolated, noninteracting par- 
ticles (the results of Ref. 22 can be found from (41) by as- 
suming g n =  pt3,,lv in the calculation of the mean values 
( ( - 0 . ) ) .  We see that the presence of the chains causes a sig- 
nificant increase in 7,, even for small values of p. This may 
be the reason why the results found in several experiments 
on the rheology of dilute magnetic liquids have not agreed 
with the Einstein formula, even in the absence of a field. 

With p20.01, Eqs. (41) show that, even at a-2-3, the 
effective viscosity 7 7 is higher than the viscosity of the car- 
rier liquid, ?lo, by several orders of magnitude, while we 
have 7 S - 7 0. In this situation, however, the model of chains 
which are not interacting hydrodynamically is not valid. On 
the other hand, such a rapid increase in 71 7 with increasing a 
supports the assertion that the extremely pronounced in- 
crease in the viscosity of magnetic liquids and magnetorheo- 
logical suspensions in an external field which has been ob- 

FIG. 7. Effective viscosity of the magnetic liquid vs the volume fraction of 
particles, p, in the absence of a field (a=O). Solid curves--calculated from 
Eq. (41), &=4,5; dashed curve--calculated from the Einstein formula. 

FIG. 8. Effectiveviscosity 4 calculated from Eq. (41) for e = 4  and various 
values of p (the curve labels). 

served in many experiments may be a consequence of not 
only the formation of an infinite cluster of particles but also 
the formation of finite chains. 

2. We now assume that both the velocity u and its gra- 
dient are perpendicular to the field: 

u,=Ey, uy=u,=O, E=const. 

In this case we have yxy= yyx=w,=-wy,=(1/2)E, 
and the other components of the tensors y and w are zero. 
The nonvanishing components of the stress tensor are 

The role of the effective viscosity is now played by only 
its symmetric component 77;. Figure 8 shows results calcu- 
lated for it. It is slightly surprising to see the decrease in 7; 
with increasing magnetic field, despite the increase in the 
number of particles in the chains. This result is explained by 
noting that the field is now orienting the chains is such a way 
that perturbations caused by the chains in the flow of the 
carrier liquid decrease. 

Accordingly, chain aggregates should arise at sufficiently 
large values of E ,  even in very dilute magnetic liquids, and 
these aggregates should substantially alter macroscopic prop- 
erties of these systems. Since the average length of the 
chains increases with increasing E, the magnetization relax- 
ation time and the effective viscosity increase, rather than 
decreasing or remaining essentially constant, as was asserted 
in Refs. 10- 12. 

In conclusion we should point out that the model of rigid 
straight rods, combined with the neglect of correlations be- 
tween particles in different chains, constitutes a very strong 
approximation, so the use of our results in cases with &+1 
may be only a more or less fortuitous extrapolation. We 
should warn against attempts to directly generalize the re- 
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sults derived here to grossly nonequilibrium processes, 
whose analysis would require consideration of the change in 
the distribution g ,  and also the deformation of the chain 
aggregates. The effects caused by long-range correlations, by 
the connection of particles to chains from the side, and by 
deformations of chains deserve separate study. 

This work was financially supported by the Russian 
Fund for Fundamental Research (Project No. 95-01-00159a). 

APPENDIX 

Straightforward calculations lead to the following values 
of the equilibrium moments (...): (cf. Ref. 28): 

(ei):=hi~ln t 

(eiek):= 1 -LZn)aik+ 3 3 ~ 2 , -  l)hihk, 
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