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This paper discusses whether the standard temperature diagram technique in perturbation theory 
can be used to describe a Bose gas below the Bose condensation temperature. It is shown 
that the average value of a product of several creation and annihilation operators for a 
noninteracting Bose gas can be expressed in terms of the average value of pairs of creation 
and annihilation operators at arbitrary temperatures without any limitation on the particle 
momentum. O 1995 American Institute of Physics. 

1. The basic description of the properties of superfluid 
helium involves the model of an interacting Bose gas with a 
short-range interaction potential, which includes the effect of 
Bose-Einstein condensation.' However, there are nontrivial 
problems associated with the use of this model. The first is 
that the ideal-gas assumption is a poor choice for an initial 
approximation; this is clear, e.g., from the fact that for tem- 
peratures T<TA, where TA is the Bose-condensation tem- 
perature, the pressure of an ideal Bose gas does not depend 
on the particle number density n.' This implies that inclusion 
of particle interactions is of fundamental importance in de- 
scribing the properties of superfluid helium. In this situation, 
questions about the applicability of the standard form of the 
temperature diagram technique used in perturbation theory 
become extremely important. It is well known that generali- 
zation of the methods of standard diagram technique for the 
case of a Bose gas at temperatures T<TA is an extremely 
difficult problem.2 The fact is that the basis for constructing 
the standard diagram technique is the circumstance that the 
average value of a product of several creation operators lii 
and annihilation operators ci, (where hp is the momentum of 
a particle; we will assume the particle spins are zero) for a 
system of noninteracting particles can be expressed in terms 
of average values of pairs of creation and annihilation opera- 
tors. According to existing representations, this latter asser- 
tion is valid in the thermodynamic limit: 

tion cannot be rigorously Furthermore, in Ref. 9 an 
alternative canonical representation was proposed for the 
field operators without using the c-number representation of 
the operators 2; and io. On the other hand, in Refs. 10 and 
11 the results of applying standard diagram techniques were 
analyzed using the random phase approximation in order to 
describe a weakly nonideal Bose gas at temperatures T< TA ; 
based on this analysis, the authors explained features of the 
behavior of the dynamic structure factor of liquid helium. 
Meanwhile, a self-consistent equation of state for a Bose gas 
was obtained in Ref. 12 and in Ref. 13 the possibility of use 
of the standard diagram technique is possible. In light of 
these developments, the present work is aimed at a detailed 
investigation of the applicability of the temperature-diagram 
perturbation theory in its standard form. It will be shown 
here that the formal rules for computing average values re- 
main in force even for T< TA . In this case the average value 
of a product of several creation and annihilation operators for 
a noninteracting Bose gas is expressed in terms of average 
values of pairs of creation and annihilation operators without 
any limitation on the particle momentum or gas temperature. 

2. Let us consider a system of interacting Bose particles 
with zero spin, characterized by an interparticle interaction 
potential 

T-lim: V+m , N - m ,  n=NlV=const, (1) at temperature T= 0. The thermodynamic properties of such 

where N is the total number of particles in a system with a system are fully characterized by the single dimensionless 

volume V. This will only be true when we can neglect the parameter 

contribution of average values of products that contain sev- vomn ' I 3  
era1 creation and annihilation operators with the same A =  - 
m~mentum.~ However, in the case of a Bose gas with T< TA 4 a h 2  ' (4) 

the creation and annihilation operators for particles whose where m is the particle mass. Then the average energy E (or 
momentum equals zero is usually assumed to be proportional the energy of the ground state), being a sum of the average 
to the square root of the volume: kinetic energy K and potential energy U of the system, can 

c i : - c i o ~ f i ~ @ .  (2) be written in-the form 

This fact is used to justify the assertion that standard diagram E=K+U=Nnvos(A), 
techniques are inapplicable, and that special techniques are 
required. Since the publication of Ref. 3, this problem has K=Nnvocp(A), U=Nnvoy(A), 

(5) 

been solved by assuming that the operators 6; and Go  can be 
treated as ~ - n u m b e r s . ~ - ~  However, the validity of this asser- where, by definition, 
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and fp is the single-particle momentum distribution function. 
At the same time, according to (3), (5) the pressure P in this 
system equals 

taking into account the virial theorem for a system with the 
interparticle interaction potential (3), we have 

1 
P=nzvo[e(A)- rp( A)]. (9) 

Comparing (7) and (9), and taking (5) into account, we ob- 
tain the equation 

Asl(A)= - cp(A)SO. (10) 

Consequently, for any value of the parameter A we have 

In this way we find that for arbitrary A [see (6)] 

where p is the chemical potential, and the difference be- 
tween &(A) and e0 is entirely determined by the single- 
particle distribution function f p  [see (6)]; the "condensate" 
particles (with ?ip=O) make no contribution to this differ- 
ence. 

3. Let us discuss the distribution function of an ideal 
Bose gas. The basic problem to be addressed is the existence 
of the Bose-Einstein condensation effect at temperatures 

where c is the temperature for Bose-Einstein condensation 
of an ideal Bose gas, T(x) is the gamma function, and [(x) 
is the Riemann function. The approach that is closest to first 
principles in this case is that proposed in Ref. 14, which is 
based on the assumption that the transition to the thermody- 
namic limit (1) can be made in the expressions that result 
from the averaging. Then the single-particle distribution 
function is 

As usual, the angle brackets imply averaging over the grand 
canonical ensemble; the label 0 implies the ideal-gas ap- 
proximation for which the average is determined by the 
Bose-Einstein distribution 

but only for a system whose chemical potential pv is nega- 
tive for large but finite volumes V, i.e., 

In this case the condition for normalizability 

can be written in the form 

but only when the chemical potential p is a negative quan- 
tity, i.e., 

However, according to (18), condition (19) is violated for 
T= f i .  Consequently, in order to treat temperatures T< f l  
we must include the fact that in a large but finite volume V 
the chemical potential ,uv can be written in the form 

Then condition (16) becomes 

while Eq. (17) for T< c is 

Thus, for T< C, 

and consequently 

or in the thermodynamic limit 

According to this discussion, is determined by Eqs. (15), 
(19)-(21) at arbitrary temperatures. We can assume that the 
analogous situation holds when we investigate an ideal Bose 
gas and correlation functions of higher order. 

As an example of this, let us consider the pair correlatip 
function ni(r, ,r2), defined in terms of the field operators i,b+ 
and 4 in the following way: 
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Taking into account the definition of the creation and anni- 
hilation operators in occupation-number space,14 we can eas- 
ily verify that 

Furthermore, taking into account that, according to (15) 

we find 

Substituting (29) into (26) and using (17), we obtain 

for arbitrary temperatures. 
Note that, according to (15), (25), it is possible to make 

the change in (30) from summation over momentum to inte- 
gration in the course of carrying out the thermodynamic limit 
only when T> f i .  In this case, 

which expresses the well-known principle of weakening of 
 correlation^.'^ At the same time, for T<G, according to 
(25) 

Thus, for an ideal Bose gas at temperatures T< f i  the prin- 
ciple of correlation decay for the pair correlation functions is 
violated. Note that the analogous assertion for the single par- 
ticle correlation function is well known:I5 

When T<G, this function does not go to zero in the limit 
Irl-r21+~, like a normal system, but rather has a finite limit 
[see (25)l: 

0 lim n,(r) =no.  
r+m 

However, although the limiting relation (34) corresponds to 
C-number behavior of the operators â: and do, Eq. (32) 
contradicts it, a fact that is not difficult to verify directly. We 
therefore can argue that (12) and (32) invalidate the argu- 
ment that it is possible to treat the operators ii and io as 
C-numbers. This is also clear from "physical" consider- 
ations. In fact, according to (12) and (34) we should be able 
to assert that 

However, the average number of particles in the Bose con- 
densate No is a function of temperature [see (23)l. Hence the 
operators 6: and io should be not simply C-numbers, which 
is possible in principle, but rather should depend explicitly 
on temperature, which can only be a consequence of the 
averaging procedure. 

4. Let us turn to the question of whether temperature 
diagram techniques can be used in the standard form to de- 
scribe a Bose gas at temperatures T< TA . As we already 
noted in the introduction, the basic problem is to prove that 
for a noninteracting Bose gas the average value of a product 
of several creation and annihilation operators can be written 
in terms of the average values of pairs of creation and ami- 
hilation operators. We now call attention to a remarkable fact 
contained in Eq. (29): the average value of four creation and 
annihilation operators is in reality a product of two average 
values of pairs of creation and annihilation operators [see 
(14)], without any limitation on the particle momentum. This 
allows us to treat the ideal Bose gas in a unified fashion for 
arbitrary temperatures in terms of a single-particle distribu- 
tion function representation in the form (15), (19)-(24). 

Thus, if we can prove the validity of the analogous as- 
sertion for an arbitrary number of creation and annihilation 
operators, then this is sufficient (see Ref. 2) to justify formal 
use of the temperature diagram technique of perturbation 
theory to describe a Bose gas for arbitrary temperatures. By 
the word "formal" we mean implementation of the diagram 
technique in discussing systems within a large but finite vol- 
ume V (see above) and then taking the thermodynamic limit 
in the final expressions for the quantities to be calculated. 

In order to simplify the discussion, let us introduce an 
additional notation for the average value of 2N creation and 
annihilation operators with arbitrary labels for the case of an 
ideal Bose gas: 

in particular, according to (14), 

Furthermore, we will introduce a notation for products of 
pairs of creation and annihilation operators with differing 
indices: 
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for the average value of 2N creation and annihilation opera- 
tors with the same indices: 

for products of pairs with indices that do not coincide, and 
for average values of products of creation and annihilation 
operators with labels that do coincide: 

{(crla) O...[(P ,... lb ,... )0])={(ala)0...}[(/3 ,... lb ,... )'I 
X(1- . (40) 

Obviously, 

According to the definition of creation and annihilation op- 
erators in occupation-number space, for a noninteracting gas 
each average over a product of 2N creation and annihilation 
operators (36) can be written in the form of all possible prod- 
ucts (38) of averages of pairs, and products (39) of smaller 
numbers of operators with indices that coincide in the form 

while in each of the "terms" the labels a ,  P ,... and a ,  b ,... 
can take on any of the possible values: 1 ,. .. ,N, but cannot be 
repeated [see (27)l. 

If we take (28) into account, it is not difficult to prove by 
induction that 

Then, keeping in mind that N! possible pairs of creation and 
annihilation operators result from averaging a product of 2N 
creation and annihilation operators, we have according to 
(37), (43) that 

where each of the labels runs from 1 to N, but does not 
repeat. Consequently, 

i.e., the average of the product is represented in the form of 
products of averaged pairs of creation and annihilation op- 
erators with all possible combinations of coinciding and non- 
coinciding indices. But this implies that 

where the indices can take on any values from 1 to N and do 
not repeat, which we were required to prove. Furthermore, it 
is clear from this discussion that there are no limitations on 
the particle momenta. 

Equation (46) corresponds to Wick's theorem in the lim- 
its of the temperature diagram technique? since the chrono- 
logical ordering procedure when Green's function is being 
determined does not influence the calculation of the average 
value. 

Thus, the formal rules of standard temperature diagram 
technique remain in force for temperatures T< T A  as well; 
however, for treatments that start with a large but finite vol- 
ume V, this is true only in the final expressions, i.e., after 
passing to the thermodynamic limit (I). In fact, this limita- 
tion reduces to preserving the summation over momenta for 
systematic treatment of particles in the Bose-Einstein con- 
densate [see (25)l. 
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