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A method is suggested for determining the electron distribution function in an electric field based 
on the polarization method of measuring the radiation emitted by a plasma. The initial form 
of the distribution function is fixed analytically with allowance for the properties of high-voltage 
discharges and depends on a number of parameters. Equations for calculating the parameters 
are derived, relating the polarization moments to the moments of the electron distribution function 
up to the second order inclusive. First-order perturbation theory in the field strength is used 
to calculate the polarization moments. The method makes it possible to use the measurements of 
the linear degree of polarization of the radiation from the lines with an appreciable Stark 
effect to obtain a more complete picture of the electron distribution function than the ordinary 
method of polarization spectroscopy of unperturbed states provides. 63 1995 American 
Institute of Physics. 

Polarization spectroscopy is an effective method for 
studying the anisotropic properties of collisional and radia- 
tive processes in a plasma. Kazantsev and subbotenkol have 
shown that the polarization moments p?) in spectral lines are 
related to excitation of the atomic states and are proportional 
to the moments I?) of the exciting light or the moments 
fl) of the distribution function when the excitation is due to 
electrons. For instance, when electrons are the exciting 
agent, 

where (pa))  is the polarization tensor in the laboratory co- 
ordinate system (determined from measurements), pik)(v) 
(known as the dynamical tensor) is the polarization tensor in 
the collisional system of coordinates, and f(_ki(v) is the kth 
moment of the distribution function. 

Equation (1) serves as a basis for applying the methods 
of polarization diagnostics in finding the moments of the 
distribution function. 

Expansion of the distribution function in orthogonal 
polynomials is one method of solving the Boltzmann 
equation.' Usually the two-term approximation is used in the 
expansion of the distribution function. As an analysis of ex- 
perimental and theoretical studies shows: this approximation 
usually yields incorrect results and cannot be used when the 
gradients of the external fields or the plasma parameters are 
large. Using higher-order terms in the expansion of the elec- 
tron distribution function leads to considerable computa- 
tional difficulty. 

As is known, the linear polarization of radiation is deter- 
mined by the polarization moment p('). Measuring the value 
of this tensor, we can determine the corresponding moment 
of the distribution function4 via Eq. (1). In this case, how- 
ever, the moment p(') remains unknown and, hence, so does 
the moment f'), which is the leading term in the moment 
expansion of the distribution function. Determining f(') re- 

quires measuring the degree of circular and linear polariza- 
tion of light.5 

From Refs. 4 and 5 it follows that diagnostics of the 
dipole radiation emitted by isolated atoms makes it possible 
to determine tensors whose rank is no higher than two. This 
limits the order of the moments that can be found in the 
distribution function. The limitation can be lifted by consid- 
ering not only dipole transitions but also transitions of higher 
multiplicity.6 It is difficult, however, to observe such transi- 
tions because the optical signals are weak. Furthermore, in a 
highly ionized plasma such transitions are difficult to ob- 
serve against the background of Stark dipole-forbidden tran- 
sitions and transitions of mixed multiplicity. 

As shown in Ref. 7, in an electric field the probabilities 
of transitions corresponding to the interference of the electric 
dipole and quadrupole moments have an order of smallness 
equal to kao with respect to the probabilities of dipole tran- 
sitions, in contrast to the probabilities of quadrupole transi- 
tions, which have an order of smallness equal to (kao)', 
where k is the wave vector and a. is the Bohr radius. In the 
optical range, kao is about 

The probabilities of forbidden dipole transitions are pro- 
portional to IcJ(M)I2, where CJ(M) is the coefficient in the 
expansion of the wave function of a Stark state, IM), in the 
basis states IJM) of an isolated atom; the value of this coef- 
ficient depends on the polarizability a of the atomic state and 
the field strength F .  Since the induced dipole moment of an 
atom is proportional to a F ,  it is obvious that as a grows, the 
strong-field effect, where the intensity of dipole-forbidden 
transition becomes commensurate with the intensity of an 
allowed transition, can be observed at lower field strengths. 
~alculations~ show, for instance, that for the states of the 
helium atom with n = 5  such an effect is achieved for F  - 10 kV/cm, while with n= 4 this occurs for F - 60 kV/ cm. 

Thus, the presence in the atomic spectrum of transitions 
appreciablly affected by the electric field makes it possible to 
determine the polarization tensors over a broader range of 
ranks and with high precision in detecting the optical signals. 
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In Ref. 9 it was shown that in an electric field the inten- 
sity of radiation involving allowed dipole transitions depends 
on both diagonal and off-diagonal (in the angular momentum 
J )  tensors p t ) ( J , J 1 ) .  Generally the value of k  may vary 
from I J ' - J I S k S J 1 + J .  

The degree of linear polarization of a dipole-allowed line 
in an electric field is determined by the diagonal tensors 
p f ) ( ~ , ~ )  for even k  ( k = 0 , 2 )  and off-diagonal tensors pLk) 
X ( J , J 1 )  for odd k .  

In first-order perturbation theory?-" the relation for the 
linear degree of polarization of radiation involving a dipole- 
allowed transition and emitted perpendicular to the electric 
field vector F has the form 

where Po has the same appearance as in Ref. 5 and is deter- 
mined by the anisotropic polarization processes of the states 
of an isolated atom, 

and Pf is the field's contribution, which is given by 

with 

and t J t ( F )  the reduced coefficient in the expansion of the 
wave functions of Stark states in the states of an isolated 
atom, 

According to its definition, the off-diagonal tensor is cal- 
culated in first-order perturbation theory by the formula 

In the case of electron pumping of Stark states, the presence 
of odd-rank off-diagonal tensors in Eq. (4) makes it possible 
to determine the moments of the electron distribution func- 
tion, including the odd-order moments. 

Note that the off-diagonal tensors are proportional to the 
field strength. They can be viewed as an additional parameter 
in the set of polarization tensors, with the result that we can 
consider the problem of determining all independent param- 

eters simultaneously. In Refs. 9,12,  and 13 the helium atom 
is used as an example for theoretical and experimental justi- 
fication of a method for determining the electric field 
strength in a plasma. 

Similarly, Eqs. (1 ) - (5 ) ,  and ( 6 )  can be used to determine 
the moments of the distribution function for electrons in an 
electric field on the basis of measurements of the polarization 
characteristics of the radiation emitted. by the plasma. 

Let us consider this method. Suppose that the field 
strength is such that the atomic states considered here expe- 
rience an appreciable Stark effect, with the result that the 
contribution of an off-diagonal tensor to the radiative inten- 
sity can be detected experimentally. On the other hand, the 
field is weak, so it is possible to use first-order perturbation 
theory in describing the atomic states. 

Finding the distribution function from measurements of 
the polarization moments is an inverse problem in polariza- 
tion spectroscopy. To determine the parameters-the polar- 
ization tensors-in a meaningful manner, one must perform a 
sufficient number of independent measurements, which re- 
quires knowing a sufficient number of diagnostic lines start- 
ing at the same level J .  

When there is no field, the number of independent com- 
ponents of the tensors p f ) ( J , J )  equals the number of inde- 
pendent components of elements of the density matrix 
P M ' M ,  which is equal to ( 2 J +  1 ) ( 2 J +  1). Turning on the 
field does not change the number of Stark states and, hence, 
the number of independent components of the density ma- 
trix. As noted earlier, the appearance of an additional param- 
eter F increases the number of dimensions if the distribution 
function and the field strength are determined simulta- 
neously. However, the field distribution in the plasma can be 
found by solving a simplified problem of polarization 
diagnostics.13 Allowing for the axial symmetry of the pro- 
cesses and the lack of coherence in populating the Stark 
states, we can reduce the number of parameters to 2 J +  1 
(see Ref. 3); this quantity determines the minimum number 
of independent measurements and hence the necessary num- 
ber of transitions. 

In contrast to the isolated case, in an electric field the 
number of transitions increases because of the appearance of 
dipole-forbidden transitions from the same level J  whose 
intensity is determined via the diagonal  tensor^.^ The in- 
crease in the number of diagnostic lines serves as a favorable 
factor in solving the inverse problem in the polarization di- 
agnostics of plasma. 

Equations (5) and ( 6 )  determine the polarization of the 
radiation emitted from the set of Stark transitions belonging 
to the level J .  Determining the polarization tensors in this 
case requires measuring the intensity integrated over the line 
profile. 

The explanation for such an approach is that usually in a 
gas discharge plasma at medium pressures, the broadening of 
spectral lines amounts to several angstroms14; on the other 
hand, even in high-voltage discharges, the electric fields do 
not exceed several tens of kilovolts per centimeter. As a re- 
sult, the Stark splitting of the spectral lines does not exceed 
their halfwidth, and the Stark components of a line cannot be 
resolved spectroscopically. This determines the choice of 

849 JETP 80 (5), May 1995 V. P. Demkin 849 



method of diagnostics that uses integrated spectral line pro- 
files. Such an approach facilitates the solution of the diag- 
nostics problem but at the same restricts the choice of iso- 
lated spectral lines. 

Spectropolarimetric measurements serve as the basis for 
this method. The measurement accuracy and the correspon- 
dence of the optical signals to electron excitation processes 
determine the accuracy of the calculated electron distribution 
function. 

The accuracy of the measured line intensities and their 
degrees of polarization in the plasma depends on many fac- 
tors. 

The relative contribution of the field to the variation in 
the degree of polarization, as Eqs. (4) and (6) imply, is pro- 
portional to I c J I ( ~ ) I 2 ,  which, depending on the magnitude 
of the field strength, amounts to 5 lo-'. The same quantity 
determines the relative variation of the intensity of a dipole- 
allowed transition in the field and, accordingly, the relative 
intensity of dipole-forbidden transitions. The experimental 
studies described in Ref. 13 show that signals of such mag- 
nitude are confidently detected in photon counting mode, and 
statistical averaging of the measurements makes it possible 
to calculate the degree of polarization with an error of less 
than 1%. 

The factors distorting the optical signals and leading to 
an error in calculating the electron distribution function are 
radiation capture and transition cascades. A detailed study of 
their effect on the shape of the optical signals can be found in 
Refs. 15-18. In the case of electron excitation these factors 
can be eliminated by selecting the diagnostic lines from 
highly excited states and by additional monitoring of the 
behavior of the optical signals as a function of the discharge 
parameters and gas density. 

The errors introduced by the optical system are well 
known.17 They are common to all spectropolarimetric mea- 
surements and can easily be controlled. 

Thus, determining polarization moments from experi- 
mental data on the linear degree of polarization of the radia- 
tion emitted by a plasma requires in this method a careful 
choice of the diagnostic lines, which are isolated and which 
originate at levels that exhibit an appreciable Stark effect and 
are excited by direct electron impact. 

It is convenient to calculate the electron distribution 
function with Eq. (1) using a parametric method of specify- 
ing the distribution function. As an example we calculate the 
distribution function for electrons in discharges with a beam 
of "escaping" electrons. 

In weak electric fields, the electron distribution function 
is close to Maxwellian with insignificant a n i s o t r ~ ~ ~ " ~ " ~ :  

where u and vo are the drift and most likely velocities of an 
electron, with u 4 v o .  The drift velocity grows with field 
strength, and for u 3 4, where I is the ionization potential of 
an atom, the electron velocity distribution "acquires" a 
group of escaping electrons with a delta-like distribution 
function. As shown in Refs. 20 and 21, the presence of two 
groups of electrons in the distribution function is typical of 

plasma-beam discharges, where the group of low-energy 
electrons is characterized by weak anisotropy, and the group 
of high-energy electrons has the properties of a beam. The 
fraction of high-energy electrons may be considerable, and 
for high-voltage pulse discharges amounts to several tens of 
percent.22 

Allowing for these features, we write the distribution 
function in the form 

where y and vb are, respectively, the fraction and beam ve- 
locity of the escaping electrons. It is assumed that u g v o  and 
vb+vO. The quantities u, vb , and y in Eq. (8) are param- 
eters to be determined. We write the distribution function of 
the low-energy electrons as a moment expansion: 

The inverse transformation yields a formula for calculating 
the moments: 

Suppose that the z axis of the laboratory coordinate sys- 
tem coincides in direction with the electric field vector. Since 
the function (8) possesses axial symmetry with respect to the 
direction of the vector F, only the moments fik)(v) are non- 
zero. Separating out the group of high-energy electrons in 
Eq. (8) makes it possible to retain only a few terms in the 
expansion of the distribution function for the low-energy 
electrons. The most interesting are the moments fik'(v) at 
k=0,1,2. We find them from Eq. (10) by expanding the ex- 
ponential function in series, retaining terms up to fourth or- 
der: 

(v2-u2) 
v = 2  e x -  ; ( 1 )  (12) 

Here /3=2vulvt. 
To calculate the dynamical tensor pa)(v) we use a for- 

mula that relates it to the polarization tensor in the laboratory 
coordinate system: 

where 6 and cp are the angles that specify the velocity vector 
of an outgoing electron. The transformation that is the in- 
verse of (14) yields 
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The polarization tensor p y ) ( v )  can be calculated in the 
following way. According to the definition of Refs. 9 and 23 ,  
in an electric field the tensor p ~ ) ( v , ~ ' , ~ " ) ,  which is off- 
diagonal in J ,  is given by the following formula if the 
ground state Jo is populated isotropically: 

Here C j ( M )  are the coefficients in the expansion of the 
wave functions of the Stark states in the basis of the wave 
functions of an unperturbed atom, and f M M o  is the amplitude 
of excitation of a Stark state by electron impact. 

We write the excitation amplitude as a multipole 
expansion: l4  

Then 

Substituting Eq.(18) into Eq. (15) ,  we arrive at the following 
expression for the dynamical excitation tensor: 

To calculate the expansion coefficients C J ( M )  we use 
first-order perturbation theory. Let us examine the diagonal 
tensor p F ) ( v , J , J ) .  In this case C J , ( M 1 )  = CJ, t (Mf ' )  
= C j ( M ) =  1 .  Using the rules for contracting 3 j -symbols, 
we arrive at the following expression for the diagonal tensor: 

Equations ( 4 ) - ( 6 )  imply that k  is an even number, so 
k l  = k 2  in Eq. (20) .  The final expression is 

Summation with respect to k l  is from I J - J o l < k < J + J o .  
Similarly, for the off-diagonal tensor pkk)(v ,Jr  ,J") we 

assume that 

with k =  1. Doing the necessary calculations, we get 

where 

Comparison of Eqs. ( 2 2 )  and (21)  shows that the tensor 
ratio p f ) ( u  , J , J " ) / ~ ~ ~ ) ( U  , J , J ) - t J , t ( F )  and depends on the 
field strength. The quantity t j t t ( F )  can be estimated as the 
ratio eFao / A &  J J t ,  and for levels with an appreciable Stark 
effect it comes to several tens of percent. 

We average the derived tensors over the electron distri- 
bution function ( 8 )  in accordance with Eq. (1). The result is 
determined by the velocity dependence of the dynamical ten- 
sors. 

For the beam component, integration yields 

For the low-energy electrons it is generally impossible to 
integrate analytically because of the complex velocity depen- 
dence of the cross section. However, for optically allowed 
transitions a good approximation for the cross section of 
atomic excitation by electron impact is a ~ - ~ l n  v2, where 
the electron velocity is expressed in units of the threshold 
velocity v,= d m ,  with A &  the excitation energy.14 
Then, with allowance for Eqs. (11)-(13) ,  Eq. ( 1 )  acquires 
integrals of the form 
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In= exp(- av2)ln(u2) vn dv, I (25) 

where a= ( v l ~ ~ ) ~ ,  and n = 0,1,2,3,4. Obviously, 

dl0 d2l0 dl  1 12=-- ,  14=a(y2, I 
da  3 -  d a '  

and for the integrals lo and I, we easily obtain24 

where r ( a , v )  is the incomplete gamma function. 
Analysis of Eqs. (12), (13), (21), and (22) shows that the 

average value (pi2))-u2 is determined by the dynamics of 
the collision processes and the field dependence of their 
cross sections. The value (pf))-(J tr(~)u is determined not 
only by the drift velocity of the incident electron but also by 
the polarization of states of the target atom in the field. The 
degree of polarization depends on Cjn(F), and this deter- 
mines the choice of atomic states with an appreciable field 
effect. 

The drift velocity u is equal to p F ,  where p is the 
electron mobility25; this implies that both (pf)) and (pa))  
are proportional to the square of the field strength. If we 
allow for the fact that (~61)) and (pf)) are calculated using 
measurements of the polarization characteristics of the radia- 
tion, the numerical accuracy is determined solely by the ini- 
tial choice of states being diagnosed. 

To find the parameters u, vb ,  and y of the distribution 
function (ti), we need only determine the values of three 
tensors, p(O), p('), and p(2), from measurements of the linear 
degree of polarization and Eqs. (3) and (4). Doing the mea- 
surements over a large number of spectral lines for dipole- 
allowed and dipole-forbidden transitions, we can optimize 
these parameters. 

Thus, the present method makes it possible to use mea- 
surements of the degree of linear polarization of lines with an 
appreciable Stark effect to obtain a more complete picture of 
the electron distribution function than that provided by the 
usual method of polarization spectroscopy of unperturbed 
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