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We investigate emission from an array of lasers with a random spread of frequencies when all 
lasers are coupled with all others. We show that as the eigenfrequency detuning increases, 
either emission is quenched or the coherent steady-state emission regime is replaced by a 
nonstationary regime. Stable phase-locking regions are determined analytically and 
numerically. We show that the time lag in the gain results in cooperative phase locking at a 
maximum detuning close to the relaxation frequency. The peak brightness achievable is then 
greater than that of a system of identical lasers with a common pump. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

Many nonlinear (a collection of Josephson 
junctions, gasdynamic vortices, neural networks, evolution- 
ary models, and economic models) are dynamical systems 
with global coupling, i.e., feedback proportional to a mean 
taken over an array of interacting elements. One relatively 
simple example of this class of systems is a set of lasers that 
are all optically coupled to one another. To a good approxi- 
mation, this sort of coupling can be implemented experimen- 
tally by placing an iris diaphragm at the system's common 
focus.3 A study of this system can additionally shed light on 
the dynamically complex behavior of an array with global 
coupling. Moreover, such studies are of practical interest 
from the standpoint of obtaining high-power radiation with 
low angular divergence. 

To address this problem, it is necessary to have a coor- 
dinated system of N lasers emitting a coherent field with 
minimal phase excursions at the output aperture. This can be 
achieved if the characteristics of all the lasers-in particular, 
the resonator eigenfrequencies-are approximately the same. 
In actuality, there will always be differences among the 
eigenfrequencies, which can be either static or randomly 
varying in time; thus far, static deviations among the eigen- 
frequencies have received the most attention. For example: 
when the resonator eigenfrequency mismatches are bounded, 
the field at the output aperture exhibits a domain structure in 
which the individual domains tend to differ in phase by a 
value close to T. The mean domain size is governed by the 
relationship between the optical coupling coefficient and the 
magnitude of the eigenfrequency mismatch. This correlation 
length places a lower limit on the divergence of the total 
emission that does not depend on the size of the array as a 
whole. ~ikewise; the advent of global feedback in a laser 
array with nearest-neighbor optical coupling significantly 
broadens the parameter range over which all the laser fields 
remain phase-locked. 

Random variation of the eigenfrequencies with time in- 
troduces an element of self-averaging into the interactions 
among the lasers of the array. As the maximum frequency 
deviation increases, the resulting mean field at the output 
aperture, which determines the brightness of the emitter, be- 

haves like the magnetic moment of a ferromagnet that is 
being heated, i.e., it undergoes a phase tran~ition.~ Further- 
more, it was noted in Ref. 5 that the loss of coherence (as 
characterized by the order parameter) can take place via the 
emergence of topological solitons engendered by the eigen- 
frequency fluctuations. 

The dynamics of an array of lasers with global feedback 
and a delayless optical medium has recently been studied 
n ~ m e r i c a l l ~ . ~  The eigenfrequency deviations were static, 
with a distribution that was approximately Lorentzian. Four 
different regimes were detected numerically: phase-locked, 
partially phase-locked (an analog of the domain regime in 
Ref. 4), independent emission by each laser, and oscillation 
between an order and disordered state. Given that the authors 
detected an abrupt increase in fluctuations of the order pa- 
rameter (the mean field at the system output) when the order 
parameter itself underwent an abrupt decrease, we are deal- 
ing here with the analog of a thermodynamic 

In the present paper, along with a numerical analysis, we 
conduct an analysis of feasible dynamical regimes for the 
fields of an array of lasers with global feedback, which en- 
ables us to find an explicit criterion for the quenching of 
emission or transition to a nonstationary regime. It has been 
shown el~ewhere,~ based on the behavior of two optically 
coupled lasers, that time delays in the medium can engender 
dynamically complex signal emission. We show below that 
time-delayed gain in an array of lasers with global feedback 
gives rise to a new effect, which we call cooperative field 
locking. 

2. BOUNDARIES OF THE COHERENT EMISSION REGIME 

We make a number of assumptions in studying emission 
regimes of a fully optically coupled laser array: with no cou- 
pling, the field in each laser can be characterized by one 
longitudinal and one transverse mode; the laser gains are 
proportional to the population differences between two reso- 
nant levels in the active medium (two-level approximation); 
and the principal difference between lasers is in the fre- 
quency of their eigenmodes. A system consisting of N 
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coupled lasers possesses at least 3N degrees of freedom: N 
complex amplitudes Ek and N active-medium gain coeffi- 
cients gk . 

The dynamical equations for the fields in a fully coupled 
laser array are3 

Delays due to the propagation of light in the coupling chan- 
nels is negligible, assuming that the coupling channel is short 
compared with the length of the resonant cavity. The follow- 
ing dimensionless quantities appear in the system of equa- 
tions (1) and (2) (N is the total number of lasers): 

where Ek is the complex field amplitude in the kth laser, E, is 
the saturation field, rp= 2Llc is the round-trip travel time for 
light in each resonator, L is the resonator length, g =g/gn ,  
g is the active-medium gain, gn  is the gain threshold, go is 
the small-signal gain, I is the length of the active medium, 
iik is the eigenfrequency offset of the kth resonator from the 
average across all lasers, M is the coupling coefficient, 
which is the same for all lasers in the system, and ? is the 
relaxation time in the active medium. 

The first term on the right-hand side of Eq. (1) accounts 
for gain and loss in traversing the resonator, including the 
effects of light coupled to other lasers, the second term is the 
change in the phase of the field (we assume that 
lAkryl* I) ,  and the third accounts for injection of the mean 
field into each laser. 

In Eq. (2), go/  r accounts for pumping of the active me- 
dium, - gl r for relaxation of the gain, and the last term for 
the decrease in population difference of the resonant levels 
as the lasers radiate. 

LlG. 1 .  Time-averaged brightness of a system of 
lasers as a function of the width of the eigenfre- 
quency distribution for various values of go: steady- 
state emission (solid curve), dynamical regime with 
r=50 (dashed curve), dynamical regime with de- 
layless medium (dotted curve). 

In the event of fast inversion relaxation of the active 
medium (with a delayless medium), Eq. (2) is replaced by 

We assume that the eigenfrequency differences among the 
resonators are uniformly distributed over the interval 
[ - Ao/2 , A0/2], in contrast to the Lorentzian distribution 
assumed in Ref. 6. Here A. is the width of the distribution. 
In numerical models for the solution of Eqs. (1)-(2), the 
frequency mismatch Ak is set by a random number generator. 

The degree of field coherence in the system of optically 
coupled lasers can be characterized in terms of the axial 
brightness of the total radiation in the far zone, which is 
proportional to the squared modulus of the total field. When 
eigenfrequency offsets among the resonators are small, the 
phase of each laser field will be constant in time and differ- 
ent from the phase of the mean field. As the spread in fre- 
quencies increases, so will the phase shifts among the fields. 
Various scenarios come into play for the breakdown of co- 
herence and decrease in brightness as frequency mismatches 
become more significant; these depend upon the relationship 
between the magnitude of optical coupling and the gain of 
the active medium. 

Figure 1 shows the dependence of the time-averaged 
brightness on Ao, normalized to the maximum value of the 
brightness (at Ao=  0 ) ,  for various go- l and M. The curves 
were calculated for a large number of lasers, N> 100, and the 
results were independent of the specific random frequency 
distribution. 

For low small-signal gain (go- 1 < M ) ,  as the width of 
the frequency distribution increases, the laser array continues 
to emit coherently (curves labeled go = 1.001-1.03 in Fig. l), 
but the total brightness drops to zero. This is a consequence 
of destructive interference among fields with different 
phases. For go- 1 < M ,  it is clear from Eq. (1) that an indi- 
vidual laser cannot emit without injection of the mean field. 
The mean field decreases with increasing Ao, and all lasers 
are quenched at some threshold value of Ao. 
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Another scenario for the breakdown of order is played 
out when the gain greatly exceeds the small-signal threshold 
value (go- 1 > M: curves for go= 1.5 and go=5  in Fig. I), 
and at some critical value the system moves from a station- 
ary coherent emission regime into a nonstationary one. The 
nonstationarity is accompanied by a reduction in system 
brightness, due to time-averaging of the total field. At high 
pump levels in the active medium, the field amplitudes vary 
only slightly, and the brightness reduction is associated with 
time-averaging of the dynamical phase variations of the 
fields. 

To determine the relationship between the critical values 
of A. and the system parameters, we consider the two cases 
in more detail. 

a. go- 1 <M. When the small-signal gain is only 
slightly above threshold (go- 1 <M), the field amplitude in 
each laser decreases with increasing width of the frequency 
distribution, and is eventually completely quenched. It is 
easy to obtain a criterion for coherent emission when 
go - 1 < M, since the fields tend to zero at the quenching 
boundary (gk=go) and Eqs. (1) and (2) then constitute a 
linear system. The development of emission or quenching 
depends on the eigenvalues of the characteristic equation, 

Diagonalizing the matrix in Eq. (4), we obtain the equation 
for the eigenvalues A: 

Dl-A MIN MIN 

MIN D2-A MIN 
... ... ... ... 

MIN MIN ... DN- X 

+ ) = o .  
DN- A -  MIN 

= 0,  (4) 

Interestingly enough, the proof that band gaps exist in the 
electron energy spectrum of a superconductor in BCS 
theory8 reduces to the solution of a similar eigenvalue prob- 
lem. Given the distribution f(A) of eigenfrequency offsets 
normalized to the total number of lasers, sf(A) dA=N, 
with N>> 1, we have that when Re(M)>O, the eigenvalue 
with the largest real part A,,, which is the analog of the 
BCS ground-state energy, can be obtained from the integral 
equation 

Equation (7) follows directly from the vanishing of the last 
factor in the dispersion relation. For a uniform random dis- 
tribution of eigenfrequencies over the interval 
[ -  A012 , (Ao/2)1, 

It can easily be shown that the requirement for emission 
to develop reduces to ReA,,>O. Inserting (8), this require- 
ment takes the form ReA < 0 for other collective modes) 

Here I M I  and 4 are the modulus and phase of the coupling 
coefficient. 

b. go- 1 > M. In this second case, there is no field 
quenching with increasing Ao, since the gain in each laser is 
high enough to support emission in the absence of an addi- 
tional optically coupled signal. As noted above, there is an 
attendant abrupt brightness reduction with increasing A. re- 
sulting from the development of nonstationary emission and 
variations in the relative phases of the fields. The transition 
from a coherent, steady-state regime to a nonstationary one 
takes place at some critical value of Ao. 

We can estimate that critical value using perturbation 
theory, noting that when go - 1 * M, the field amplitudes of 
the various lasers are only slightly different. We assume 
steady-state fields of the form 

E ~ = A ~  exp i q k .  (10) 

For a real coupling coefficient, we have the following equa- 
tions for the amplitudes Ak and phases qk : 

where C is a constant common to all of the lasers, given by 

The steady-state solution implied by (11) is 

The phase of the field differs from the phase of the total field 
by a constant; the larger the offset of the resonator eigenfre- 
quency from the mean, the larger the constant. A steady-state 
regime is feasible as long as the maximum phase remains 
below 7rI2, so the stability limit for a steady-state solution is 
given by 

To determine C we make use of Eq. (12), which in continu- 
ous variables takes the form 
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It is possible to obtain a solution of the foregoing equations 
in the limit go- 1 %M, for which the various lasers emit at 
approximately the same intensity. In zeroth order we can take 
A(A)=A(O), and the condition for the onset of oscillations 
can be written 

To first order, the field intensity in a laser with frequency 
offset A can be approximated by the quadratic function 

FIG. 2. Parameter domains in go and A, for 
M = 0.1 in which various emission regimes oc- 
cur: 1) steady-state emission; 2) dynamical re- 
gimes; 3) quenching. Solid curves represent the 
analytic criteria of (9) and (20)-(23). Numerical 
results are indicated by +, A, and 0 for the 
three cases above. 
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and the value of I(0) can be obtained by combining (3) and 
(14) at A=O: 

Substituting (18) and (20) into (19), expanding in powers of 
~ ( A I A , ) ~ ,  and equating first-order terms in ( ~ l h , ) ~  to 
zero, we obtain 

Substituting the value of I(A) into (16), we have to second 
order in /3 

Furthermore, (1 3) and (1 5) yield 

For go- 1 9  M, the nonlinear equations (20)-(23) have a 
unique solution in the neighborhood of P=O, and can be 
solved iteratively. 

The analytic criteria thus derived and numerical model- 
ing of the emission from a large laser array with global feed- 
back make it possible to map the various operating regimes. 

The solid curves in Fig. 2 are the analytic boundaries sepa- 
rating the various emission regimes ( l corresponds to 
steady-state coherent emission, 2 to nonstationary emission, 
and 3 to quenching). The +, A,  and 0 markers correspond 
to emission with parameters go and A. obtained by solving 
Eqs. (1) and (2) numerically. 

3. NONSTATIONARY EMISSION BY AN ARRAY OF LASERS 
WITH GLOBAL OPTICAL FEEDBACK 

The temporal behavior of the fields in an array of opti- 
cally coupled lasers can be conveniently illustrated with an 
Argand phase diagram. As in Ref. 6, at any given time, the 
field of each laser-which is characterized by an amplitude 
and phase--can plotted as a point in the complex plane. Fig- 
ure 3 shows phase diagrams of laser emission starting at the 
time of complete phase-locking for three sets of parameter 
values, corresponding to coherent emission ( 1 ,  M = 0.1, 
go = 1.5, AO= 0.15), temporally nonstationary field behavior 
( 2, M = 0.1, go= 1.5, Ao= 0.20), and quenched emission 
( 3, M =  0.1, go= 1.001, A,= 0.20). In addition to the dy- 
namical field of each laser in the Argand diagram, Fig. 3 
shows the amplitude and phase of the mean field. 

For steady-state coherent emission with a real coupling 
coefficient M, the Argand diagrams indicate the dynamics of 
emergence into a regime with constant brightness over the 
entire array from an initial state in which all the laser fields 
are phase-locked. The slight precession of the total field vec- 
tor at constant angular velocity is due to the nonzero mean 
frequency mismatch in the random sample Ak . As the num- 
ber of lasers N increases, the mean frequency of the field will 
be proportional to N-'I2, and the precession frequency will 
decrease. If the coupling coefficient is complex ( ~ e ' ~ ) ,  the 
angular velocity of the mean field vector in the steady-state 
coherent regime will be approximately Msincp, and will be a 
weak function of the number of lasers. 

When the active medium has a short relaxation time 
(7+2(go- 1 - M ) ~ M ~ c ~ ) ,  the dynamical behavior of an ar- 
ray of lasers with global feedback, and with an average uni- 
form distribution of relative phases of the laser fields on the 
unit circle in the Argand phase diagram, turns out to be sta- 
tistically stable. The temporal average of the brightness of 
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the N lasers is then proportional to 1/N of the brightness of a 
perfectly phase-locked system, which is consistent with pre- 
vious  result^.^ 

Two frequencies characterize the problem for parameter 
domain 2. One is dictated by the loss of stability of phase- 
locked steady-state emission, and by phase variations in 
some of the lasers relative to the mean field. Under these 
circumstances, the mean field is modulated, and that modu- 
lation is periodic in the vicinity of the boundary between 
parameter domains 1 and 2 (Fig. 2). The typical modulation 
period of the mean field has a form similar to that for two 
coupled lasers? 

where C and p are obtained by solving (20)-(23). 
The second characteristic time in this system is the pe- 

riod of damped relaxation oscillations. If the relaxation time 
of the active medium is much greater than the light transit 
time in the resonator, then T* 1 in the notation introduced 
above, and the frequency and decay constant of relaxation 
oscillations, w,  and y, take the form 

w,= 1 - M)/r ,  (25) 

The former is usually called the Toda frequency, which refers 
to the effective potential to which the nonlinear oscillation 
problem reduces in a laser For the parameter do- 
main in which nonstationary emission takes place, the ratio 
of the two characteristic times can take on a range of values. 

When w,Ti,9 1, we can assume the active medium to be 
delayless, and can therefore use Eqs. (I) and (3) to describe 
the dynamics. In this limiting case, the field dynamics can be 
reduced to a vector mapping model with global feedback,' 
taking the discrete time step to be equal to the modulation 
period of the mean field. 

The most interesting emission regimes, however, are 
those in which the period of relaxation oscillations is close to 
the modulation period of the mean field. Since the global- 
feedback laser array under consideration is quite similar to 
nonlinear laser systems with an injected external signal1' and 

NG. 3. Transition of a system out of a completely 
phase-locked state: 1) to synchronized emission 
(M=0.1, go= 1.5, A0=0.15); 2) to a regime with 
time-dependent field behavior ( M  = 0.1, go = 1.5, 
A0=0.20); 3 )  quenching (M=0.1, go=l.OO1, 
A0=0.20). 

Q-switched  laser^,'^ we should expect it to display the same 
nonlinear and nonstationary modes of behavior inherent in 
those systems. In particular, period-doubling bifurcations and 
various paths to chaos, which are both typical of nonlinear 
dynamical systems, have been detected. 

As an example, Fig. 4 shows emission with a modulated 
mean field, corresponding to the period-doubling case. The 
buildup of oscillations results in the main emitted pulse be- 
ing produced in a time much shorter than the period. This 
situation is equivalent to laser emission with an injected ex- 
ternal signal modulated at a multiple of the period of relax- 
ation oscillations. Since the active media and resonator Q 
factors are assumed to be the same for all lasers in the array, 
the Toda frequencies will be the same as well. All of the laser 
fields will therefore become cooperatively phase-locked, re- 
gardless of significant differences among the eigenfrequen- 
cies. In this mode of operation, the peak brightness can be 
appreciably higher than the brightness of a completely 
phase-locked system (by a factor of 1.6 for the conditions 
illustrated in Fig. 4). 

Cooperative phase-locking is attributable to a number of 
factors. The capture bandwidth of the laser fields rises with 
increasing external injection signal. The signal amplitude 
also increases as more and more fields are phase-locked. An- 
other factor that enables brief pulses to reach high energies is 
the pumping of relaxation oscillations in the combined 
radiationlactive medium system of the laser. Pumping of 
these oscillations can give rise to pulses whose peak intensity 
is much higher that in the steady state. 

Cooperative phase-locking of fields consists in the fol- 
lowing. If the width of the eigenfrequency mismatch distri- 
bution function is of the order of the Toda frequency and the 
active medium has a long relaxation time, instability can 
develop, leading to transition from an incoherent regime of 
laser operation (with vanishing order parameter) to phase- 
locked emission for a brief interval during pulsed periodic 
emission from each laser. The scenario for the development 
of instability is as follows. Modulation of the mean laser 
field at frequencies close to the Toda frequency leads to 
pumping of field fluctuations in each laser. This leads in turn 
to an increase in the number of in-phase lasers during pulse 
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I ,  arb. units HG. 4. Dynamics of total system brightness and 
I 1 I I I -I laser fields for parameters corresponding to the peak 

1.8 c in Fig. 1 (go= 1.5, M=0.1, Ao=0.21,~=50). 

formation and, as a consequence, an increase in the depth of 
modulation of the total field, and so forth. 

Figure 1 shows the dependence of the time-averaged 
brightness in the dynamical regime on the width of the 
frequency-mismatch distribution in the dynarnical regime 
with N =  100 lasers for r= 50 (dashed curve) and for a de- 
layless medium (dotted curve). With these parameters, the 
mean brightness attained when relaxation oscillations are 
pumped reaches approximately 40% of the brightness of a 
completely phase-locked system. This value is a relatively 
weak function of the number of lasers in the system, and is 
governed solely by the dimensionless parameters M, Ao, 
and go. 

4. SUMMARY 

In this paper, we have analytically and numerically in- 
vestigated emission modes of a system consisting of a large 
number of optically coupled lasers with differing eigenfre- 
quencies. We have considered a model in which each laser is 
optically coupled to every other. It has been shown that as 
the mismatch level throughout the system rises, it undergoes 
a transition from high-intensity coherent emission involving 
all of the lasers to emission with a significantly lower order 
parameter (the brightness of the total field divided by the 
maximum possible value). This transition can take place ac- 
cording to two different scenarios. 

The first applies when the small-signal gain slightly ex- 
ceeds a threshold value (go - 1 < M). In this case, increasing 
the mismatch level to the critical value leads to quenching of 
the emission. 

The second scenario applies to the case go- 1 + M ,  in 
which an increase in the width of the mismatch distribution 
causes the breakdown of the coherent steady-state emission 
regime and a transition to dynamical regimes. 

In an array of lasers with global optical coupling, a 
change in the parameters can result in bifurcations and a 
transition to chaos in the intensity of the total field. The 
dynamical behavior depends on time delays in the active 
medium. When they are large compared with the time of 
flight r in the resonator, we encounter dynamical regimes in 
which the total field has high peak brightness due to resonant 
pumping of fluctuations at a multiple of the period of Toda 
relaxation oscillations. In this cooperative phase-locking re- 
gime, the mean and peak values of the order parameter de- 
pend weakly on the number of optically coupled lasers. 

The breakdown of the coherent regime at high brightness 
for lasers with a spread in eigenfrequencies is analogous to 
the destruction of long-range order in a variety of physical 
problems: a superconducting state can be destroyed when the 
density of scatterers is high enough at zero temperature; suf- 
ficiently large irregularities in an external magnetic field in 
two-dimensional spin systems can lead to the disappearance 

838 JETP 80 (5), May 1995 Kurchatov et a/. 838 



of the total magnetic moment, etc. In contrast to these sys- 
tems, however, the breakdown of order in an array of lasers 
can result from the complex dynamics of the laser fields. 

The situation in which the laser eigenfrequencies fluctu- 
ate in time bears a striking resemblance to a thermodynamic 
phase transition induced by a temperature change. Here one 
can introduce a noise parameter analogous to the tempera- 
ture; when it rises, a phase transition results. 
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