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The asymptotic theory of nonadiabatic transitions is used to treat Coulomb deexcitation of 
muonic hydrogen in hydrogen, including the effect of electron shielding of the charge of the target 
nucleus. The rates are calculated for an isotopically pure target and for a mixture of 
hydrogen isotopes. For a mixture of isotopes the rates of direct and inverse charge exchange 
with deexcitation are also calculated. O 1995 American Institute of Physics. 

1. As is well known, the process of deexcitation in me- 
sonic deuterium in a deuterium-tritium mixture is of great 
interest in connection with muonic catalysis of nuclear fu- 
sion, since the efficiency of the mesonic catalysis cycle, i.e., 
the number of catalysis events per muon, is determined by 
the occupation q,, of the ground state of mesonic 
deuterium.' The only studies of the sequence are character- 
ized by a small energy release (of order a few electron volts) 
mainly determined by chemical reactions, including molecu- 
lar dissociation in the target. The dissociation rates depend 
weakly on the collision energy. In the later stages first Cou- 
lomb deexcitation and then the external Auger effect become 
important, and for the lower states, radiative transitions. Be- 
sides deexcitation processes one should also take into ac- 
count capture of a muon from a light isotope to a heavier one 
in a mixture of hydrogen isotopes, as well as capture from 
mesonic hydrogen to helium, which is inevitably present in a 
mixture as a result of the natural decay of tritium and fusion 
reactions. It is clear that the capture processes influence the 
magnitude of q,, and hence the efficiency of catalysis. In 
order to calculate q ,, it is necessary to know the rates of the 
deexcitation and capture processes; these, generally speak- 
ing, depend on the collision energy. 

Thus, one problem which arises in calculating q,, is 
knowing the collision energy. It is well known2 that the en- 
ergy of a mesonic atom immediately after formation is about 
1-1.5 eV. Subsequently in the process of deexcitation the 
mesonic atoms slow down as a result of elastic collisions. On 
the other hand, some processes (Coulomb deexcitation and 
the related processes of charge exchange with deexcitation) 
can accelerate the mesonic atom3 due to the absence of a 
third light particle which would carry away most of the en- 
ergy produced (-0. l ln2  in mesonic atomic units). Mesonic 
atoms with energies up to =70 eV have been observed 
experimentally.4 In a number of treatmentssy6 the occupation 
q ,, of the ground state of mesonic deuterium was calculated 
as a function of the tritium concentration C, under the as- 
sumption that the occupation E of a certain excited state is 
equal to unity and the energy of the mesonic atom in this 
state is given. At high concentrations C,-0.5- 1 the calcu- 
lated values of q,, deviated from those in the experiment? 
Generally speaking, q,, should be calculated including not 
only deexcitation and charge-exchange processes but also 

elastic scattering, which is responsible for thermalizing the 
mesonic atoms. 

2. The effective interaction potential of excited mesonic 
hydrogen in terms of the parabolic quantum numbers 
(n,nl ,n2,m) due to a nucleus with charge Z is determined 
by the linear Stark effect 

where R is the internucleus separation. The condition for 
applicability of the quasiclassical approximation here is 

where M=MzMH/(Mz+MH) is the reduced mass of the 
nuclei and MH and Mz are the masses of the individual nu- 
clei. We have used mesonic atomic units (m.a.e., f i  = m = e 
= 1,  m- '=rn, '+~, ' ,  where m p  is the muon mass). 

It is clear that this condition is satisfied for n l  #n2.  
Thus, we can regard the mesonic atom as moving along a 
classical trajectory with impact parameter p. Below we use 
the asymptotic (for particles colliding with velocity u 4 O )  
theory of nonadiabatic transitions,8 according to which the 
transition probability is completely determined by the analy- 
ticity properties of the terms corresponding to the initial and 
final states of the system in the complex plane of the inter- 
nuclear separation R. Hence the probability is large mainly 
close to the singularity (branch point) of the terms and can be 
written in the form of an exponential determined by the Mas- 
sey parameter 

where p(R) = J ~ M [ E  - U(R) - E ~ ~ I R ~ ) ]  is the radial mo- 
mentum, E  MU^/^ is the relative energy of the colliding 
particles, C is the integration contour, which begins and ends 
on the real axis and encloses the complex branch point R , ,  
and U R =  [ p  ,(R) +p2(R)]I(2M) is the average radial veloc- 
ity. For a double pass through the quasi-intersection region 
the transition probability is equal to 
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TABLE I. Comparison of the exact branch points R ,  and the approximate branch points kT of 
the T series for the g terms. 

and the cross section of the process is equal to 

The maximum impact parameter is determined by the 
requirement that p(R) be real on the actual trajectory, i.e., 
for RaRe  R,. The reaction rate scaled by the density 
N0=4.25 - 10" cmP3 of liquid hydrogen is equal to 

X =NOuv, (6) 

where v is the relative velocity of the colliding particles. 

Upper term 

(n, nl, n2. m) 
- 2,0, 1,O 

3,0.2,0 
3,O.l.l 

4.0,3,0 
4.0.2, 1 
4,0.1.2 
4.1.2,O 

5.0,4.0 
5,0.3.1 
5,0,2,2 
5,O. 1,3 
5, 1.3,O 
5, 1,2. 1 

According to ~olov'ev,8 the HpH system has two sets of 
branch points: the first, the S series, is associated with the 
restructuring of the potential of the quasiradial equation for 
the problem of two Coulomb centers at small values of R and 
the corresponding alteration of the muon wave function from 
a wave function of the bound atom to a molecular wave 
function. The branch points of the S series are unimportant 
for the processes in question, since for energies of interest to 
us (up to 50 eV) they are well below the Coulomb barrier. 

The second set of branch points is the T series, associ- 
ated with terms having quantum numbers (n ,n,  ,n2 ,m) and 

Upper term 

(n. n ~ ,  n2, m) 
6,0,5,O 
6,0,4,1 
6.0,3,2 
6.0,2,3 
6.0,1,4 
6, 1.4,O 
6. 1,3. 1 
6.1,2,2 
6,2,3,0 

7.0,1.5 
7,1.2,3 
7,2,3,1 

TABLE 11. Coulomb deexcitation rates h in units of s-', normalized to the density of liquid hydrogen. 

RT 

4.75; 4.14 

20.12; 9.45 
13.44;8.54 

45.50; 15.31 
36.18; 14.34 
25.65;13.25 
27.74;13.10 

80.82;21.53 
68.82;20.50 
55.89;19.40 
41.00; 18.16 
57.73; 19.32 
45.89; 18.03 
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RT 

126.1; 28.0 
111.34;26.95 
95.84; 25.80 
79.07;24.62 
59.85;23.48 
97.51; 25.75 
83.01; 24.47 
67.42;23.11 
69.62;23.04 

81.65;28.94 
92.33;28.37 
96.90;28.22 

RT 

4.6; 4.2 

20.0; 9.47 
13.36;8.52 

45.4; 15.3 
36.1; 14.3 
26.6;13.1 
27.6;13.2 

80.8;21.6 
68.7:20.5 
56.5;19.3 
44.2; 17.8 
57.6; 19.4 
45.5; 18.0 

I-iT 

126; 28 ' 

111;27 
96.2; 25.7 
81.1;24.4 
66.2;22.7 
97.4; 25.8 
82.5; 24.5 
67.5;23.0 
69.2;23.1 

92.6;27.8 
94.1;28.1 
95.9;28.2 



FIG. 1. Term configuration and T and P branch points for a d- t mixture. 
The squares indicate the path of a transition needed to bring about the 
Coulomb deexcitation reaction (7). 

( n +  1 ,n l  ,n,+ 1 ,m) .  It determines the rate at which a term 
reaches the peak of the barrier in the quasi-angle equation of 
the two-center problem. One must distinguish between sym- 
metric ( g )  states and antisymmetric ( u )  states. Both types 
have a T series. The real part RT of the branch point is the 
same for both g  and u  states, but Im RT(u)  = 2  Im R T ( g ) .  
For this reason the probability of a transition between u  
terms is much smaller due to the large values of the Massey 
parameter. 

For H@' systems with HZH' a P series of branch 
points appears, associated with the exchange interaction. The 
difference in the masses of the H and H' isotopes is equiva- 
lent to a difference in the nuclear charges,8 so that the heavy 
isotope H' corresponds to a larger charge, equal to 1 + AZ.  

The difference in the charges is A Z - ( p 2 - p 1 ) / 2 ,  where p, 
and are the reduced masses of the H p  and H ' p  atoms, 
respectively. 

The branch points of the P series form an infinite se- 
quence of equivalent points having approximately identical 
values of Re R p .  All these points combine the specified ini- 
tial term ( n , n l  ,n2 , m )  with the corresponding final term, 
which has the same quantum numbers but a different muon 
localization. 

For the pairs p p d ,  p p t  and d p t  we have 
Re Rp>Re R T .  The coordinates of the T points, in contrast 
to the points of the P series, are essentially independent of 
the isotopic composition of the mixture. 

The branch points of the P series are responsible for the 
process of quasiresonant charge exchange of excited mesonic 
hydrogen in mixtures of hydrogen  isotope^.^ These transi- 
tions are characterized by a small Massey parameter, due to 
the smallness of the resonant defect Au,  which for the iso- 
topic mixtures treated is equal to ( 0 . 0 0 8  - 0 . 0 3 ) / n 2  m.a.e. 

3. The Coulomb excitation process 

(where H, H1=p ,  d ,  t )  was treated previously in a number of 
papers (see Refs. 9  and 10 and the works cited in Ref. 9 ) .  
The use of crude approximation for the coordinates of the 
branch points and also the use of an asymptotic expansion of 
the terms in calculating the Massey parameter should be re- 
garded as a shortcoming in previous calculations of the Cou- 
lomb deexcitation rate? As is well known? the location of 
the T point limits the applicability of the asymptotic expan- 
sion for the lower term. For the upper term the asymptotic 
expansion is invalid at these separations. 

TABLE IIIa. Coulomb deexcitation rates A in units of s-', normalized to the density of liquid hydro- 
gen, in mixtures of hydrogen isotopes. The initial term is of the form e Z ,  . 
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TABLE 111 b. Coulomb deexcitation rates A in units of s-', normalized to the density of liquid 
hydrogen, in mixtures of hydrogen isotopes. The initial term is of the form e Z ,  . 

Using the computers available to us, an exact calculation 
of the coordinates of the branch points of the T series is 
possible only for n S 6 .  Consequently, the branch points of 
higher states have been calculated using the quasiclassical 
approximation for the eigenvalues of the two-center problem 
derived in Ref. 11. To determine the coordinates of the T 
points the system of Eqs. (25)-(27) of Ref. 11 has been 
solved numerically1) (and the eigenvalues for the two-center 
problem at the branch point are determined at the same 
time). It is found that the approximate branch points agree 
well with the exact values in the range of n where a com- 
parison is possible (Table I). 

To calculate the Massey parameter we have used the 
quasiclassical values of the terms," but not the asymptotic 
expansion. For the difference of the terms in this case we 
have used the approximation 

which is a correct description of the basic behavior of the 
terms close to a branch point. This yields for the Massey 
parameter 

where u,(p) is the average radial velocity at the point 
R=Re Re. 

Only attractive potentials ( A  v= n - n2<0) have been 
treated; these make a larger contribution to the cross section, 
due to particle "focusing." The shielding of the target 
nucleus charge by atomic electrons is taken into account in 
the same way as in Ref. 5. The shielding potential u(R) is 
calculated as 

where we have written B=Rla, ,  and a, is the Bohr radius. 
In the case H=H1 the main contribution to the cross 

section for the process comes from transitions between g 
terms, since we have Im RT(u) -2 Im RT(g) and the transi- 
tion probability between u terms is strongly suppressed. In 
this case the cross section for the reaction (7) with a given 
value of n is calculated as the sum 

I! 
R where an(A v) is the mean value of the cross section for the 

g and u states: 
FIG. 2. Terms in a d-r mixture. The squares indicate the path of a transition 
needed to bring about the charge-exchange reaction with deexcitation (14). u,(Av) = [an(A v,g) + an(A v,u)]= 4 an(A v,g). 
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TABLE IV. Charge-exchange rates in units of s-' with the deexcitation (14). 

Table I1 displays calculated Coulomb deexcitation rates, 
normalized to the density of liquid hydrogen, for a symmet- 
ric system (H=H1). 

For a potential u(R)m - a l ~ ~  the square of the maxi- 
mum impact parameter is  pi,=^^^+^^, where Ro is the 
turning point (in this case Ro=Re R,). Thus, in the absence 
of shielding the cross section satisfies a m  a / &  + R: and the 
reaction rate A at low energies is proportional to 11 6. When 
shielding is included, p,, decreases sharply at low energies 
and the energetic dependence of X is smeared out. 

The isotopic dependence of the reaction rate is deter- 
mined by the dependence of the Massey parameter on the 
reduced mass, S = &. 

When H and H' correspond to different isotopes, we 
have to treat e Z ,  and e Z 2  terms, which for R<Re Rp coin- 
cide with the u and g terms of a symmetric system (H=H1). 

In the region R>Re Rp the e Z ,  term corresponds to a muon 
localized at the light nucleus, and the e Z 2  term is localized at 
the heavy one. As in the case of a symmetric system, Cou- 
lomb deexcitation arises from the T series of branch points. 
If H is lighter than H', the initial e Z ,  term corresponds to the 
u term. This would seem to imply that the reaction (7) is 
strongly suppressed in this case. This conclusion, however, is 
valid only for the direct transition between u terms through 
the T point. There exists a reaction channel, the P-T-P 
triple transition (Fig. I), in which there is no suppression. 
The transition probability in this case can be written as 

where wpi=(l-tanh Spi)/2 and w,=exp(-2ST) are the 
probabilities for a single transition through the P and T point 
(g-type), respectively. Here the suppression due to the two 
additional P transitions is negligible, since in the P transition 
the Massey parameter is small. 

If H is heavier than H', the initial term corresponds to 
the g term and the probability of Coulomb deexcitation is 
calculated as the product of the probability of a transition 
between terms through the T point and the probability of 
remaining in the g term while passing through the P points: 

The Coulomb deexcitation rates for H f  H' are shown in 
Table 111. 

4. Charge-exchange reactions with deexcitation, 

FIG. 3. Terns in a d-r mixture. The squares indicate the path of a transition 
needed to bring about the inverse charge-exchange reaction with deexcita- 
tion (16). 

where H' is heavier than H, can proceed as a double transi- 
tion through the T and P points (see Fig. 2). The transition 
probability in this case is equal to 
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TABLE V. Inverse charge-exchange rates in units of s-' with the deexcitation (16). 

w ( ~ ) = 2 w ~ ( 1 - ~ ~ ) w ~ l ( 1  -WPZ). (15) sition to the eZ2 term, which is associated with additional 
effective acceleration of the colliding particles at the transi- 

The charge-exchange rates with deexcitation are shown in uon point R ,  and 2). The energy of additional 
Table IV. acceleration is approximately equal to AZI~' .  For the case in 

Similarly, inverse charge exchange with deexcitation, question, with an potential, we have 

(Htp): +H+(Hp),*-, +Ht (16) P:ax- 1 + 1 u l l ~ .  Thus, this additional acceleration causes a 
reduction in p,, and the cross section relative to the oppo- 

can occur (Fig. 3), since the energy release associated with site case, when the initial state corresponds to the eZ2 term. 
deexcitation (n - l l2) l ln(n - 1 )12, is much larger than the This is especially pronounced for small values of and low 
resonance defect. Here the transition probability is energies, when the energy of the additional acceleration ex- -- 

w ( P > = ~ w T ( ~ - w T ) ( ~  -wpl)(l-wP2). (17) ceeds that of the colliding particles (cf. Tables IIIa and IIIb). 
In Table VI the Coulomb deexcitation rates are shown 

The inverse charge-exchange rates with deexcitation are 
shown in Table V. 

for n =3 ,4 ,  and 5 in the p ~ + p  system, along with the rates 
for the external Auger effect taken from Refs. 12 and 13. 

Note that reactions in which the initial state corresponds 
These rates do not depend on the collision energy if the latter 

to the eZ, term (Tables IIIa and IV) occur through the tran- 
is much less than the transition energy in the mesonic atom. 
As can be seen from the table, the Coulomb deexcitation 

TABLE VI. Coulomb deexcitation rates in units of s-' for the rates are an order of magnitude smaller than the Auger tran- 
p ~ + p  system, normalized to the density of liquid hydrogen, sition rate. Thus, acceleration of a substantial fraction of me- 
and the rates XA for the external Auger effect, taken from Refs. sonic atoms to energy =70 eV, as observed in Ref. 4, cannot 
12 and 13. be explained by Coulomb deexcitation. 
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