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We construct a general theory of continuous quantum measurements of two-mode fields. Both 
measurements of one mode of the field and independent simultaneous measurements of 
both modes of the field are investigated. Exact expressions are obtained for the basic characteristics 
of the continuous photodetection process, and are used to develop methods for numerical 
modeling of this type of random process. The theory is used to analyze temporal evolution during 
continuous measurements of a field generated by a parametric frequency converter. It is 
shown that a Fock state can be produced in one mode of the field by carrying out continuous 
measurements of the other. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Over the last few years, the need to describe various 
experimental situations in which the measurement system 
and the system on which measurements are carried out inter- 
act with one another continuously throughout the entire mea- 
surement time has stimulated further elaboration of the 
theory of continuous quantum measurements. Such situations 
arise, for example, in photon counting experiments or during 
observations of so-called "quantum jumps" in investigations 
of resonance fluorescence from atoms or ions confined in a 
trap. The standard quantum mechanical theory of measure- 
ments, in which the initial state of the system is given and 
the probability of finding the system in some other state at a 
later time is calculated, cannot give a complete representa- 
tion of the temporal evolution of the experimental system in 
such cases. In the standard theory, it is assumed that mea- 
surements are carried out only at definite times at which the 
experimental system interacts with a detector. Each measure- 
ment event irreversibly destroys the preceding state of the 
system, and the system ends up in a new state. It is assumed 
that the system evolves freely without interacting with a de- 
tector during the time intervals between measurements. 

In photon counting experiments, as in certain other ex- 
periments, the influence of the detector amounts to more than 
just the reduction of the state of the system as a result of 
recording the next count. The detector continues to influence 
the system during the time intervals between the counts. This 
is related to the fact that when a detector interacts continu- 
ously with the experimental system, information is obtained 
about the state of the system at each moment of measure- 
ment, irrespective of whether a count has been recorded or 
not. To investigate such situations, the measurement problem 
must be approached in a different manner. The description of 
this approach forms the subject matter of the theory of con- 
tinuous quantum measurements. 

A general method for studying continuous quantum mea- 
surements was proposed by Srinivas and ~avies . '  In study- 
ing the photodetection process for one-mode fields, they rep- 
resented the random occurrence of photocounts at a detector 
by a sequence of two elementary events. One event, de- 

scribed by the reduction operator J, consists of detecting a 
photon, as a result of which the state of the system is reduced 
to the state with one less photon. The second event is the 
evolution of the system between two successive counts. This 
event is described by the evolution operator S,,,. In intro- 
ducing this operator, all factors influencing the temporal evo- 
lution of the field, including both the interaction with the 
detector that carries out the continuous measurements and 
with other elements of the experimental system (sources, res- 
ervoirs, and so on), must be taken into account. This repre- 
sentation makes it possible to construct a scheme to describe 
the continuous photodetection process in such a way that to 
find the basic characteristics of the process it is only neces- 
sary to determine the form of the evolution and reduction 
operators for any given system. Then, given the initial state 
of a one-mode field, the temporal evolution of the field dur- 
ing the measurement process can be described. 

This approach to the problem of continuous quantum 
measurements was further elaborated in Ref. 2, and different 
authors have used it to describe various systems. For ex- 
ample, in Refs. 2 and 3 the temporal evolution of one-mode 
fields with various initial states was investigated; Ref. 4 de- 
scribes a situation in which the effect of the environment is 
taken into account in addition to the interaction between the 
one-mode field under study and a detector; in Refs. 5 and 6, 
continuous measurements of one mode of a field generated 
by a parametric frequency converter were studied. However, 
the approach used in these papers is highly idealized, since it 
is based on a description of the interaction between an un- 
damped one-mode field and perfect detector, whose effi- 
ciency is 1. To obtain results that describe real experimental 
situations more completely, a number of refinements must be 
introduced into the experimental system. One is to take into 
account imperfections of the system related either to damp- 
ing of the one-mode field or the fact that the detector effi- 
ciency is different from 1, as a result of which some photons 
which are initially present in the field are lost. This situation 
is examined in detail in Kef. 7. 

Another possible refinement is to study the measurement 
process in multimode fields. A possible first step in this di- 
rection is to construct a theory of continuous photodetection 
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in two-mode fields; this is the subject of the present paper. In 
the present paper we propose a way to describe the temporal 
evolution of both modes and of the total two-mode field 
during the measurement of the number of photons in one 
mode or during simultaneous independent measurements of 
the number of photons in each moide. The formulation of a 
measurement scheme in which a separate detector carries out 
continuous measurements of one mode of the field makes it 
possible to use the well-studied formalism for describing 
continuous measurements of one-mode fields to model the 
continuous measurement of two-mode fields. In addition, by 
treating the results of independent measurements of both 
modes of the field as a random process of photon detection 
by a measurement system consisting of two detectors it is 
possible to construct a theory of continuous measurements of 
the total two-mode field. 

In Sec. 2, we give a brief exposition of the general ap- 
proach to the description of continuous measurements of 
one-mode fields, and present a way to obtain the basic equa- 
tion of the theory of continuous photodetection-the equa- 
tion for the reduced density matrix. This method is then used 
to derive the equations for the reduced density matrices of 
the fields under study. In Sec. 3, we analyze the theory of 
continuous measurements of one mode of a two-mode field. 
In Sec. 4, we use the theory presented here to investigate the 
temporal evolution of the field generated by a parametric 
frequency converter, during continuous measurements of the 
number of photons in the idler mode. In Sec. 5, we construct 
a theory of continuous measurements of both modes of the 
field, and methods for modeling this process are developed. 
Here, the given random process is described from two points 
of view-as a product of two independent processes measur- 
ing the number of photons in each mode of a two-mode field, 
and as the detection of photons in a two-mode field. Various 
characteristics describing the temporal evolution of each 
mode and of the entire field as a whole are determined on the 
basis of these approaches. In Sec. 6, we use the theory de- 
scribed above to investigate the field generated by a paramet- 
ric frequency converter. In Sec. 7, we show that a Fock state 
can be produced in one mode of a given two-mode field by 
continuously measuring the number of photons in the other 
mode. 

2. THEORY OF THE PHOTODETECTION OF ONE-MODE 
FIELDS 

The investigation of the continuous measurement of one- 
mode fields is based on the description of interactions be- 
tween the detection system, assumed to consist of a large 
number of ideal detectors, and the field being measured. An 
ideal detector, first studied by ~lauber? is a system whose 
response does not depend on the frequency of the incident 
radiation over a wide bandwidth, and whose dimensions are 
small compared to the characteristic spatial variations of the 
field. An example of such a system is an atom that is ionized 
upon absorption of a photon. The spectrum of such an atom 
is displayed in Fig. 1. Once the atom passes into a continuum 
state when the photon is detected, the atom stays in that state 
with high probability. Assuming that all atoms of a detector 
are in the ground state at the beginning of the measurement, 

FIG. 1.  Energy level scheme of an ideal photon detector. 

and determining the number of ionized atoms after the mea- 
surement, we can find the number of counts recorded. More- 
over, the result of continuous measurements of the number of 
photons is a random set of photocount occurrence times. The 
main problem of the theory of continuous measurements is to 
describe the statistical properties of a given random sequence 
of points and to determine the characteristics of the radiation 
being measured on the basis of these properties. To solve the 
problem, the projection operator P (  q )  is introduced: 

P (  ?) =A exp - v~ c : ( j ) c ~ ) )  , i j.a 
(1) 

where ck+ and ck are creation and *hilation operators for 
the kth atom of the detector, and N is the normal-ordering 
operator, which positions the creation operators to the left of 
the annihilation operators. The summation extends over all 
excited states of the jth atom of the detector and over all 
atoms of the detector. 

The most important property of the projection operator 
P ( q )  is that for q= 1, the operator becomes the projection 
operator onto the ground state of all atoms of the detector. 
Then, expanding P (  q )  in a Taylor series near ?= 1, we ob- 
tain another class of projection operators onto a space with n 
ionized atoms of the detector, with all other atoms remaining 
in the ground state: 

The average of this operator over the states of the field (fl 
and detector (d) gives the probability that exactly n ionized 
atoms of the detector are present at time t :  

where p ( t )  is the density matrix of the system consisting of 
"field + detector." If it is assumed that photon absorption 
during detection is irreversible (i.e., the recombination of 
photoelectrons accompanied by the emission of a photon is 
neglected), then P:;f?,) can also be defined to be the probabil- 
ity that exactly n photons are detected in the field over the 
time interval [O,t) .  It is this quantity that is studied in most 
theories of photodetection. However, an analysis of the con- 
tinuous measurement process only on the basis of this quan- 
tity is incomplete. The description of the statistical properties 
of the detected radiation is based on determining the prob- 
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ability density , t2 ,  ..., t,) for the detection of n pho- 
tons by time t, with no other counts interspersed. This dis- 
tribution function is related to P[;f,\) 

and completely characterizes the measurement process. 
To find pLo,f)(tl ,t2 ,..., t,) and P:$, , it i~~necessary to 

solve the equation for the projection operator P(") averaged 
over the states of the detector: 

which can be obtained by multiplying von Neumann's equa- 
tion for p(t) by $") and then averaging: 

Here, H = Hf + Hd+ V is the Hamiltonian of the experimen- 
tal system: Hf= fiwoa+a is the Harniltonian of the one- 
mode field, Hd= ~ ~ , ~ h o y ) c L ( j ) c y )  is the Hamiltonian of the 
detector, and V =  ~ , , ~ ( ~ ~ ) a c ~ ( j ) + ~ , * ( j ) a + c ~ ) )  is the inter- 
action Hamiltonian of the one-mode field and detector. The 
operators a +  and a are creation and annihilation operators 
for the field under study. It follows from Eq. (5) that m(") 
X(t) can also be interpreted as the reduced density matrix of 
the field after the detector has recorded n photons. 

Expanding the right-hand side of Eq. (6) and using the 
commutation relations between the field and detector opera- 

tors [a,a+]= 1, [ c ~ " , c ~ ( ~ ) ] =  ~ ~ . . , , t ~ ,  and [ c ( I ) , a+ ]=~ ,  
we obtain the following expression for d n ) ( t ) :  

where X=$;CaJ pji')2 exp[id(t-r)]d~ is a parameter that 
specifies the detector efficiency, and Hefi= ( wo - ih)a+ a. 

In deriving this equation, we neglected terms describing 
the recombination of photoelectrons. The trace of d n ) ( t )  
over all possible states of the field gives the probability 
P$,:). Then, if the solution of Eq. (7) can be represented as 
a successive integration of some quantity over time, then the 
probability density pLo,t)(t , t2 ,  ..., t,) can be determined from 
Eq. (4). This makes it possible to describe the properties of 
continuous measurements and construct a method for mod- 
eling this random process. 

3. CONTINUOUS MEASUREMENTS OF ONE MODE OF A 
TWO-MODE FIELD 

We assume that by time to, a field consisting of two 
modes (a and b) has been produced in a cavity. Let a detec- 
tor be turned on at time to, and let continuous measurements 
of the number of photons in the mode a be carried out over 
a long time interval [to, t). The Hamiltonian of such a sys- 
tem has the form 

Here, the symbols a and b denote the mode, Ha and Hb are 
the Hamiltonians of the individual modes of the field, Hd is 
the Hamiltonian of the detector, Had is the Hamiltonian of 
the interaction between mode a and the detector, and both 
Hd and Had are described by the expressions presented 
above. 

Using the method of Sec. 2, the equation for the reduced 
density matrix of the system after n photons have been de- 
tected can be written as follows: 

where 

Here a ( a + )  and b(b+) are annihilation (creation) operators 
for modes a and b, respectively. 

The solution of this equation can easily be written as a 
recurrence relation: 

which relates the reduced density matrix of the system after 
n counts have been recorded to the reduced density matrix of 
the system after (n - 1) counts have been recorded. The evo- 
lution operator S t , ,  and the reduction operator J are given, in 
this case, by the expressions 

Expanding (ll) ,  the solution of Eq. (8) can be expressed in 
terms of the initial density matrix of the field: 

Comparing this solution to (4) and (5), we obtain a con- 
sistent interpretation of the photodetection process as a se- 
quence of photocounts occurring at times 
to<tl<...<t,-l<tn. The solutions (11) and (14) are analo- 
gous to the expressions obtained for the reduced density ma- 
trix for the case of a continuous measurement of one-mode 

The measurement process for one mode of a two- 
mode field can therefore be represented as a measurement 
process for a one-mode field with a certain initial state 
p(to) that characterizes the actual relationship between the 
two modes of the field. Then the measurement process can 
be described by the sequence of events illustrated in Fig. 2, 
which consist of a sequence of reductions of a two-mode 
field to a state described by the normalized reduced density 
matrix, as a result of recording the next count: 
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FIG. 2. Sequence of interconnected events describing the continuous mea- 
surement process in one mode of a two-mode field. 

The detection of each count marks the removal of one pho- 
ton from mode a, and therefore the reduction of the state of 
mode a to a state in which there is one less photon. As result 
of the initial relationship between modes a and b, the infor- 
mation obtained as a result of the measurement leads to ad- 
ditional information about the state of mode b, i.e., the re- 
sults of the measurement effect a change in the state 
description of both modes a and b: 

The state of mode a after the next count determines the 
conditional elementary probability that the next nth count is 
recorded at time t, if the preceding count was recorded at 
time t , - , :  

The continuation of the measurement process after the 
nth count has been recorded is closely related to the prob- 
ability that mode a is not in the vacuum state after the 
(n- 1)th count: 

I,, , ~(")( t , l t , -~)dt ,= 1 -pp&l)(t,-l). (19) 

The foregoing characteristics of the random photocount 
(n-  1) detection proce~s-~(")(t,), E(")(t, It,- ,), pa oo (tn- 

completely specify the continuous measurement process for 
one mode of a two-mode field, and they make it possible to 
model the process, just as in one-mode fields. 

4. CONTINUOUS MEASUREMENTS OF THE IDLER MODE 
OF A FIELD GENERATED BY A PARAMETRIC 
FREQUENCY CONVERTER 

To illustrate the theory of continuous measurements of 
one mode of a two-mode field, we consider a measurement 
of the number of photons in the idler mode of the field gen- 
erated by a parametric frequency converter. 

4.1. Generation of a two-mode field by a parametric 
frequency converter 

Two optical modes-the signal mode and the idler 
mode-are generated from the vacuum state by a parametric 
frequency converter. A quantum-mechanical relationship is 
established between them by the interaction Hamiltonian 

where k= koeie is the interaction constant, the operators 
a ( a+)  are the creation and annihilation operators of an indi- 
vidual mode, and subscripts s and i denote the signal mode 
and the idler mode, respectively. 

Since the initial state of both fields is the vacuum state, 
the initial density matrix of the desired state of the field can 
be represented in the form 

The temporal evolution of the initial state of the field is 
determined by the evolution operator U(t,O): 

which can be found by solving the Schrijdinger equation 
with initial condition U(0,O) = 1 : 

Then, by time t = to, the density operator p(t) of the two- 
mode field will have the form 

It follows from this expression that the output fields of the 
signal and idler modes are correlated, as manifested by the 
presence of off-diagonal elements in Eq. (24). This correla- 
tion is related to the fact that the parametric frequency con- 
verter generates photons in pairs?710 The average of (24) 
over states of the idler mode yields the density operator for 
the signal mode before the measurement process starts (up to 
the time to): 

Likewise, the density operator of the idler field is 

One can see from Eqs. (25) and (26) that the signal and idler 
fields prior to the measurements are in a thermal state in 
which the mean number of photons is sinh2(koto), and de- 
pends on the generation time to. 

In summary, the central problem of the theory of con- 
tinuous quantum measurements can be stated as follows: 
from vacuum states, a parametric amplifier generates two 
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fields-the signal and idler fields-whose states are corre- 
lated up to the time measurements start. A detector is turned 
on at time to  and carries out continuous measurements of the 
idler field. Below we investigate the temporal evolution of 
these fields during the detection process, and numerically 
model the random photon detection process. We note that 
this problem was also proposed for consideration in Ref. 5 
by M. Ueda. 

4.2. Temporal evolution of the state of a correlated field 
during continuous measurements of the idler mode 

The continuous reduction of the state of the field gener- 
ated by a parametric amplifier during continuous photodetec- 
tion of the idler mode is described in detail in Ref. 5. Here, 
we briefly discuss the basic results that are required to de- 
scribe the temporal evolution of the signal and idler modes 
of the field. 

In the time intervals between the nth and (n+ 1)th 
counts, the state of the correlated field is determined by the 
normalized reduced density matrix: 

where (:+") is a binomial coefficient. It is evident from this 
expression that the complete correlation between the signal 
and idler fields that exists prior to the measurements is pre- 
served by the latter. The state of the idler and signal modes is 
described by identical density matrices. However, the matrix 
elements of the signal mode are shifted with respect to the 
idler mode by exactly the number of counts recorded. Thus, 

i.e., because of the strong correlation between modes at the 
moment the measurement starts, recording n counts in the 
idler mode indicates that at least n photons are present in the 
signal mode. 
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FIG. 3. Temporal evolution of the mean number of photons in the signal 
mode (1) and idler mode (2) during the measurement process. The mean 
number of photons in each mode prior to the measurements is 25. 

The temporal evolution of the photon statistics of the 
signal and idler modes will differ while recording the idler 
photons. The dependence of the mean and variance of the 
number of photons in the signal and idler modes on the num- 
ber of detected photons and the time is given by 

Figure 3 displays the temporal evolution of the mean number 
of photons in the signal (I) and idler modes (2). It is easy to 
see that in the intervals between counts, the mean number of 
photons decreases monotonically with time in both the signal 
and idler modes. When the counts are recorded, the mean 
number of photons increases abruptly. This jump results 

FIG. 4. Temporal evolution of the Fano factor for the signal mode (solid 
line) and idler mode (dashed line). The dotted line corresponds to the as- 
ymptotic Fano factor for the initial mode. 
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from the super-Poissonian character of the fields in question, 
and was discussed in Ref. 3. After a count is recorded, the 
mean number of photons in the idler mode once again starts 
to decrease monotonically, and with time it drops to zero. 
This is explained by the fact that as the counts are recorded, 
photons are systematically removed from the initial field, and 
if the measurement lasts long enough, the idler mode will 
end up in the vacuum state. The mean number of photons in 
the signal mode after a count also decreases monotonically, 
but to the number of recorded counts and not to zero. This is 
related to the information that at least n photons are present 
in the signal mode, which is derived by measuring the idler 
mode. 

In other words, as a result of a measurement, the idler 
mode is reduced to the vacuum state and the signal mode is 

reduced to a Fock state in which the number of photons 
equals the number of recorded counts in the idler mode: 

This result can also be confirmed by investigating another 
important characteristic that determines the photon statistics 
of the fields, the Fano factor: 

For the signal and idler modes, the Fano factor is 

For the idler mode, in contrast to the signal mode, the 
Fano factor does not depend on the number of recorded 
counts, and with time it approaches 1 monotonically, in spite 
of the fact that the mean and variance of the number of 
photons are discontinuous at the moment the counts are re- 
corded. This is a special property of temporal evolution dur- 
ing continuous measurements of fields initially in a thermal 
state.3 The temporal evolution of the Fano factor for the idler 
mode is displayed in Fig. 4 (dashed curve). 

The Fano factor for the signal mode depends not just on 
time, but on the number of recorded counts as well. In addi- 
tion, F,(t) decreases discontinuously at the time a count oc- 
curs, and if at least one count is recorded, it approaches zero. 
The jump in the temporal evolution of the signal Fano factor 
at the time a count is recorded in the idler mode is related to 
a decrease in the uncertainty in the description of the signal 
mode, which in turn is related to the acquisition of additional 
information about the number of photons. The Fano factor 
for the signal mode is displayed in Fig. 4 (solid line), whence 
it follows that during a measurement, the photon statistics of 
the signal mode change from super-Poissonian at the start of 
the measurement to sub-Poissonian at the end of the mea- 
surement. 

4.3. Modeling a continuous measurement of the idler mode 

Let a measurement start at time to, and let n photons be 
recorded by time t. Then probability density for n counts to 
occur at times t ,  , t2 ,..., t, , with no other counts interspersed, 
takes the form 

The conditional probability that the nth count occurs at time 
t, if the (n - 1)th count occurred at time t,- is 

The possibility that the measurement process terminates after 
the nth count is recorded is given by the probability that the 
idler mode is in the vacuum state after the (n- 1)th count 
has been recorded: 

It fails to vanish in the general case, and the measure- 
ment process after the nth count has been recorded can ter- 
minate with probability pj&- ')(t,- l )  and continue with 
probability 1 -pl&-')(t,- ,). In the limit t,- , 4 m ,  we ob- 
tain PI&')(tn-l) = 1 ,  i.e., as the measurement time in- 
creases, so does the probability that the measurement termi- 
nates, and termination is virtually certain after a sufficiently 
long time. This ensures that the measurement process is 
bounded in time. The probability pl& ')(tn- ,) also depends 
on the time at which measurements start. The greater the 
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X (1 -exp[ - 2A(r- to)] ). Both P [ ; , ~ ,  and (n(t)) depend 
on the duration of the measurement. In the limit 
( t - t o ) t ~ ,  P ( I )  [ to  ,t) t [tanh2(k,,to)l"lcosh2(k,,to), and the num- 
ber of recorded counts equals the number of photons initially 
present in the idler mode. A plot of the distribution is 
displayed in Fig. 5. As the measurement time increases, the 
distribution shifts to the left, and the mean number of re- 

0 20 40 60 80 n 
corded counts increases. However, the displacement of the 
graph eventually stops. This indicates that the mean number 
of photons detected during the measurement process will be 
limited. 

FIG. 5. Distribution ~f:~).,) of the probability that exactly n photons am We modeled the random photocount detection process 
detected in the idler mode in the time interval [ to,t ) .  The mean number of 
photons in the mode prior to the measurements is 25. 

numerically on the basis of the characteristics obtained, and 
the results are displayed in Fig. 6. 

value of to, the lower the probability of termination at the 
nth step. This fact can be easily explained, since as to in- 
creases, so does the mean number of photons in the idler 
mode, which equals sinh2(koto). 

The probability that exactly n counts are recorded in the 
time interval [to ,t) is given by 

whereupon it follows that the distribution ~ f : o ) , , )  is a negative 
binomial distribution and describes a thermal state in which 
the mean number of photons is (n(t))=sinh2(koto) 

5. CONTINUOUS INDEPENDENT MEASUREMENTS OF 
EACH MODE OF A TWO-MODE FIELD 

In this section, a theory of continuous quantum measwe- 
ments is constructed for independent simultaneous measure- 
ments of the number of photons in each mode of a two-mode 
field. We assume, as in Sec. 3, that a two-mode field has been 
produced in a cavity, and that the two modes can be sepa- 
rated so that independent measurements of the number of 
photons in each mode can be carried out with two different 
detectors. 

The Hamiltonian of such a system will contain terms 
beyond those found in the Hamiltonian (8), which describe 
the second detector and its interaction with the measured 
mode b. These are given by expressions similar to (3) and 
(4): 
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FIG. 6. Random realizations of the continuous mea- 

I surement of the idler mode of a field generated by a 
parametric frequency converter. The mean number of 
ohotons in the mode orior to the measurements is 25. 



In this formulation of the problem, each detector makes 
continuous measurements of one mode of the field. This 
makes it possible to use the familiar formalism in describing 
the continuous photodetection of one-mode fields to con- 
struct a theory of continuous measurements of two-mode 
fields. We introduce for each independent measurement pro- 
cess the projection operators p : ~ )  and P ? ~ )  onto spaces in 
which n l  counts are recorded in mode a and n2  counts are 
recorded in mode b. These are given by expressions given 
after Eq. (6): 

Since the measurements in modes a and b are independent, 
these operators commute with one another: 

Recording a count in any mode reduces the overall state 
of the system. The temporal evolution of the system during 
the measurement is described by the reduced density matrix 
~ ( " 1 * ~ 2 ) ( t )  after n l  counts are recorded in mode a and n2 
counts are recorded in mode b. This matrix can be written as 

where the trace extends over the states of both detectors. 
Multiplying von Neumann's equation for the density ma- 

trix p ( t )  by the projection operators p:') and p?" and 
calculating the trace over the states of the detectors, it can be 
shown that the reduced density matrix satisfies 

Here, 

where w,  and wb are the frequencies of modes a and b. In 
the derivation of Eq. (47) it was assumed that both detectors 
have the same efficiency, as specified by A. 

The solution of the equation for the density matrix can 
be written as a recurrence relation, 

where S t , ,  is the field evolution operator between two suc- 
cessive counts, and is given by (12). In addition, here we 
have introduced the operators J ,  and Jb , which describe the 
reduction of the corresponding mode, as a result of recording 
a count, to the state with one less photon: 
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Equation (49) is important in determining the basic charac- 
teristics of continuous independent measurements of each 
mode of a two-mode field. Its physical interpretation is as 
follows: The state in which n  counts are recorded in mode a 
and n2 counts are recorded in mode b can be reached both by 
recording a count in mode a (first term) and by recording a 
count in mode b (second term). In addition, the state of the 
field prior to a count will be different for these two possibili- 
ties. It follows from what we have said above that the state 
with a certain number of counts in the modes can be reached 
by various paths for which the counts in the modes are re- 
corded in different order, as shown in Fig. 7. To describe the 
measurement process, here we have introduced the condi- 
tional probability ' n 2 ) ( t , l t , - , )  that the next count is re- 
corded in mode a at time t ,  , if by time t , - ,  the n, counts 
were recorded in mode a and n2  counts were recorded in 
mode b , and similarly for mode b . The method for determin- 
ing them will be described below when we describe the 
method for modeling the random process of recording 
counts. 

Let n  counts be recorded by time t ,  ( n ,  in mode a and 
n2 in mode b) at times t l  , t2 ,..., t ,  . Then, using the operator 
relations 

and writing out (49), the reduced density matrix of the sys- 
tem can be expressed in terms of the initial state of the field 
as follows: 

The binomial coefficient c , :+ ,~  is the number of ways in 

which n  counts can be recorded in mode a and n2 counts in 
mode b. 

An important result that follows from the relations (52)- 
(54) and is reflected in (55) should be noted: to describe the 
temporal evolution of the density matrix of the system, it is 
only necessary to know the times at which the counts are 
recorded-regardless of which count occurred at which 
time-and the number of counts recorded in each mode. This 
makes it possible to denote the times at which counts are 
recorded simply by t  , t2 ,..., t ,  , where n  = n  + n 2 .  

Traditionally, the main objective of the theory of con- 
tinuous measurements was to derive expressions for the 
probability P):: ,~)  that n  counts are recorded in the time in- 
terval [ t o  , t ) .  For the present formulation of the problem, this 
probability can be expressed as 
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FIG. 7. Possible paths for the evolution of the 
p(2~"(f3) p'3.0'(t3, state of a two-mode field during independent si- 

p'",3'(t3) p(1,2)(t3) multaneous measurements of the number of 

photons in both modes of the field. 

z ( n ~ , ' 5 ) ( r n  F ( ~ , . % ' ( I ~  \ / b  

$"1."2' ( t")  

where P;::,;" is the probability that in the time interval 

[ to , t ) ,  ni  counts are recorded in mode a and n2 counts are 
recorded in mode b .  This quantity can be determined in 
terms of the reduced density matrix of the system, similarly 
to the case of continuous measurement of a one-mode field: 

The trace extends over the states of both modes of the field. 
The probability characterizes this measurement 

process from the standpoint of the probability density for n 
counts being recorded in each mode in any combination of 
the number of recorded counts and in any sequence, i.e., as a 
random occurrence of photocounts at one of the detectors. 
The introduction of the probability makes it possible 

to describe in detail the continuous measurement process for 
the given system, since it specifies the number of counts 
recorded by each detector. 

It follows from what was said above that the continuous 
measurement process can then be investigated in two ways. 
One is to represent the given random process as a combina- 
tion of the two independent measuring processes carried out 
by each detector. This representation makes it possible to 
investigate the temporal evolution of each mode of the field 
and of the entire field as whole, taking into account the se- 

quence in which the photocounts occur at the detectors. To 
model such a process, it is necessary to introduce new char- 
acteristics that describe the measurement process in each 
mode. On the whole, the characteristics of the continuous 
measurements in this case will be different from the cases 
studied previously. 

The second method is to consider the measurements to 
be a random process in which the photons in the two-mode 
field are detected, irrespective of the mode to which a count 
refers. The measurement of the number of photons in each 
mode is an integral part of the general photodetection pro- 
cess in a two-mode field. The problem is to describe the 
statistical properties of the set of random times at which the 
photocounts are recorded by a measurement system consist- 
ing of two detectors. This description is based on a represen- 
tation of the measurement process as a random integer pho- 
tocount detection process n ( t )  whose laws and 
characteristics are similar to those of a one-mode field Each 
method for describing the given measuring process will be 
discussed in more detail below. 

5.1. Measurement of a two-mode field as a set of two 
independent measurement processes on the number of 
photons in each mode 

This approach to the investigation of the measurement 
process in a two-mode field is based on a representation of 
the process as a sequence of events consisting of recording a 
photocount in one mode or the other. This random sequence 
can be analyzed by using the standard characteristics of the 
theory of continuous quantum measurements. In the case at 
hand, however, besides describing the sequence of events, it 
is necessary to model the event itself, which is a complicated 
random photocount detection process. To do so, it is neces- 
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sary to introduce new characteristics that define the measure- 
ment process in each mode, and to develop a new method for 
constructing random realizations of the occurrence of counts. 

Let n-1 events occur by time r n P l  at times 
t , t2,  ..., t, - . In addition, let n , counts be recorded in mode 
a and n2 counts in mode b. We study the process of record- 
ing photocounts, taking into account the "history" of the 
occurrence of counts in each detector, and will be interested 
in describing one realization of the given random process. 

The temporal evolution of the two-mode field during a 
continuous measurement is specified by the normalized re- 
duced density matrix: 

where J  is the operator of reduction of the field as a result of 
recording a count in one of the modes: 

J , ,  if a photon is detected in mode a, 
J = [  

J b ,  if a photon is detected in mode b. (59) 

Taking the commutation relations (52)-(54) into consider- 
ation, the expression for the density matrix p("l.n2)(tn) is 

It follows from Eqs. (58)-(60) that the probability of occur- 
rence of the next count does not depend on the times at 
which the preceding counts occurred, i.e., detection in two 
modes is a semi-Markovian process, just like the detection 
process in a one-mode field.2 It also follows from Eq. (60) 
that the state of the field at each measurement time can be 
determined simply from the number of counts recorded in 
each mode, and does not depend on the sequence in which 
the photocounts occur. Using the knowledge of the density 
matrix (60) after a certain number of counts have been re- 
corded in the two modes, we can find the probability for the 
occurrence of the next (nth) count and the path along which 
further measurements can proceed. Indeed, the conditional 
elementary probability C(")(tnltn- that the nth event oc- 
curs at time t, if the (n - 1)th event occurred at time tn- 
can be determined according to Eq. (49) as the sum of the 
conditional elementary probabilities that the next count is 
recorded in one mode or the other: 

~ ~ t h  + 1.n2)(tn l t  ) and ,n2+ 1) 
a n- 1 (tnltn- ,) can be ex- 

pressed in terms of the normalized reduced density matrix of 
the field: 

The probability that the measurement process continues after 
the occurrence of the (n - 1)th event is then 

which in the general case is not equal to unity. It can be 
shown (see Appendix 1) that there exists a finite probability 
that the measurement process terminates at the nth step: 

Therefore, the measurement process can terminate after the 
(n - 1 )th step with probability p$C2)(tn- and continue 

with probability 1 - p-2)(tn- ,). For two-field measure- 
ments, the probability that the measurement process termi- 
nates is equal to the probability that after the nlth count is 
recorded in mode a and n2 counts are recorded in mode b, 
both modes are in the vacuum state. 

Next, we construct a method for modeling the nth event, 
consisting of recording a photocount in one of the detectors. 
First of all, it is necessary to determine the mode in which 
the next count is recorded. The probability that a photocount 
occurs in mode a after the n lth count is recorded in mode a 
and n2 counts are recorded in mode b can be written in the 
form 

Similarly, for mode b we have 

Taking a random set of numbers xa uniformly distributed 
over the interval [0, 11 to characterize the probability that a 
count is recorded in mode a, and comparing each in turn to 

("1 ."2+ 1) the probability zb that a photocount is recorded in 
mode b prior to each measurement, it is possible to deter- 
mine the mode in which the next count is recorded: 

("1 ."2+ 1) x a > z r l  'n2+1) for a count in mode b, and x a < z b  for 
a count in mode a. 

The modeling of the measurement process in each mode 
is based on the theory developed for continuous photodetec- 

FIG. 8. Possible paths o f  the evolution of  the states of mode a after the 
n,th count is recorded in mode a and n ,  counts are recorded in mode b.  
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tion of one-mode fields. However, there are some peculiari- 
ties related to the existence of two modes in which counts 
can occur. Consider Fig. 8, which depicts the temporal evo- 
lution of the state of mode a at the nth measurement step. 
After the n th count is recorded in mode a and n2 counts are 
recorded in mode b, mode a is in the state p y 1 ' n 2 ) ( t n -  , ) .  
There are several different possibilities for continuing the 
random photocount detection process. For example, there is 

( n l  .n2) a probability paoo ( t , -  l )  that the measurement process 
terminates in mode a. This is the probability that mode a 
ends up in the vacuum state, while mode b can be in a state 
with any number of photons: 

When the measurement process terminates in mode a, the 
conditional elementaq probability that the next count occurs 
in mode a equals zero. Furthermore, as follows from Eqs. 
(66) and (67), counts can be recorded only in mode b. Mea- 
surements continue until mode b is in the vacuum state. The 
measurement process for the two-mode field then terminates 
completely. 

Besides the termination probability, there is also a prob- 
ability 1 - p~&'n2) ( t , -  l )  that the measurement process con- 
tinues in mode a. Here, however, in contrast to one-mode 
fields, there are two possibilities. The first is that a photo- 
count is recorded in mode a, after which the state of the 
mode will be determined by the density matrix p ~ 1 + 1 ' n 2 )  

X ( t , ) .  The second is that a count is recorded in mode b, 
after which the state of mode a also changes and will be 
determined by the density matrix p y l  ' n 2 + 1 )  ( t , ) .  This 
scheme is also confirmed by numerical modeling. For ex- 
ample, it can be shown (see Appendix 2) that the probability 
that photocount detection continues in mode a is 

The first term on the right-hand side of this expression is the 
probability that a count is recorded in mode a. The second is 
the probability that the measurement process does not termi- 
nate in mode a ,  but that a count occurs in mode b. It is the 
existence of this probability that makes the method of mod- 
eling the measurement process for the case of the measure- 
ment of the number of counts in one mode of a two-mode 
field different from the measurement of two-mode fields, 
since the detection time for the next count is determined only 
by the probability that a count is recorded in mode a. It 
should be noted that by indicating the mode in which the 
count will occur prior to each measurement step, we thereby 
make a choice of one of the aforementioned possibilities for 
the continuation of the measurement process in each mode. 

A procedure for finding the time of occurrence of the 
next count can be constructed on the basis of the foregoing. 
We introduce the normalized probability density that the nth 
count occurs at time t , :  

The probability that the next count will occur at a time r 
after the preceding count is then 

The photocount detection process in mode a can be modeled 
by a random sequence of numbers x uniformly distributed 
over the interval [0, 11, and the random delay times T can be 
obtained from Eq. (71). 

This scheme for generating the next count in one mode 
of a two-mode field is similar for both modes a and b. Ap- 
plying the scheme successively at each measurement step, 
we obtain a way to construct random realizations of the sto- 
chastic photocount detection process in a two-mode field 
during independent measurements of the number of photons 
in each mode. 

5.2. Measurements of the number of photons in a two-mode 
field 

We now consider the measurement process in a two- 
mode field from the standpoint of investigating the probabil- 
ity of finding n photons in the field. We assume that the 
measurement system that records counts as they occur at a 
detector contains two detectors that perform continuous mea- 
surements in each mode. The photodetection process in the 
two-mode field can then be represented as a chain of events 
consisting of successive reductions of the state of the field to 
a state in which there is one less photon as a result of a 
photon being detected in one of the modes. This sequence of 
events can be described by a set of reduced density matrices 
p'")(t,), which determine the state of the field being inves- 
tigated at each measurement time, the conditional elementary 
probabilities E(")(t,lt,- , )  that the next (nth) count occurs at 
time t, if the preceding measurement occurred at time 
t,- l ,  and the associated probabilities p$-')(t,- , )  that the 
measurement process terminates. In other words, we repre- 
sent the continuous quantum measurement process as a ran- 
dom discrete integer process n ( t ) ,  whose characteristics and 
laws are well known2 The description of the process is based 
on determining the probability density ~ ~ , ~ , ~ ) ( t ~  ,t2 ,..., t , )  for 
exactly n counts occurring at times t l ,  t 2 ,  ..., t ,  in the time 
interval [ t o ,  t ) ,  with no other counts interspersed, i.e., if it is 
possible to find such a quantity for the measurement process 
under investigation, then the descriptive formalism devel- 
oped for the random process n ( t )  can be used. 

It is well known that the probability density p ~ , ~ , , )  
X ( t l  , tp , . . . , t , )  is closely related to the probability P ~ Y ; , , ,  that 
exactly n counts are recorded in the time interval [ t o , t ) :  
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Using the relation (56) between the probabilities P[$,,, and 
p(nl 4 2 )  

ft0.t) 
, and their relation to the reduced density matrix (57) 

of the system after the nlth count is recorded in mode a and 
n2 counts are recorded in mode b, the probability density 
prt0 ,t)(tl , t2,  ..., tn) for the two-mode field is given by 

It is easy to see that (73) accounts for all possibilities in 
recording n photons with two independent detectors in a 
two-mode field, accommodating different photocount detec- 
tion sequences and different numbers of counts that can be 
recorded in each mode. 

We can now determine the conditional elementary prob- 
ability that the next count occurs in the two-mode field: 

and the normalized reduced density matrix of the two-mode 
field after n counts have been recorded: 

Subsequent description of the process of measuring the 
number of photons in a two-mode field is based on a scheme 
developed to analyze the random discrete process n(t). The 
probability that the measurement process terminates at the 
nth step (after the (n - 1)th count has been recorded) is 

This is the probability that the two-mode field is in the 
vacuum state after the (n- 1)th count, i.e., after the 
(n- 1)th count has been recorded the field is in the state 
p("- l)(tn- 1), and the measurement process can continue 
with probability 1 - p&- ')(tn- 1) and terminate with prob- 
ability p&-l)(tn-l). The probability density for the next 
count in the two-mode field occurring at time t, is 

This quantity specifies the probability of finding the next 
photocount some time 7 after the preceding count has been 
recorded: 

m 

dt, f l n ) ( t n / t n - l ) = ~  E [0,1]. (78) 

The random delay times 7= tn - tn- can be found by using 
a set of random numbers x uniformly distributed over the 
interval [0, 11. Applying this scheme successively at each 
measurement step, we obtain a realization of the random 
photocount detection process in a two-mode field using a 
measurement system consisting of two detectors. 

5.3. Temporal evolution of each mode of the field during 
continuous independent measurements of the 
number of photons in both modes of a two-mode field 

The foregoing characteristics and laws governing the 
continuous photodetection of a two-mode field make it pos- 
sible to investigate the temporal evolution of both the total 
two-mode field and each mode individually. The statistics of 
the radiation detected in an individual mode are character- 
ized by the moments of the number of photons in this mode 
after the n l  counts is recorded in mode a and n2 counts are 
recorded in mode b: 

Setting m =  1, we find the mean number of photons in 
the modes after the n l  counts is recorded in mode a and 
n2 counts are recorded in mode b. Using (57), it can be 
shown that this number is related to the probabilities 

The variance of the number of photons in each mode of the 
field can be represented in the form 
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The Fano factor can be written 

It is related to the mean number of photons in the mode 
before and after the next count is recorded in that mode. 
Depending on how the mean number of photons in a mode 
changes after the next count is recorded, the Fano factor can 
be greater or less than one.3 thereby yielding different statis- 
tics for the detected radiation. 

Another characteristic describing the statistical proper- 
ties of the radiation under study is the clustering parameter. 
As in the measurement of one-mode fields, this parameter 
can be introduced on the basis of the elementary conditional 
probability that the next count is recorded in one of the 
modes. For example, C~"n2)(tlt)  is the transition rate from 
the state in which the (n I - 1 )th count is recorded to the state 
in which the nlth count is recorded, or the rate of photo- 
counts in mode a if n2 counts have been recorded in mode b. 
The probability of such a transition during a brief time inter- 
val At is 

and the clustering parameter for photons in mode a ,  

describes the change in the probability that the n lth count is 
recorded by time tnl relative to the probability that the 
(n - 1 )th count is recorded in mode a if n2 counts have 
been recorded in mode b. If v:' 'n2)(tnl) > 1, we speak of 

nlth-order clustering of the counts in mode a. If vyl 'n2) 

X(tnl)< 1, we speak of n,th-order anticlustering of the 

counts in mode a. If T;1'n2'(rnl)= 1, the photocounts in 
mode a are independent of one another. A clustering param- 
eter can be introduced similarly for mode b. 

Taking into account the relationship between the condi- 
tional elementary probabilities 'n2)(tn Itn- ,) , C r l  'n2) 

X(tnltn-l , an ( n l  .n2) . 
) P[to,t) . 

the clustering parameter for each mode of a two-mode field 
can be represented in the form 

These expressions are similar to the relation obtained for the 
clustering parameter for one-mode  field^.^ Here, however, in 
describing the radiation detected in one mode, it is also nec- 
essary to take into account the number of photocounts re- 
corded in the other mode, a consequence of correlation be- 
tween the modes. 

In discussing the statistical properties of two-mode 
fields, it is necessary to consider the cross-correlation of the 
counts in the different modes. This correlation can be de- 
scribed by introducing the clustering parameter for photons 
in different modes on the basis of the local joint probability 
density h~:l,~"(t1 ,t2 ,..., tn) for n counts being recorded in 

0 ) 

mode a and n2 counts being recorded in mode b at times 
t l  ,t2,...,tn (with other counts possible in between). Such a 
local joint probability density can be expressed in terms of 
the Green's matrix ~ ( ' ~ ' 0 )  for the kinetic equation for the 
reduced density matrix u(t)  = Znl , n 2 ~ ( n l  '"2)(t). According 
to Eq. (47), the Green's matrix is given by 

Using the commutation properties of the operator 
D(','O) with respect to the operators J a  and Jb  , which are the 
analogs of the properties of the operator St,, (52)-(53), and 
the relation 

we find that 
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where 

J , ,  if a photon is detected in mode a, 
J=[ 

J b ,  if a photon is detected in mode b .  

("1 n z )  In the case of two independent modes, the quantity h[,  ; 
0 .  ) 

X ( t l  ,t2 ,..., t n )  factorizes into two factors, each of which de- 
termines the joint probability density for recording at least 
n l  ( n 2 )  counts in mode a ( b )  in the time interval [ t O , t )  at 
times t ~ ,  ,ha ,...,tnla ( t l b  9t2b ,.-.,tn2b): 

The ratio of the probability density h~:~;,;"(t1 ,r2 ,..., t , )  

for the two-model field under study to the analogous quantity 
for two initially independent modes of the field yields the 
clustering parameter for the modes of the field, which char- 
acterizes the difference between the distribution of counts in 
measurements of two-mode correlated fields from those in 
measurements of two independent modes: 

When g ( n l , n 2 ) >  1, there is statistical clustering of photo- 
counts in the different modes of a two-mode field. This 
shows up as an increase in the probability that a count will 
be recorded in mode a after a photon has been detected in 
mode b .  When g("l s n 2 ) <  1, the photocounts have a tendency 
toward anticlustering, and recording a count in one mode 
diminishes the probability that a count will be recorded in 
the other. When g ( n 1 7 n 2 ) =  1, the photocounts in the two 
modes are independent. The quantity g("lpn2) does not de- 
pend on time, and it defines the statistical properties of the 
random photocount detection process over the entire mea- 
surement time. 

6. CONTINUOUS MEASUREMENTS OF A TWO-MODE FIELD 
GENERATED BY A PARAMETRIC FREQUENCY 
CONVERTER 

6.1. independent simultaneous measurements of the 
number of photons in the signal and idler modes of the field 

We now use the theory presented above to describe con- 
tinuous measurements of the field generated by a parametric 
frequency converter (see Sec. 4.1). Let two detectors that 
independently measure the number of photons in the two 
modes of the field be turned on at time t o .  The goal is to 
study the temporal evolution during the measurement pro- 
cess of both the complete two-mode field and each mode 
individually. 

Suppose that by time t ,  , n counts have been recorded 
in the idler mode and n2 in the signal mode. The state of the 
two-mode system can be described by the normalized re- 
duced density matrix 

m 
k !  

x [ 2 e~~-2h(2k-n~-n~)t'][tanh~(k~t~)]~ 
k=max{nl .nZ] ( k - n l ) !  ( k - n 2 ) !  ' 

k !  I - '  
where /?= - ieie tanh(bo)  and t' = t -  t o .  

It follows from this expression that the intermode correlation at the start of measurements remains unchanged during the 
photodetection process, regardless of the number of counts recorded in each mode. The state of the signal and idler modes after 
n l  counts have been recorded in the idler mode and n2 counts have been recorded in the signal mode is described by the 
reduced density matrices pjnl '"2)(t)  and ps ("I ' " ~ ' ( t ) ,  respectively, whose diagonal matrix elements have the form 
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I (m+n,)!(m+n,)! 
exp[-2h(2m+nl - n 2 ) ( t - t o ) ] [ 2 ( k o t o ) ] m + n ~  

(n19n2)  m!(m+n,-n2)! 
Pimm (t)= rn , m a n 2 - n , ,  (100) 

k! k! 2 exp[-2A(2k-nl -n2)(r-to)][tanh2(koto)]k 
k=max inl .n2} (k-n,)! (k-n2)! ' 

Equations (100) and (101) reflect the law of photon conservation in each mode. Since photons are created in pairs in a 
parametric amplifier, the number of photons in the signal and idler modes is the same when measurements begin. During the 
measurement process, the number of photons in the modes decreases because photons are removed from the field as the counts 
are recorded. However, the sum of the recorded counts and the photons remaining in a mode must remain constant during the 
measurement process, and must be the same for the two modes: 

If the number of counts recorded in the idler mode is greater than in the signal mode (n > n2), then at least n - n2 photons 
remain in the signal mode, and the probability of observing the signal mode in a state with fewer than n - n2 photons is 0. 

The state of the field at any measurement time determines the conditional probability E(")(t,lt,- ,) that the next (nth) 
event occurs at time t, if the preceding event occurred at time t,- as well as the probability that the measurement process 
terminates at the nth step. This equals the probability that after the nlth count has been recorded in the idler mode and n2 
counts have been recorded in the signal mode, the field ends up in the vacuum state: 

Thus, the measurements can terminate only if the same number of photons has been detected in the two modes. Upon reaching 
a state with an equal number of counts in the modes after the nth count, the measurement process can continue with probability 
1 - p-2)(t,- l )  and terminate with probability p z 2 ) ( t , -  ,). If n # n2,  however, the measurement process must neces- 
sarily continue, at least until the same number of counts is recorded in both modes. 

The occurrence of the next count in the idler mode is determined by the conditional probability EInl+ 1'n2)(tn/t,- that the 
next count occurs in the idler mode at time t, if the preceding count occurred at time tn- l ,  with n l  counts having been 
recorded in the idler mode and n2 counts in the signal mode: 

m 
k! 

exp[-2~(2k-nl-n2)(t,-1-to)][tanh2(koto)]k 
(k-n,)! (k-n2)! k! I - '  . (104) 

x {k=rnz1  , I I~}  

The analogous probability for the signal mode takes the form 

m 

~ ( n l  . n2+1)  k! 
S (tn Itn- 1) = 2A { 2 k=max{nl ,n2+1} (k-nl)! (k-n2+ l ) !  I 

m 
k! 

e ~ ~ [ - 2 ~ ( 2 k - n , - n ~ ) ( t ~ - ~ -  to)][tanh2(koto)]k 
(k-n,)! (k-n2)! k! I - '  . (105) 

x {k=rng1 ,rt2} 
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The probability that the measurement process terminates in one of the modes is given by the probability of observing a given 
mode in the vacuum state after the next count is recorded, the number of counts in the other mode being arbitrary: 

Note that if the number of photons detected in one mode 
is greater than the number detected in the other, there will be 
a nonvanishing probability that the measurement process ter- 
minates in this mode. But, as soon as the number of counts in 
the other mode exceeds the number of counts in the given 
mode, the probability of termination drops to zero. 

It may seem that there is a contradiction here. For ex- 
ample, there exists a probability that the measurement pro- 
cess terminates in the idler mode when n f: n2. For ex- 
ample, let the measurements in the idler mode terminate after 
the nlth count is recorded (nl  an2 ) .  This means that ex- 
actly n l  counts will have been recorded in the idler mode. In 
the signal mode, however, the measurements will continue, 
and as long as n > n2,  the termination probability will van- 
ish. When the number of recorded counts is the same in the 
two modes, Eq. (100) tells us that the probability of the 
measurement process terminating in the signal mode is dif- 

("1 .np)  ferent from unity, i.e., there is some probability 1 - p s m  
X ( t n -  ,) that the measurement process continues in the sig- 
nal mode, and therefore the number of signal counts that can 
be recorded is greater than the number of idler counts. As a 

result, the probability that the measurement process termi- 
nates in the idler mode vanishes and the measurements must 
continue. 

This contradiction goes away if it is borne in mind that 
termination of the measurement process in one of the modes 
means that this mode (the idler mode, in the case described 

( n l  .n z )  above) is found precisely in the vacuum state and pim 
X ( t n -  ,) = 1 .  In (69), the probability that the measurement 
process continues in the second mode then consists of just 
one term, which determines the probability that the next 
count occurs in the given mode. The second term vanishes, 
since we have established that a count cannot occur in the 
first mode. The probability that the measurement process will 
continue in the second mode is therefore 

For the signal mode it takes the form 

FIG. 9. Random realizations of continuous in- 

W 1 1 1 ~ 1  I I  1 1 1 1 1 1  
I 1 1  I I I I dependent measurements of the number of pho- 

I I I  I I I tons in each mode of a field generated by a para- 
I  I I I I I I I  1 1 1 1  I I  I I  I I metric frequency convertet-The top bars mark 
i I  I 1  I l l  I  I  I 1  I l l  I I  the times of the counts in the idler mode and the 

I I l l  I I I  I I  I I 
I1 I  I I I  I l l  I  I  

bottom bars mark the times in the signal mode. 
The mean number of photons in each mode 

111 11 1111 111 111 1 I I  I 1  1 I  I I  
l l  I I I  IH I l l  I I  I I I I  I prior to the measurements is 25. 
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It is easy to see that when the number of recorded countsis- 
the same in the two modes, the measurement process also 
terminates in the second (signal) mode. 

The foregoing behavior leads to the following conclu- 
sion: the information obtained in the course of the measure- 
ments on the state of one mode dictates the result that must 
be obtained with a measurement of the second mode. 

The quantities presented above make it possible to nu- 
merically model the continuous photodetection of a two- 
mode field generated by a parametric frequency converter 
(Fig. 9), as described in Sec. 5.1. 

The probability density P;:,'~?) for the n ,th count being 

recorded in the idler mode and n2 counts being recorded in 
the signal mode is 

and is presented in Fig. 10. For short measurement times 
t- t o e  1/A, the probability of recording a different number 
of counts in the modes is different from zero (Fig. 10a). This 
is related to the fact that over such a measurement time in- 
terval, not all photons present in the modes can be recorded. 
Therefore, at the end of the measurement time interval, the 
modes can end up in states with a different number of pho- 
tons, and thus [see Eq. (102)l the number of detected pho- 
tons can also differ. When the measurement time is suffi- 
ciently long t- to% 1/A (Fig. lob), however, all photons 
initially present in the modes should be detected during the 
measurement process, i.e., the same number of counts should 
be recorded in both modes. 

6.2. Temporal evolution of the signal and idler modes 
during the measurement process 

The mth-order moments of the number of photons in 
each mode after the n th count has been recorded in the idler 
mode and n2 counts have been recorded in the signal mode 
take the form 

Having determined the first two moments from these expres- 
sions, we can investigate the temporal evolution of the mean 
number of photons in the modes and the Fano factor for each 
mode during the measurement process. Figure 11 displays 
the time dependence of the mean number of photons in the 
signal (curve I) and idler (curve 2) modes. One can see from 
these plots that the mean number of photons in the modes 
increases rapidly at the time the counts are recorded, and 
decreases monotonically in the time intervals between the 
counts. As we have already mentioned, such jumps are a 
consequence of the sub-Poissonian character of the field in 
the modes. For example, Figs. 12a and 12c display the initial 
distribution of the photons in the modes. Although the mean 
number of photons in the modes is 25, the probability that 
the field is in the ground state is high. Suppose a count is 
recorded in the signal mode at time to.  The photon distribu- 
tion in the modes changes abruptly (Fig. 12b, d), and the 
probability of observing a mode in the vacuum state van- 

ishes. (This happens in the signal mode because a count was 
recorded and therefore at least one photon was present in the 
mode. It happens in the idler mode because there is a corre- 
lation between the number of photons in the modes.) The 
redistribution of the probabilities of observing the field in 
one state or the other results in an abrupt change in the mean 
number of photons in the modes: 

The difference of one photon is related to the fact that one 
photon is removed from the signal mode when a count is 
recorded. 

It turns out that the temporal evolution of the mean num- 
ber of photons in the modes between counts depends on the 
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number of counts recorded in each mode. To understand this 
evolution, we employ the following relations: 

i.e., if after the n lth count is recorded in the idler mode and 
n2 counts are recorded in the signal mode, the next count 
was not recorded for a long time, the mode in which the most 
counts are recorded would approach the vacuum state (signal 
mode in Fig. 11) and the second mode would approach the 
state in which the number of photons equals the difference 
between the counts recorded in the two modes. This is a 
result of the conservation of photons in the modes: 

As soon as the next count is recorded, the mean number of 
photons in the modes increases discontinuously. As described 
above, the mean number of photons then once again decays 
monotonically. 

In Sec. 6.2, it was determined that during a prolonged 
measurement of the field generated by a parametric fre- 
quency converter, the same number of counts should be re- 
corded in both modes. For long measurement times, the 
mean number of photons in the modes must therefore be the 
same and must approach zero, in connection with the fact 
that all photons initially present in the modes are detected. 

The Fano factor given by Eqs. (85), (86), ( I l l ) ,  and 
(112) for the two modes of the field depends on the number 
of recorded photons. Its temporal evolution is displayed in 
Fig. 13 (curve 1 for the signal mode, curve 2 for the idler 
mode). As one can see, whenever a photon is detected, the 
Fano factor for both modes undergoes a jump, which can be 
either up or down. This depends on the mode in which the 
next count occurred: the Fano factor increases for the mode 
in which the count is recorded, and accordingly decreases for 
the other mode (Fig. 13a). The existence and magnitude of 
this jump are related to various factors-the time elapsed 
after the preceding count was recorded, the number of pho- 

FIG. 10. Distribution P ~ ~ ~ , ~ )  of the probability that over the time interval 
[t,,,t) the nlth count is recorded in the idler mode and n, counts are re- 
corded in the signal mode for measurement times (a) X(f -lo)< 1, and (b) 
X ( r  - r,) 1. The mean number of photons in each mode prior to the mea- 
surements start is 25. 

FIG. 11. (a) Temporal evolution of the mean number of photons in the 
signal mode ( I )  and idler mode (2) during independent measurements of the 
number of photons in each. (b) Temporal evolution of the mean number of 
photons in the modes when no counts were recorded for either mode during 
the long time f-tnl+n2+m. The time f,l+,2 is denoted in the figure by a 
vertical dotted line. The mean number of photons in each mode prior to the 
measurements is 25. 
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FIG. 12. Distribution of the number of photons in the modes prior to the 
measurements ((a) in the idler mode and (c) in the signal mode) and after a 
count is recorded in the signal mode at time to ((b) in the idler mode and (d) 
in the signal mode). The mean number of photons in each mode prior to the 
measurements is 25. 

tons detected in each mode, and so on. This dependence 
warrants further study. 

The evolution of the Fano factor between counts is gov- 
erned by the number of photons detected in each mode. For 
the mode in which the most photons were detected, it is 
always greater than unity (and in the limit of a long time 
between successive counts t ,  - t ,- l+  1/X, it approaches 
unity), i.e., the state of the given mode is super-Poissonian. 
For the mode with fewer recorded counts, the Fano factor 
evolves to zero for tn-  t,- , 9 111, thereby dictating the sub- 
Poissonian character of the field in this mode. This behavior 
is shown in Fig. 13b, which displays the temporal evolution 
of the Fano factor after 13 photons have been detected in the 
signal mode and 6 photons have been detected in the idler 
mode, if no counts were recorded for a long time. The Fano 
factor of the idler mode approaches zero with time. This 
confirms the result obtained above that the field will be in a 
Fock state. 

As we have established, however, for an infinitely long 
measurement time, all photons initially present in the field 
should be measured, and the number of recorded counts in 
each mode should be the same. Therefore, the temporal evo- 

lution of the Fano factor changes during measurements in 
such a manner that it ultimately tends to unity for both 
modes, thereby enforcing the super-Poissonian statistics of 
the initial state of the field in the modes. 

The clustering parameter for photons in the signal and 
idler modes takes the form 

As one can see from the plot in Fig. 14, it is greater than 1 
for all n ,n2>0, and it increases with the number of counts 
recorded in each mode. The photons in the different modes 
of the field generated by a parametric frequency converter 
thus tend to cluster. This explains the many coincident detec- 
tion times in the two modes in the simulated random photo- 
count detection process presented in Fig. 9. 

6.3. Measurement of the number of photons In a field 
generated by a parametric frequency converter 

Viewing the process described above as a method for 
measuring the number of photons in the two-mode field 
generated by a parametric frequency converter, we can put 
the probability density for exactly n photons being detected 
at times t 1  , t2  ,..., t ,  in the form 

Using Eq. (72), the probability of recording n photons over 
the time interval [ to  , t )  is then 

1 

[ [ I  + tanh(koto)e-2*('-'o)]n+1 

This distribution is displayed in Fig. 15. It is clearly 
periodic, which is responsible for the fact that the probability 
of detecting an even number of photons is different from the 
probability of detecting an odd number. This derives from 
the fact that the same number of photons are initially present 
in the two modes of the field, and therefore the total number 
of photons in the field is even. The nonvanishing probability 
of detecting an odd number of photons in a two-mode field at 
measurement times X(t - to) S 1 (Fig. 15a) results from all 
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photons present in the field not having been detected by this 
time (assuming that the efficiency of the detector equals 1). 
For long measurement times A (t  - to) S 1, this probability 
approaches zero (Fig. 15b). 

The quantities p~,, ,n(tl  , t2 ,..., tn) and P:::,,) completely 
determine the measurement process for the number of pho- 
tons in a field. They can be used as a basis for numerical 
modeling the random process of measuring the number of 
photons in a two-mode field by the method proposed in Sec. 
5.3. However, there is no specific need to solve this problem 
if modeling results are available for each measurement chan- 
nel. If we combine these results, which are presented in Fig. 
9, taking into account only the temporal sequence of the 
counts in the modes, i.e., studying the ordering of points 
irrespective of the mode in which the counts occur, we obtain 
a numerical realization of the random photocount detection 
process in the field generated by a arametric frequency con- 
verter. 

F 
1.1 <.J 

7. PRODUCTION OF A FOCK STATE OF THE FIELD IN ONE 
MODE BY CONTINUOUSLY MEASURING THE NUMBER 
OF PHOTONS IN THE OTHER MODE 

b 
10 

20 

10 

1 , 2  ,' 

The characteristics of the continuous measurement pro- 
cess described in Secs. 4 and 6, for one or two modes of a 
field generated by a parametric frequency converter, lead to 
the conclusion that it is possible to produce a state with a 
definite, precisely known number of photons in one of the 
modes. This conjecture is related to a property of the initial 
state of the field, in which the initial states of the signal and 
idler modes are the same and are highly correlated. Because 
of this property, the information obtained from measure- 

FIG. 13. (a) Temporal evolution of the Fano 
factor for the signal mode (1) and idler mode (2) 
during independent measurements of the num- 
ber of photons in each mode. (b) Temporal evo- 
lution of the Fano factor for the case when no 
counts are recorded in either mode over a long 
time t - t n l + ,  +m. The time tn,+", is denoted 
in the figure by the vertical dotted line. The 

ments of the state of one mode directly determines the state 
of the other, as described above. If exactly n photons were 
detected in the idler mode of a two-mode field and the mode 
was found to be in the vacuum state, the signal mode should 
then also contain precisely n photons, i.e., it should be in a 
Fock state. We prove this proposition on the basis of the 
characteristics of the continuous measurement process pre- 
sented above. 

Let n photons be recorded in the idler mode at time t ,  
after which the measurement process terminates. As follows 
from Eq. (27), this event can occur with probability p j $  
X(t) = [ 1 - exp[ - 2X(tn- to)] tanh2(kot)Y+'. Therefore, if it 
occurred with certainty, the density matrix of the two-mode 
field will be, according to Eq. (27), 

0 0.1 0.2 r 0 0.2 0.4 0.6 r mean number of photons in each mode prior to 
the measurements is 25. 

It follows then that the signal mode is in a state with a pre- 
cisely determined number of photons, equal to the number of 
counts recorded in the idler mode: 

This result is important both from the standpoint that it 
determines the possibility of producing a Fock state in one 
mode of the field by independent measurements in the other, 
and that the proposed method can be interpreted as the non- 
destructive measurement of the signal mode of a two-mode 
field. 

8. CONCLUSIONS 

The basic goal of this work was to investigate theoreti- 
cally the continuous measurement process in two-mode 

FIG. 14. Clustering parameter for photons of the signal 
and idler modes as a function of the number n, of pho- 
tons detected in the idler mode with a fixed number 
n, of photons of detected in the signal mode. 
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fields, included correlated fields. Two detection schemes 
were considered, involving one and two detectors. The pho- 
todetection process was modeled in terms of two elementary 
events: recording a count in one mode or the other, and evo- 
lution of the system between successive counts. The two- 
mode nature of the field and the use of two detectors result in 
a number of new features compared to the previously devel- 
oped theory of continuous photodetection of one-mode 
fields: 

1. The evolution operator between counts now allows 
for the presence of a second mode in the system, and for 
measurements of both modes of the field it also allows for 
the second detector. 

2. Recording a photocount is determined by the reduc- 
tion operators that refer to the mode of the field in which the 
count occurred. 

3. The scheme employed previously for modeling the 
random sequence of photocounts for one-mode fields can be 
used to investigate continuous measurements in one mode of 
a two-mode field (for example, mode a), since all character- 
istics of this random process are similar to the characteristics 
that govern the measurement process for a one-mode field 
with the initial state Trb{p( to) } ,  and do not depend on the 
state of mode b, which is not measured. However, the tem- 
poral evolution of the second mode of the field and of the 
two-mode field as a whole can be reconstructed by using the 
realization of the photocounts in the measured mode and 
taking the initial correlation between the modes into consid- 
eration. 

4. To describe simultaneous measurements of both 
modes of the field, the modeling scheme must be altered 
somewhat, because the measurement process can now evolve 
along a new, additional path. An analysis of the temporal 
evolution of an individual mode shows that, besides the 
probability of termination of the measurement process 
( p ~ & ' n 2 ) ( t n - l ) )  and the probability of recording the next 

-(nl+ l , n z )  count in this mode ( $ t - , c a  ( tn  i tn -  dt , ) ,  which 
were introduced previously in the investigation of one-mode 
fields, it also characterizes the probability that the measure- 
ment process does not terminate in a given mode but that the 
count occurs in the other mode 
[ X i =  j / ( m  + j )  p ~ , $ ~ ' ) ( t , -  and, accordingly, the 
state of the first mode changes. The existence of this prob- 
ability is determined by the existence initially of a quantum 
correlation between the modes. The sum of the probabilities, 

;("I+ 1 . " ~ )  ( n l  n 2 )  

J7O,-, a ( t n l t n - l )  d t , + ~ z = ~ ~ ; = ,  j l ( m + j )  prnrnjj 

' "  ' 

X(t , -  ,) is the probability that the measurement process will 
continue in an individual mode. The existence of three (not 
two, as in measurements of one-mode fields or one mode of 
a two-mode field) different paths for the development of 
each mode of the field after the next count has been recorded 
makes the modeling and interpretation of this random pro- 
cess more omplicated. 

The theory proposed for investigation of the continuous 
photodetection process in a field generated by a parametric 
frequency converter has made it possible to study explicitly 
the quantum properties and distinctive features of this pro- 
cess. The main property determining the temporal evolution 
of each mode and of the field as a whole during photodetec- 
tion is that the initial intermode correlation of the number of 
photons is preserved during the measurement process. The 
result is that the information obtained by photodetection of 
one mode predetermines either the result of measurement of 
the other mode (if both modes are measured) or the state to 
which the second mode reduces (if one mode is measured). 
For example, the total correlation of the states of the signal 
mode and the results of measurement of the idler mode sug- 
gested the possibility of creating in one mode of the field 
generated by a parametric frequency converter a state with a 
precisely determined number of photons (the Fock state) by 
measuring the number of photons in the other mode. Theo- 
retical calculations confirmed this conjecture. We note that 
this result is equivalent to the one presented in Ref. 6 for a 
detector whose efficiency equals 1 and the condition that the 
parametric generation of the field terminates by time to .  

In addition, it was shown that in the measurement pro- 
cess for both modes of the field generated by a parametric 
frequency converter, states should be detected with the same 
number of photons in each mode (Fig. lo), and therefore 
with an even number of photons in the field (Fig. 14). In 
other words, by making independent measurements of the 
number of photons in the modes whose initial states are ther- 
mal and by recording the thermal statistics in each measure- 
ment channel, we nonetheless have a nonthermal state of the 
two-mode field as a whole. The probability distribution for 
recording the n ,  th count in the idler mode and n2 counts in 
the signal mode is periodic, and it reflects the fact that the 
probability that an even number of photons will be recorded 
in the field differs from the probability that an odd number of 
photons will be detected. Such an oscillatory form for the 

0.04 
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FIG. 15. Distribution P!:':,,, of the probability 
that during continuous measurements in each 
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0.02 counts are recorded in the two-mode field gen- 
erated by a parametric frequency converter for 
measurement times (a) A(r-ro)< 1, and (b) 
A(t-to)+ 1. The mean number of photons in 
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distribution P::,'~;" agrees with the result presented in Ref. gation of the temporal evolution of two-mode fields during 

1 and explained from the of interference in a photodetection, it also provides a foundation for further 

four-dimensional phase space. elaboration of the theory of continuous measurements-the 

In conclusion, we note that the theory proposed in this analysis of continuous measurements of multimode fields. 

paper for the continuous measurement process in two-mode Financial support for this work was provided, in part, by 
fields not only formalizes a general approach to the investi- the International Science Foundation (Grant No. RWJ000). 

APPENDIX 1 

The conditional elementary probability density for recording the next count in the measurement process for a two-mode 
field can be determined as follows [Eqs. (61)-(63)l: 

; ( n ) ( t n / t n - l ) = ~ ( n l + l , n 2 )  
a (tn Itn- ,)+ ~ f l ' ~ ~ + l ) ( t ~ / t , , -  = Tr{JaStntn-lp(n1*n2)(tn- l)}+Tr{Jbstn ' n - I  ~ ( ~ ~ ' ~ ~ ) ( r ~ -  I)}. 

(Al.l) 

We examine in greater detail the different representations of the expression Tr{Stn ,In- 1 ~ } :  

Using the definition of the reduction operators (50)-(51), this relation can be written in the form 

Jb 
( e ~ p [ - 2 h ( t ~ - r ~ - ~ ) l - l ) ] e x p ( ~  (exp[-2h(rn-rn-1)l-1) 

Then 

;(nl+l.n2) 
a ( r n / f n - ~ ) = T r { J a S t ~ . t ~ - ~ ~  (n19n2)(tn-l)}=exp[-2~(rn-rn-~)ITrIS~n,m-lJa~ 'I ( n l  .n2)(In- 1 

=exp[2X(rn- tn- ,)]Tr exp - (exp[- 2A(tn- tn-,)]- 1)] [ 1:; 
(exp[-2A(tn- tn- l ) ] ~ ~ ~ ( " l . " 2 ) ( t , -  ,) 

Similarly, 

We substitute the relations obtained above into Eq. (Al.l): 

Hence, 
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The probability that the measurement process continues after the nth count has been recorded, defined as Jt-,C"(n) 
X ( t ,  1 t ,  - ,) dt ,  , can then be easily transformed: 

m m 
d 

m m 

- dt ,  ,=o E j = o  E b a s t n  , t n l ~ n n 2 n -  a m b d n  C Z ~ X P [  - 2 h ( m + j ) ( t ,  
m=O j=O 

Using the completeness property 

The expression (A1.7) can be written in the form 

as was to be proved. 

APPENDIX 2 

The probability that the next count is recorded in mode a is 

Substituting into this relation the expressions (16) and (50) for the evolution and reduction operators and carrying out the 
cyclic permutation under the trace, we obtain 

Using the completeness property (A1.8), the second term of this expression can be rewritten: 

Thus 
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Hence we find that the probability that the measurement process continues in mode a after the n lth count is recorded in mode 
a and n2 counts are recorded in mode b is 
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