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The energies of excited states for two- and three-particle systems with arbitrary blocking 
potential are calculated within the framework of a naive variational approach. The uncertainty in 
the calculation of the energy of the lower excited states is comparable with the uncertainty 
in the calculation of the energy of the ground state and in all cases is much less than 1%. The 
energy of the highly excited states is found with the help of a variational approach in the 
classical limit: the true functional dependence on the quantum numbers is reproduced with errors 
of the order of 1% for the numerical coefficients of the asymptotic expansion. The classical 
variational principle for the time-averaged Hamiltonian for periodic motions with fixed action is 
discussed. O I995 American Institute of Physics. 

1. INTRODUCTION 

Three-body systems are of great interest for baryon 
physics. The spectrum of baryon resonances has been suc- 
cessfully reproduced within the framework of the quark 
model with interaction potentials "derivable" from quantum 
chromodynamics (QCD).' Parallel efforts have been made to 
solve the inverse problem and, so to speak, "derive" the 
QCD potential from the spectroscopic data. Remarkable suc- 
cesses in this direction were achieved for systems of quarko- 
nium type$3 with somewhat more modest results for 
baryons.4 In the present paper we will follow the inverse 
approach and develop approximate methods for calculating 
the energy with the goal of analyzing the energy spectrum of 
three-particle systems. A detailed and excellent review of 
numerous regular exact calculational methods for three-body 
systems was published recently by ~ i c h a r d . ~  In the present 
paper we claim to achieve a calculational accuracy on the 
order of I%, which for masses of the order of 2 .10~ MeV 
amounts to 20 MeV-an accuracy, from our point of view, 
entirely suitable for the physics of resonances. The level of 
mathematical rigor which we have adopted is customary for 
theoretical physics and more like the level of accuracy of 
Ref. 2 than of Ref. 3. 

The method we develop and use is a naive generalization 
of the customary variational procedure used to calculate the 
ground state energy. We devote the following section to a 
discussion of this method in the simple case of a one- 
dimensional system. Next we examine a number of details 
and discuss the mathematical principles lying at the basis of 
the method, and then turn to three-dimensional problems 
(Sec. 3). In Sec. 4 we consider the three-body problem and 
compare our simple results with accurate numerical calcula- 
tions of other authors. Having shown that the method works, 
we make an effort to apply it to an analysis of the experi- 
mental data on baryon resonances. (References to the volu- 
minous literature are provided in the corresponding sections, 
and not in this brief introduction.) 

Let us indicate the main idea of the paper. According to 
the Variational principle! an extremum of the integral 
( q  I H 1 q )  for variations of the normalized wavefunctions Q 
is reached at the eigenfunctions of the operator H. The low- 

est state of H determines the absolute minimum of the inte- 
gral, the remaining eigenstates correspond to local extrema 
in Hilbert space. Thus, the eigenvalue of the integral can be 
estimated if you find yourself at the right place in Hilbert 
space. But how to determine the "right" place? 

We choose an orthonormal set of eigenfunctions (e.g., of 
the harmonic oscillator) in which we can vary the scale. If 
the first function of the set (after choosing the scale) yields a 
good approximation to the lowest state, we assume that the 
second function of this orthonormal set also gives a good 
approximation to the second eigenvalue, etc. We will con- 
vince ourselves by way of numerous examples that his crude 
idea works. More precisely, the relative error grows slowly 
with increasing energy. However, for lower excitations varia- 
tional estimates turn out to be just as useful as for the ground 
state. We will discuss the inaccuracy of the method in more 
detail in Sec. 2 by way of examples. It is interesting that the 
energy levels in the asymptotic limit of large quantum num- 
bers n can be obtained by using variational estimates for 
classical quantities, and these asymptotic formulas give very 
good accuracy even for small n .  

2. A SIMPLE EXAMPLE: ONE-DIMENSIONAL LINEAR 
POTENTIAL 

Let us consider the energy levels for the Schrodinger 
equation with a linear potential (throughout this paper we set 
ti= 1): 

where OSxGm, and the boundary conditions are chosen in 
the form Q(O)='P(m)=O. This is the well-known quantum- 
mechanical problem of motion under the action of a constant 

The eigenvalues En of Eq. (2.1) are given by the zeros of 
the Airy function and the eigenfunctions q n ( x )  coincide 
with the Airy functions themselves. The zeros and values of 
the Airy functions are tabulated (see, e.g., Ref. 5). In Table I 
we give a few of the first eigenvalues. In order to begin and 
decide on our notation, we calculate the energy of the ground 
state by the variational method, using as our trial function the 
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TABLE I. Linear potential in one dimension. 

wave function of the harmonic oscillator. It is more conve- 7 3 
nient, instead of Eq. (2.1), to consider motion over the entire El (w)= - w+ - 

2 J.rr0 (2.8) 
axis -w<x<m with the potential V(x) = 1x1. As our unper- 
turbed Hamiltonian we choose Taking the minimum of El(w) over w, we obtain G3, 

the obvious form associated with the standard harmonic os- 
cillator. Then as our trial function for the ground state Eo in 
problem (2.1), we choose the wave function of the first ex- 
cited state of problem (2.2) since it is precisely this wave 
function that corresponds to the lowest state with a zero of 
the wave function at x=O: 

*jo)(w,x) = (:) ll4&.x exp( -$) . (2.3) 

We calculate the mean value of the Hamiltonian with the trial 
function (2.3) 

and the mean value of the energy EC;, 

which (as we assumed) is found to be in good agreement 
with the position of the second zero of the Airy function, i.e., 
with the accurate value of the energy E ,=4.0879, although it 
is a little (0.31%) smaller than it. Note that G3#a1 and 
therefore the trial functions are not orthogonal. We can cal- 
culate the mean energy over the nth odd state of the oscilla- 
tor: 

(2n+ l ) !  
(2.4) E n ( w ) = ( 2 n + i ) w +  22n- J r w '  

where the first term comes from the kinetic energy, and the and analogously obtain a variational value of the energy 
second from the potential energy 1x1. Taking the minimum of 
Eo(w) over the frequency w, we find 

and the corresponding minimum for Eo: 

in good agreement with the first zero of the Airy function, 
the accurate value of the energy being E0=2.3381. Thus we 
have obtained a good approximation both for the lowest en- 
ergy (2.6) and for the wavefunction *\O)(~,X). It is reason- 
able to assume that if ?, gives such a good value for Eo, T3 
should also give a good approximation for E . Therefore we 
take the following eigenfunction of H(')(oJ), which satisfies 
the boundary condition *(o)=O: 

The mean value of the Hamiltonian H for the trial function 
(2.7) is 

The variational values E:(Lj2,+ ,) are given in Table I 
for the first six states, where they are compared with the 
exact values E?'. From the table it is immediately apparent 
that the difference AE, = E i  - E~~~~~ , grows slowly in 
absolute value with increasing n,  roughly with the same rate 
as E n ,  so that the relative error SE, remains approximately 
constant between n =O and n =5. Note also that AE, is nega- 
tive for the excited states. 

The asymptotic value of E: is 

( n + 1 4 ) ~ ~  ( 
lim E i = 6  - =2.7972 n +  - , (2.12) 

n+m 

which is approximately 0.5% lower than the the asymptotic 
value calculated with the help of the quasiclassical WKB 
approximation 

Thus, in absolute value the variational estimates differ from 
the true values by not more than 0.5%. It should be borne in 
mind, however, that the frequency of the levels grow with 
increasing n. Therefore for large enough quantum numbers, 
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TABLE 11. Variational values for the mean values of the operators. TABLE Ill. Probability of overlap with the true eigenstates (in %). 

between the exact value ERaC' and the variational value E i  it 
is possible to locate many levels with other n. The critical 
value of the number for which E i  is closer to its first neigh- 
bor E?$:+aft than to E?' is nu-137. This means that the 
variational estimates are reasonable (in this sense), say, for 
n520. 

The asymptotic limit (2.12) can be obtained, of course, 
from the general expression (2.11) if we make use of 
Stirling's formula for the factorial. A more beautiful and di- 
rect path, which allows us to do without expression (2.1 I), is 
to apply the variational method in the quasiclassical limit. 
Indeed, for the classical trajectory x(t) =A sin wt, the energy 
is equal to E = A ~ w ~ / ~ =  2(n + 1 1 2 ) ~ .  Hence it is possible to 
determine the coefficient A and thereby find the mean value 
of 1x1 

and the mean value of the Harniltonian (2.1) 

The extremum of (H) determines (I,, and the asymptotic 
behavior of E i  (2.12). (Recall that n are all odd integers.) 

Although the variational energies are very close to the 
true eigenvalues, it is also useful to understand how close the 
variational states (a) are to the eigenfunctions of the 
Hamiltonian (2.1). With this goal in mind, let us calculate the 
mean value of the square of the Hamiltonian H2 for the 
variational states of the oscillator and determine the differ- 
ence (H2) - ( H ) ~ .  The smaller this difference, the closer the 
variational functions will be to the corresponding eigenfunc- 
tions. The results of these calculations are presented in Table 

can be additionally checked by calculating the matrix ele- 
ments of H and H2 from the expansion coefficients and com- 
paring the results with Tables I and 11. It can be seen that the 
energy and its square are calculated much more accurately 
than the wavefunctions themselves. Other operators, say x2 
(its matrix elements are given in Table 11), can also be cal- 
culated to high accuracy (errors less than 2%). The probabil- 
ity distributions in Table 111 prove that the variational esti- 
mates of the energies actually correspond to the states they 
are assigned to, i.e., E! really is the energy of the fourth state 
(we start with n =0), etc. Of course, it is possible to calculate 
the probability distributions only in the simplest cases (as in 
ours) for which the wavefunctions are known. Therefore it is 
useful to have an "internal" criterion for the accuracy of the 
calculations. 

We will assume that the exact eigenvalues are unknown 
to us. How can we estimate the error of the variational cal- 
culations? A simple way of doing it is to consider the varia- 
tional values as energy values in the first order of perturba- 
tion theory with respect to the unperturbed Hamiltonian 
~(')(ii,,) for fixed (I, (for given energy level). Further, we 
can estimate the contribution of the second order in pertur- 
bation theory and take this as an estimate of the inaccuracy 
in the calculation of the energy. We illustrate this calculation 
in the instance of the ground state E, and the first excitation 
E , .  For the ground state we have 

where V= 1x1 - w2x2, 

11, from which it can be seen that the r a t i o ( ~ ~ ) l ( H ) ~  grows 
slowly with n. We have found that in the limit, 0.103 0.0477 

(51VIl)=- - 
((H2)-E~)IE~-0.011. Hence it is clear that the expansion G '  ( ~ I v I ~ ) =  - T .  
of the variational function over the eigenstates is quite nar- 
row. We can also calculate numerically the overlap integral 
of the variational functions for w,= G, with the correspond- 
ingly normalized Airy functions. The squares of these ampli- 
tudes are the corresponding probabilities. Their values are 
given in Table 111. For the trial ground state the probability of 
being in the true ground state is greater than 99%. 

The corresponding probabilities for higher states are 
lower. Thus, for the third excited state the probability of 
being in the true (n=3) state is equal to only 80%, but the 
distribution over "foreign" states turns out to be symmetric: 
P2=P4=7.8% and P,=P5-1.75%. so that the "mean" val- 
ues turn out to be in the right place. The table of probabilities 

Thus, 

0 (0.1 427)2 (0.06 1)2 A E ~ ) =  - -- - -...-- 0.011. 
2(1, 4 6  6 6  

Note that the second-order correction to the ground state due 
to mixing with the first excited state disappears when o=d 

=0.521. This is an absolutely general result for oscillator 
trial functions-for any interaction the first excited state does 
not mix into the ground state for the extreme value of the 
frequency (I,. The estimate of A E ~ ~ )  is of the same magnitude 
as the error in the calculation of the energy of the ground 
state: the corrected value (2.3448-0.011)=2.3338 now lies a 
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little bit below the true value. Let us now repeat this same 
calculation for the first excited state (for which 
~ = 8 ~ = 0 . 3 8 8 ) :  

Substituting these matrix elements, we obtain 

Again the value obtained is numerically somewhat greater 
than the real error of calculation of E l ,  but this procedure 
still gives an "internal" estimate of the accuracy of the 
method. The smallness of the ratio AE{~)/E ,(&) confirms 
that the unperturbed Hamiltonian ~ ( ' ) ( d )  is an appropriate 
starting point for the perturbation theory and that the first 
order of this theory already gives a good approximation to 
the exact answer. 

3. DISCUSSION OF THE METHOD 

In the Introduction it was noted that the proposed 
method is based on the Variational Principle. This principle 
states that the eigenvalues of the operator H are extrema of 
the corresponding integral for certain types of variations. 
However, there exists a set of particular questions lying out- 
side this general statement. 

One of these questions, which at once comes to mind, is, 
why does the second function *$'I in a "arbitrary" orthonor- 
ma1 set of functions estimate precisely the second eigenvalue 
of the Hamiltonian H with exact wavefunction q2? Clearly, 
if 'Pi0) is orthogonal to the true ground state TI, then the 
variational estimate should give an upper bound on the true 
energy E,.  However, although *$') is orthogonal only to 
*I0), the minimax t h e ~ r e m ~ . ~  asserts that the true energy E2 
is an upper bound on all minima of mean values of H if we 
vary 9i0) over the entire Hilbert space. The upper bound is 
attained at Thus, even the mean value EL')(&) 
possesses extremal properties and in general should be lower 
than the true eigenvalue E2. In order to satisfy the conditions 
of the minimax theorem, it is necessary to vary '4'1') over a 
wider range than we are doing here (by varying the scale of 
w), for example, by taking arbitrary linear combinations with 
*(30), *Lo), ..., etc. However, even the incomplete procedure 
which we follow can give a reasonable approximation. Why 
the errors are so small is the question here, or, more accu- 
rately, it is a matter of choosing a good orthonormal starting 
system. In the example of the foregoing section we showed 
that for weakly excited states (small n)  the best variational 

wavefunctions have a small "admixture" from neighboring 
states and, moreover, this admixture is symmetric, so that the 
mean values turn out to be close to the right place. Our 
experiment convinces us that errors in the calculation of the 
excited states are very similar to errors in the calculation of 
the ground state. A peculiarity of the problems considered so 
far is that we have limited the discussion to confinement 
potentials without complicated structure. In these examples 
the variational procedure for any level n reduces to choosing 
the right scale of the wavefunction by varying only -the 
scale of the starting potential. However, this is no guarantee 
that the orthonormal set of wavefunctions thus chosen will 
be successful. In each case it is necessary to try and see. As 
was explained in the foregoing section, we always have an 
"internal" criterion for estimating the errors, which consists 
namely of calculating in second-order perturbation theory. 
(Note that this step requires much more work than calculat- 
ing the variational energies themselves.) 

A separate question of interest touches on quasiclassical 
calculations when we apply the variational method directly 
in the classical region in order to reproduce the asymptotic 
limit of the general variational formulas. These calculations 
assume the existence of a variational principle for (H) in 
classical mechanics. We have discovered that such a prin- 
ciple actually exists for variations of (H) with respect to 
periodic trial motions that conserve the reduced action. The 
period changes, but the action remains constant. The true 
energy is an extremum of (H). The quantum version of this 
variational principle was used by Schrodinger himself in the 
derivation of his equation. This principle extends the prin- 
ciple of Maupertuis, which was formulated for trial motions 
with constant energy, to trial motions with constant action. 
The derivation is given in Appendix A. (A particular version 
of this classical principle was postulated by Van Vleck in 
1923.~) 

Let us turn now to the literature, where our knowledge is 
obviously incomplete. In a very remote sense our procedure 
is reminiscent of the "Principle of Least Sensitivity" of 
stevensong (introduced in a different context.) The frequency 
w is an artificial quantity, generally speaking, not bearing any 
relation to the Hamiltonian H. If we calculate all orders of 
the perturbation theory for E,(w), then the answer ceases to 
depend on the initial value of w. Thus, choosing the value of 
(I, such that dE(&)/dw=O, we are already guaranteed that 
E (8 )  will be insensitive to first order to this value, and in 
this way we make a good choice. 

Our procedure also bears some relation to the work of 
Mathews et al." on the quadratic potential, in which they 
used the harmonic oscillator basis and chose the frequencies 
w,, for each level n such that the contributions of the nearest 
states n 2 2  to the energy cancelled in second-order perturba- 
tion theory. Without a doubt, the procedure is more cumber- 
some, because it requires one to calculate the nondiagonal 
matrix elements; however, the idea of using different w, for 
different states n is, in essence, very similar. (In our proce- 
dure there is a partial cancellation of the n 2 2  contributions 
for the excited states and exact cancellation for the ground 
state.) 

It is interesting to know when the variational method can 
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lead to unreasonable results for the excited states. We have 
examined one simple case, which possibly gives some indi- 
cations. We used the wavefunctions of the three-dimensional 
harmonic oscillator in order to estimate the energy of the first 
excited state (the 2s state) of the hydrogen atom: we found 
that E2=-0.126, which is very close to the exact value 
E2=- 118 (in atomic units). Since the Coulomb wavefunc- 
tions are well known, it is not difficult to calculate the over- 
lap integrals. As a result we found that the trial function has 
a probability of 1% of being in the right (2s) state. Thus, a 
good approximation for the energy arises as a result of very 
close cancellations. Moreover, estimates of the second-order 
terms of the perturbation theory show that each of them is 
quite large and the result is unstable to these corrections. We 
suspect that the lack of success of the method in the case of 
potentials of the form rP with negative p is connected with 
the more singular behavior of the potential at the origin r =O 
in comparison with the trial Hamiltonian, and also with the 
existence of a continuous spectrum. 

Three-dimensional example 

The eigenvalues of the energy found for one- 
dimensional motion with a linear potential are also suitable 
for s-wave bound states of systems in three  variable^.^ Let us 
now consider the three-dimensional problem in more detail. 
The wave equation has the form 

[ - V 2 + r 1 q n ~ r n ( r ) = ~ n r q n l r n ( r ) -  (3.1) 

We will calculate Enl as the mean value of the Hamiltonian 
(-v2+r) from the eigenfunctions of the harmonic oscillator 
( -v2+3r2)  in three dimensions. The energy of the oscilla- 
tor is equal to 2(2n +1+3/2)w, and the mean value for the 
kinetic energy, according to the virial theorem, is equal to 
(2n + 1 +3/2)w. It remains to calculate the matrix element of 
r over the oscillator wavefunctions We have not found 
a simple, compact expression for the general expression for 
this matrix element. Let us therefore consider different lim- 
iting cases. For n=O we find 

for n = l  

and for n=2 

Table IV compares these formulas with the "exact" ei- 
genvalues calculated by numerical integration of the radial 
equation. It is clear from the table that the variational values 
are in good agreement with the exact values, and the accu- 
racy of agreement improves as 1 increases. We also obtained 
(numerically) the WKB approximations for these eigenval- 

TABLE IV. Variational values for a linear potential 
in three dimensions. 

ues and discovered that they differ from the "exact" values 
more than do the variational values. Thus, for n=2,1=3, the 
WKB approximation gives E2,,=7.4834, which corresponds 
to an error of =0.28%, whereas the variational value 7.5007 
differs from the true value by only 0.05%. 

For the first two s-wave states we compared square of 
the modulus of the wave functions at zero lq(0)I2 for the true 
and the variational wave functions. For Hamiltonian (3.1) the 
quantity Iq(0)12 for all s-states is equal to (47r)-'=0.0795, 
whereas for the harmonic oscillator, for the ground state we 
have 1~,,(0)1~=2/3d=0.0675, and for the first excited state 
we have ~ ~ 2 , ( 0 ) ~ 2 = 9 / 1 4 d ~ 0 . 0 6 5 1 .  Errors of 15-18% in 
the wave function are in full accord with small errors in the 
energy since the latter are quadratic in the errors in the wave 
functions. 

We also obtained an asymptotic formula for the energy 
levels of Hamiltonian (3.1) with the help of variational cal- 
culations in the quasiclassical region. In the limit of small l, 
l e n ,  we have 

Accordingly, 

These calculations are valid in the limit l<n,  when the cen- 
trifugal potential is responsible for a weak perturbation. 
However, formula (3.6) works very well even for small n 
(errors of the order of - 1%, as can be seen from Table I). 
For 1 =0, expression (3.6) reduces to expression (2.12). 

4. THE THREE-BODY CASE 

In this section we will consider how the variational 
method works in the case of the three-body problem with 
pairwise interactions. Let all the particles have the same 
mass m = 1. Then the Hamiltonian has the form 
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where rij= Iri- rjl, and the power p>O. Let us compare our 
results with the numerical calculations presented in Richard's 
review5 for p = 1 and in Refs. 5 and 11 for p =0.1. Eliminat- 
ing center-of-mass motion and introducing the Jacobi coor- 
dinates 

we obtain a Hamiltonian that depends only on p and A. As 
our zeroth approximation, let us now consider the three- 
particle harmonic oscillator with Hamiltonian ~(')(w): 

which corresponds to Hamiltonian (4.1) for p = 2  (w2=3). 
The energy eigenvalues ~( ')(w) are equal to EN=(N+3)w 
and, with the exception of the ground state, are highly de- 
generate. The eigenstates can be classified according to the 
eigenvalues of the angular momentum L~ and L, and accord- 
ing to the permutation symmetry of the indices 1, 2, 3 of the 
"initial" particles. For low excitations these quantum num- 
bers are sufficient for complete identification of the quantum 
states; however, for large N the states with fixed L and L, 
and permutation symmetry can still be degenerate.5712 We 
will be interested in the ground state, the lower P and D 
waves (L= 1,2), and the first excitation with L =O. These 
states are completely symmetric or antisymmetric under per- 
mutation. We start by applying the variational method to the 
ground state, where the calculational procedure and the result 
are well known. 

For completely symmetric (or antisymmetric) states q S ,  
the mean value of the potential energy can be written in the 
simple form 

i.e., in terms of the mean value of the interparticle distance of 
one pair r 12, and in Jacobi coordinates 

it has the form 

3 . 2 ~ ' 2  
(v)s=T(*Sl~pl*s). 

Here p=lpl. Thus, the mean value of the Hamiltonian re- 
quires in the given case that we calculate the matrix elements 
of only one coordinate. The kinetic energy obviously coin- 
cides with the kinetic energy for the harmonic oscillator and 
according to the virial theorem is equal to half the total en- 
ergy EN.  Recall that the wavefunction of the ground state 
H(') is 

(we set w= 1; the dependence on w in the final answer can be 
easily recovered from dimensionality). Then 

and therefore the mean value of H(w) in the ground state is 

(we have reconstructed the dependence on w). The varia- 
tional procedure leads to the expression 

For p =2 (harmonic oscillator), this formula reproduces 
the exact answer (with w=dJ); for a linear potential ( p  = 1) 
Ef;o-3.87114, which is 0.2% higher than the exact value 
(see the review in Ref. 5, which contains both variational 
estimates and the exact value for p = I). For p =O. 1 Eq. (4.9) 
gives E0=1.88278, which is 0.14% higher than the true 
vacuum state. Thus, H(') is not a bad starting Hamiltonian for 
calculating the energy of the ground state. 

Let us consider the first excited state of the Hamiltonian 
H(') with the same symmetry as the ground state. This state 
is sometimes called [56,0+Ir. The wave function for E=5w 
is 

Repeating the above procedure, we find 

Again this formula reproduces the exact result E2=5dJ 
for p=2; for p = l  the variational value E;o=5.32593 is 
0.1% higher than the exact value E2=5.3207 (see Ref. 5). 
For p =O. 1, Eq. (4.1 1) gives a number that is 0.05% lower 
than the exact value cited in Refs. 1 and 11. Thus, it is 
reasonable to expect that the variational calculations (4.11) 
and (4.9) have errors of at most 0.5% for any p in the inter- 
val from 0 to 3, and can be used for estimates in the quark 
model. 

In the same manner we can calculate higher and higher 
states, although the amount of effort expended grows rapidly 
with N. We have calculated, for example, the energy of the 
completely symmetric state with N=4, L=O for the special 
case p =  1. The results of our calculations can be found in 
Table V. We used the wave function 

Xexp -- I p2iA21 
The variational energy EV--6.6108 differs from the exact 

value by 0.2%.' 
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TABLE V. Energy levels ENL for a three-body system. 

Note: The exact values are taken from Ref. 5. (A typographical error in Ref. 5 for E20 for 
p = 0.1 has been corned.) 

Let us now consider the lowest state with L =  1 and tion is the motion of three particles in a plane when they 
mixed permutation symmetry. The zeroth-approximation always form an equilateral triangle. If we denote the position 
wave function has the form of the particles by vi=Ai cos o f ,  then the sum of the vectors 

1 Ai is zero, and the distance between any two particles is [ p2;"] 9 *f~=;;nr (pX+iPy)exp -- lrlz(t)l=d3Acos wt. For the energy of the system E=(N 
+3)w we can calculate A in terms of the energy E: A 

1 [ p2:A2] , = d 2 ( ~ + 3 ) / 3 w ,  and thus 
(h,+iAy)exp -- (4.13) 

1 U ( P +  1)/2) 
( 6 2 )  = (flA)P J;; T((p+2)/2) ' 

(4.19) 
and the matrix element of the potential is 

which leads to the following estimate for the energy of the 
state: 

We have also considered the lowest completely symmet- 
ric D state (n=O, L=2). The corresponding wavefunction of 
the harmonic oscillator is 

the matrix element of p P  between these functions is equal to 

which leads to the following variational value of the energy 
for the symmetric D state: 

Let us now turn our attention to the asymptotic behavior 
(for large N) of the symmetric s-wave mode, using the three- 
particle harmonic oscillator. The corresponding classical mo- 

As a result, the matrix element of the Hamiltonian is 

which leads to the quasiclassical estimate 

where N is even. For p = 1 this formula simplifies to 

= 1 . 8 3 2 6 6 ( ~ + 3 ) ~ ' ~ .  

(4.22) 

Table V compares the asymptotic values (4.21) with the 
exact values for N=O, 2, 4 for various powers p. It can be 
seen that the accuracy of the asymptotic formulas is better 
than 2%, starting with N=O. Equation (4.21) indicates that 
the behavior of a three-body system in the symmetric state 
with L=O for large N is analogous to the behavior of one 
particle in a linear potential (for p = 1). The dependence N~~~ 
can be obtained with the help of quasiclassical arguments in 
the formalism of hyperspherical functions; however, the fol- 
lowing expansion term [3 in (N+3)] is specific for our cal- 
culation method with the help of the harmonic oscillator. In 
quasiclassical theory this constant is called the Maslov index. 
Thus, from Eq. (4.21) it follows that the Maslow index is 
equal to 3 in the three-body problem in three-dimensional 
space. There is one more way to convince oneself that the 
dependence on N suggested by Eq. (4.21) is valid. Thus, in 
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Ref. 11 the values of the energies for the first three symmet- 
ric states with L=O were calculated for the potential with 
p=0.1 in five-dimensional space. Following our method 
with oscillators as a starting point, it is easy to see that in the 
quasiclassical region it is necessary to replace N+3 by N+5 
in Eq. (4.21) in order to reproduce the variational estimates. 
This substitution gives the energy of the first three states with 
an accuracy of -1.9%, -1.3%, and -OM%, respectively. 
In the normalization adopted in Ref. 11, 
E,= 3 . 2 3 9 4 ( ~ + 5 ) ~ . ~ ~ ~ ~ ~ * ,  where N=O, 2,4,  ... (In Ref. 10 
the potential is given as Z r c  whereas in Ref. 5 and in our 
work it is equal to (112)Zr;). 

Applications to the calculation of the baryon spectrum 

It would be interesting to find a real-world application 
for the formulas we have obtained and compare the results 
with experimental data. Hdgaasen and ~ i c h a r d ~  in 1983 con- 
sidered one such possibility. They proposed to examine the 
ratio (E lM- EOo)l(Ezo- Eoo) (which we will denote as 
Rl(p)) and determine an empirical spectral index from the 
baryon spectrum. Using variational estimates (4.9), (4.10), 
and (4.15), we can find this ratio: 

The ratio R2(p) vanishes for p = 2  (since EZ2=Ez0) and 
grows slowly with decreasing p up to R2(p)=0.19 at p=O. 
The baryon resonance data give E2,=1850 MeV (Ref. 13), 
which leads to RyP--0.35. This experimental value is again 
quite far from being described in the potential model with a 
blocking potential in the range OSpS2, and we, in essence, 
have the same problems for R2 as were observed by 
Hdgaasen and ~ i c h a r d ~  for R l .  The permutation symmetry 
bears no relation to these discrepancies from the experimen- 
tal data, and we do not know of a solution to these two 
problems. We have tried, for example, to move the position 
of the s-wave excited state a little (by the width of the reso- 
nance, which is much wider than other resonances), in order 
to find the same p for R ,(p) and R2(p). Such a general 
solution does not exist. It is possible that the P l l  resonance is 
not a purely three-quark state, but contains, as Li proposed,14 
a significant admixture of the (qqq gluon) state. However, if 
this is true, then where is the 2s state? 

5. CONCLUSION 

for p>0. Formula (4.23) reproduces the corresponding graph 
in Ref. 4 with an accuracy of 1% although the calculational 
methods are absolutely different. As was noted in Ref. 4, the 
baryon resonance data [with quantum numbers correspond- 
ing to Eq. (4.23)] do not correspond to any confinement po- 
tential. If we exclude the hyperfine interaction, then it fol- 
lows from the data that Em- 1135 MeV, EZo- 1600 MeV, 
and El,-1610 MeV (these numbers were obtained in Ref. 
13). These values lead to the result Rl (p)=l ,  whereas in the 
region O s p S 2  the ratio R ,(p) varies between 0.435 and 0.5. 
Thus, we run up against a serious difficulty. One possible 
way of resolving this problem begins by noting that it is 
unjustified to compare states with different permutation sym- 
metry if the potential is not a simple function of rij  , but also 
contains an interaction of the "string function" type. In order 
to investigate this possibility, we calculate the ratio R2(p), 
which includes only states completely symmetric under per- 
mu tation: 

and which can be calculated by the variational method with 
the help of Eqs. (4.18), (4.9), and (4.10). As a result, we 
obtain 
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We have shown how to extend the applicability of the 
variational method to the calculation of excited states for 
systems with a blocking potential. The errors in such calcu- 
lations are small enough that this method can be used in 
practical problems, e.g., in baryon spectroscopy for lower 
excitations. 

For high excitations this method gives the correct as- 
ymptotic form for the energy, which can be related to the 
classical variational principle for the mean Hamiltonian. The 
second advantage of the variational method is that it leads to 
states for which the virial theorem is satisfied. The main 
shortcoming of the method is that the states obtained using it 
are not orthogonal. 

We have applied the variational method to the inverse 
problem in baryon spectroscopy, and confirmed and extended 
the negative result of Hdgaasen and ~ i c h a r d . ~  

It is clear that the method, in principle, is also applicable 
to other problems, for example, the N-body problem with a 
blocking potential (i.e., with a discrete spectrum). It would 
also be very interesting to use it to examine the problem of 
quantum chaos. 

We are grateful to Dr. Chizhma for help with the numeri- 
cal estimates and computer calculations. We are also deeply 
indebted to Prof. S. J. Gray for useful discussions and help in 
finding the necessary references in the unreviewed literature. 
We found much that was useful in a report by Prof. P. Fisher. 
This work received financial support from an NSERC grant 

G. Karl and V. A. Novikov 790 



from Canada and from grant no. 93-02- 1443 1 from the Rus- 
sian Foundation for Fundamental Research. 

APPENDIX: VARIATIONAL PRINCIPLES IN CLASSICAL AND 
QUANTUM MECHANICS 

In this Appendix we will discuss how variational prin- 
ciples in classical and quantum mechanics are related to our 
approximate variational calculations. 

For simplicity, let us consider a system with one degree 
of freedom, executing periodic motion in the classical limit 
(i.e., for large quantum numbers n). Quantum averaging over 
the stationary state qn corresponds to classical averaging 
over time: 

where (q(t),p(t)) is the solution of the classical equations 
of motion for the system and T is the period. The classical 
analog of the statement that the system is found in the quan- 
tum state q, is that the classical solution (q(t),p(t)) satis- 
fies the Sommerfeld-Wilson condition for the reduced action 
J: 

J (T)= p(t)q(t)dt = pdq = const. 
loT f (A21 

According to the quantum variational principle, the 
eigenstates of the operator H are extrema of the functional 
(H) in Eqs. (Al): 

with the supplemental normalization condition 

where the subscript n indicates the Nth ((n + 1)th) solution of 
Eq. (A3). The classical analog of this principle is the varia- 
tional equation 

with the constraint 

Here the extremum (H), is chosen from among the arbitrary 
periodic trial functions p (f) and q(t),  generally speaking, 
with different period T, but the same value of the reduced 
action. (The variational procedure discussed in this paper 
pertains to a special class of trial functions-namely, solu- 
tions of the harmonic oscillator with frequency w.) 

The classical variational principle (A4) was postulated 
by Van vlecks not long before the creation of quantum me- 
chanics. We derive this principle classically from Hamilton's 
variational principle: 

for periodic functions q(t): 

This boundary condition (A6) can be rewritten for the varia- 
tion Sq(T): 

or for small variations 

Sq(T) = - q(T) GT. (A7) 

After this preliminary substitution it is easy to calculate the 
variation of S(T) [Eq. (A5)I: 

If we introduce the averaged action (S): 

1 1 
(s)= 7 S(T)= - T J-(H),, 

and consider only those variations Sp, Sq, and ST that con- 
serve J, then we can rewrite Eq. (A8) in terms of the varia- 
tion of the averaged energy (H)T: 

It is clear from Eq. (A9) that if p(t) and q(t) satisfy the 
equations of motion, then 

S(H) T = 0,  

since H(T)= (H)T. On the other hand, if the left-hand side 
of Eq. (A9) vanishes for arbitrary variations ST, Sp, 69, 
then it follows that the extrema satisfy Hamilton's equations 
and the energy conservation law H(T)= (H),. In other 
words, the variational principle for the average energy is 
equivalent to Hamilton's principle for the class of trial func- 
tions with fixed J. From the classical point of view, it is most 
natural that the principle of Maupertuis arises from Hamil- 
ton's principle since the energy is conserved and can there- 
fore be eliminated. As a result, we are left with the reduced 
action. From the quantum viewpoint, it is more natural to fix 
the reduced action; we are then left with a variational prin- 
ciple for the average energy. 
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