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We have developed a statistical method to describe the strongly nonlinear stage in the evolution 
of large-scale structure in the universe. The method is based on the theory of nonlinear 
contraction of dark matter at an isolated density and a scheme for the successive 
gravitational capture of smaller objects by larger ones. We have devised a diagrammatic technique 
that enables one, in principle, to calculate steady-state correlation functions of any order. We 
have derived an analytic expression for the pairwise correlation function 6 in the strong- 
correlation range .$% 1, and we have shown that it is fully consistent with the well known 
observed behavior . $~r -" ,c r -  1.8. In this expression, a is a scaling parameter that characterizes 
the three-dimensional contraction of self-entrained nondissipative matter. O 1995 American 
Institute of Physics. 

1. INTRODUCTION. PHYSICAL PICTURE OF THE 
EMERGENCE OF STRUCTURE IN THE DISTRIBUTION OF 
MATTER IN THE UNIVERSE 

The existence of large-scale structure-galaxies, clusters 
of galaxies, superclusters-derives from the Jeans instability 
of small perturbations that arise in the early universe. Estab- 
lishing the link between the properties of the original irregu- 
larities and the observed distribution of large-scale objects is 
one of the most important problems in theoretical cosmol- 
ogy. The problem is an extremely difficult one and is still far 
from being solved, despite the best efforts of theoreticians. 
The principal difficulties have to do with the nonlinear and 
nonstationary way in which instability develops. Normally, 
this problem is approached via numerical modeling.49r In the 
present paper, we solve it using statistical methods based on 
previously obtained analytic dynamical equations. 

Our current understanding is that most of the mass in the 
universe consists of dark matter, a conclusion drawn from 
the rotation curves of galaxies, the distribution of hot gas, 
and the motion of galaxies within  cluster^.^ Unfortunately, 
we do not know what particles comprise that dark matter, but 
we can state with some confidence that they are cold (non- 
relativistic) and matter-dominated, and that they interact with 
baryon matter and with one another very weakly. 

It is commonly assumed that the early universe con- 
tained small nonthermal perturbations in the distribution of 
dark matter, and that they emerged from quantum fluctua- 
tions at the time of inflati~n.~ When the expansion dynamics 
of the universe began to be dominated by dark matter, the 
perturbations acquired something like a Zel'dovich-Harrison 
spectrum P ( k ) ~ k  at long wavelengths. At short wave- 
lengths, the perturbation spectrum rises monotonically with 
increasing wave number k ,  peaks, and then rapidly declines. 
The actual location of the maximum, k= k,, , depends on 
the mass of the particles that make up the dark matter. The 
existence of a maximum and the rapid falloff of the spectrum 
as k & + m  are important consequences of the linear dynamics 
of perturbations in the early universe at time t= ti when par- 

ticles of dark matter are falling out of thermal equilibrium 
("hardening"). 

The linear theory of the development of small inhomo- 
geneities after "hardening" is well known.8 Here we indicate 
those properties of the linear solution that we will subse- 
quently take advantage of. In general, perturbations are 
specified by four scalar functions, 

where S is the density inhomogeneity, po is the background 
density, and u is the peculiar velocity of the matter. 

In an expanding universe, the equations for the evolution 
of perturbations have two linearly independent solutions, one 
growing and the other damped. With the passage of time, 
then, one growing solution begins to dominate among the 
density perturbations: 

where a ( t )  is a scale factor and ~ = ~ , ( t ~ ) d , ( t ~ )  
- L ) , ( t i ) ~ , ( t i ) .  The functions D l ( t )  and D 2 ( t )  are the 
growing and decaying solutions of the equation 

Dots in Eqs. (1) and (2) denote differentiation with re- 
spect to time. We see that by the end of the linear stage we 
have pure potential motion that can be specified by just one 
scalar function instead of four, 

which we will refer to as the effective density. In other 
words, we obtain exactly the same picture of 'now gravita- 
tional instability develops in the linear stage at late times 
whether we take the initial distribution 6(x , t i )  of density 
irregularities to be equal to the effective density (3) or we 
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assume an initial velocity u(x, t i )  = 0. From here on, we take 
the density perturbation S to mean the effective density 8. 
Note that one could introduce yet another scalar function to 
specify the growth of perturbations in lieu of the effective 
density 8, for example the potential # of the gravitational 
field. 

We emphasize an important property of the growing so- 
lution (1): perturbation amplitudes grow with time in a scale- 
invariant manner. This implies that nonlinear effects will 
tend to make themselves felt in the vicinity of the maxima of 
the initial distribution 8 .  In Refs. 1-3, the present authors 
reported on an investigation of the nonlinear dynamics of 
dark matter in the neighborhood of an isolated maximum of 
8 .  Here we detail the principal analytical results. 

Near a density maximum, the development of a potential 
flow leads, in some finite time, to the emergence of a singu- 
larity at which the density goes to infinity. This is followed 
by the development of a multistream flow as a result of 
gravitational self-entrainment of matter, with the number of 
streams increasing with time. This mixing in the vicinity of 
the initial maximum eventually produces a nondissipative 
gravitational singularity-a steady-state, self-entrained, 
spherically symmetric distribution of matter with a central 
singularity of the form 

Here a varies over the range 1.7-1.9, and we will adopt 
the mean value cu- 1.8. We see that in the steady state, cu 
does in fact take on a constant value, irrespective of the 
shape and scale of the initial maximum. This is a manifesta- 
tion of the fundamental scaling property of the three- 
dimensional nonlinear gravitational contraction of cold non- 
dissipative matter. Any nondissipative gravitational 
singularity, then, will be a spherically symmetric structure, 
with a density distribution (4) specified by just the two pa- 
rameters R  and p. The radius R  is the comoving size of the 
density maximum at time tR , where 8(0,rR) = So- 1 ; t ,  is 
the characteristic time at which nonlinear separation of the 
peak from the general cosmological expansion takes place, at 
which point the peak's physical (proper) size is fixed. We 
denote the corresponding redshift by 2, .  From the definition 
of t ,  , at t> t ,  the peak will already have passed through the 
nonlinear stage of evolution and turned into a nondissipative 
gravitational singularity of size R .  Subsequently, it behaves 
like an isolated object of constant physical size with a time- 
independent internal density distribution. The relationship 
between the object's size R' in comoving coordinates at the 
present time and its comoving size R  at the time of formation 
is 

In the present paper, the object in question is assumed to be 
a gravitationally bound collection of dark matter with den- 
sity distribution (4) and size R .  Luminous matter constitutes 
only a small fraction by mass compared with dark matter; it 
emits radiation, by virtue of its dissipative nature, losing en- 
ergy and descending to the bottom of a potential well pro- 
duced by the dark matter. Observable luminous objects thus 

identify the central regions of a nondissipative gravitational 
singularity. The luminous component exercises a minor in- 
fluence (which we ignore here) on the overall dynamics of 
matter during the time the object takes shape. 

As we showed above, the initial spectrum P ( k )  of ir- 
regularities grows with increasing k, peaks, and then de- 
clines. That being the case, objects whose dimensions corre- 
spond to the spectral peak are formed first, to be followed by 
others that are larger and larger. As they form, large-scale 
objects can capture smaller objects gravitationally, and thus a 
hierarchical structure can develop with time. 

One important quantity that characterizes the degree to 
which smaller objects in a hierarchical structure are embed- 
ded within larger ones is the filling parameter E ( R ) ,  i.e., the 
probability that an object of size R  is enclosed by a larger 
one. It depends on the size dependence of the number density 
n ( R )  of peaks in the initial density distribution, and on their 
spatial correlations. If the spectrum is a power law at long 
wavelengths, P(k)mkn,  then for large enough R ,  scale in- 
variance dictates that 

where p is a dimensionless parameter that depends on the 
spectral index n .  The concentration of objects larger than R  
is then n(>  R ) = ~ ( R - ~ - R ~ ~ ) ,  where Rf is the size of the 
largest objects formed up to the present. Neglecting posi- 
tional correlations among the objects, we can estimate the 
filling parameter to be 

Evaluating P based on observations of clusters and 
groups of galaxies? we have 

(This figure may be somewhat low if the assumed con- 
tribution of dark matter to the total mass has been underes- 
timated.) Given a power law with spectral index n ,  the theo- 
retical upper limit on P is also sma11'O: 

We thus see that the degree of object embedding in an 
actual hierarchical structure is not very large. The hierarchi- 
caI picture discussed above is based on the theory of the 
self-consistent mean field, which is rigorously valid only 
prior to the formation of primordial objects. Once the latter 
have formed, additional fluctuations arise as a product of the 
clumping of the initially smooth medium. Upon subsequent 
evolution, objects start to collide with one another, where- 
upon Eq. (4) for the density distribution begins to change 
with time. It can be shown, however, that the time T, in 
which the shape of the distribution can change substantially 
is much greater than the Jeans time. 

The observed quasistationary hierarchical picture of the 
large-scale distribution of matter in the universe is thus 
bounded in both space and time. Indeed, on scales R>50- 
100 Mpc, perturbations are in the linear growth regime: non- 
linear contraction and kinetic mixing have not yet occurred. 
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On scales R=10-50 Mpc, inhomogeneities are in a non- 
steady nonlinear regime in which the first singularities, caus- 
tics, and partially mixed objects come into being. On scales 
R< 10 Mpc, we have essentially steady-state structures, and 
for R not too small, their ages are r< r, , SO those structures 
have yet to undergo collisional relaxation. It is precisely on 
scales R< 10 Mpc that the theory discussed here is appli- 
cable, and we limit our subsequent discussion largely to such 
scales. 

This paper is organized as follows. The model used to 
calculate the correlations is described in Sec. 2. Section 3 
describes the calculation of j-point correlation functions, and 
we establish the relationship between the initial positional 
correlations among the objects that have been formed, prior 
to gravitational capture, and the final correlations after the 
linear stage of Jean instability. We develop a diagrammatic 
technique that enables one to express the final correlation 
functions as sums of simpler diagrams. We indicate which 
diagrams might be major contributors when the filling factor 
E(R) is small. Finally, making a number of simplifying as- 
sumptions, we calculate the pairwise correlation function in 
Sec. 4, and we conclude in Sec. 5 with a summary of the 
principal results. We show that in the strong-correlation re- 
gime 6% 1, the dependence of the correlation function on the 
separation r between objects is governed exclusively by non- 
linear contraction laws. This behavior is universal in nature, 
and is completely consistent with the observational data. We 
also discuss the dependence of the magnitude of the pairwise 
correlation function on the number density of the objects 
under consideration (or on the mean separation between 
them). 

2. MODELING THE ONSET OF CORRELATIONS 

Our overall objective here is to find the distribution of 
objects that have gone through a nonlinear stage in a region 
that has come to a steady state. Underlying the method that 
we employ to describe the strongly nonlinear stage in the 
evolution of structure in the universe, we have, first, the 
theory devised in Refs. 1-3 for the nonlinear contraction of 
nondissipative cold matter in an isolated density peak, and 
second, a scheme for the systematic capture of smaller ob- 
jects by larger ones. 

To implement this description, we examine the N-point 
statistics of the spatial locations of all objects of all possible 
sizes that have been formed. The starting point in our theory 
is the joint probability distribution P(yi ,Ri) for the forma- 
tion of N objects with given sizes Ri centered at the given 
points yi . 

The influence of nonlinear dynamics on the statistical 
properties of a system of objects is usually described by an 
infinite hierarchy of coupled equations for the moments of 
the N-particle distribution functions (BBGKY hierarchy). In 
the case of self-gravitating matter, this problem has been 
widely discussed in the literature, notably in Peebles' book." 
The set of coupled equations is usually solved by cutting off 
the sequence and neglecting higher-order moments. As indi- 
cated above, however, a strongly correlated singular distribu- 
tion of matter arises in the vicinity of maxima of the effec- 
tive density, where the pairwise correlation function 6% 1 

(this holds for higher moments as well). As a result, the 
cutoff approach is ill-advised under these circumstances. The 
formation of strongly correlated distributions will yield only 
to a well-founded approach such as the one underlying our 
method. To describe the emergence of these distributions, we 
make use of the transition probability derived from the non- 
linear equation (4)). This enables one to find the relationship 
between the initial and final values of the correlation func- 
tions directly, and comprises the most novel aspect of our 
method. It makes it possible to avoid solving a set of coupled 
equations, while effectivell- allowing for the entire BBGKY 
hierarchy at .$S 1. 

As noted above, after the effective density (3) reaches 
6- 1 at one of its maxima, a nondissipative gravitational 
singularity will form fairly rapidly. We will assume in our 
statistical model that this occurs instantaneously. If some 
large object is captured by a given singularity, we assume 
that the probability f(r)  of finding it in some unit volume at 
distance r from the center of the singularity at the present 
time is proportional to the density (4) of matter: 

The constant in Eq. (16) can be determined by requiring 
that the mass contained within the volume r<R be con- 
served as the nondissipative gravitational singularity forms. 
Here R' is the cornoving size of the object at the present 
time, and is given by Eq. (5). 

The density distribution within a nondissipative gravita- 
tional singularity, as governed by the nonlinear contraction 
laws, of course only take the form (4) asymptotically as 
r-0, and yield an error of order 1 at r- R ' . One should 
therefore anticipate sizable corrections to the probability dis- 
tribution (8) at distances r 2  R' . 

We now determine the conditions under which one ob- 
ject is captured by another, An object of size R2 centered at 
the point y2 will capture another object of size R ,  located at 
Y1 if 

If (9) fails to hold for any object (yz,Rz), we assume 
that the object (y, , R , )  remains in place. 

In calculating diagrams of higher order in the number of 
participating objects, the distribution of objects of a given 
size with respect to their epoch of formation (redshift) is 
important. Strictly speaking, there is a large dispersion in the 
times of formation, but in this paper we make the simplifying 
assumption that all objects of a given size R form simulta- 
neously at redshift z ~ .  We choose for z, that time at which 
the majority of objects of size R form. The actual value of 
Z, is governed by the initial spectrum of inhomogeneities 
P(k, ti). Assuming that the Fourier components 

have random phases, we have for the spectrum 
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To describe the formation process for objects of size R ,  
we make use of a density distribution smoothed on a scale R ,  
with a normalized smoothing function w ( s )  that falls off 
rapidly at infinity: 

The smoothed density function S ( x , R , t )  can then be 
written in the form 

As mentioned above, the nonlinear contraction stage at 
an individual peak begins at a time r given by S(x, t , ) -  1. 
Most objects of size R  are formed when 

Now So is not known accurately, but for a power-law 
spectrum, it obviously depends on the smoothing scale R ,  
and is a universal constant. The growth of inhomogeneities is 
governed by Eq. (1); at the matter-dominated stage, 

For initial perturbations with a power-law spectrum 

P(k,ti) = PkR, 

and using (10)-(14), we easily obtain an expression for 
ZR : 

where C, is a constant of order 1. 
Equations (5) and (15) yield a relation between the co- 

moving size of an object at the present time and at birth: 

We make use of this relation below. 
To summarize, every object in our model can be charac- 

terized by its coordinates xi and size Ri . The structure of the 
distribution of matter can be described by a statistically large 
number N of points in physical space x  and dimension space 
R .  Nonlinear evolution is completely described by the ran- 
dom sequential capture of small objects by large ones. The 
rule for the transition probability corresponding to a single 
capture event is given by Eqs. (8) and (9). To calculate the 
final j-point correlation functions, we also need to know the 
initial correlations of all N objects and the rules for calculat- 
ing the transition probabilities of multiple captures. These 
questions are discussed in the next section. 

3. CALCULATION OF PPOlNT CORRELATION FUNCTIONS 

Let us calculate the transition probability for a test par- 
ticle that has been trapped by several other objects. Let the 
first capturing particle have a radius R , .  An object of size 
R 2 > R ,  is then formed, capturing the first object. The prob- 

FIG. 1 .  Sketch of all possible ways to spatially superimpose n S  3 objects on 
one another, as required in the sum (17) for j=2 .  

ability W(r) of a transition of the test particle to a final state 
given by the vector r relative to the center of the second 
object can be put in the form 

if, as we assume, neither collisions nor tidal forces manage to 
alter the internal structure of the captured object. We stipu- 
late from here on that any such quantity-the probability 
density for finding objects in unit volume (per unit size in- 
terval) in the vicinity of the given points-will for brevity 
simply be called the object detection probability density at 
those points (for objects of a certain size). 

Since the various trapped objects rapidly "forget" their 
initial correlations as they are mixed, we can independently 
calculate the conditional transition probability density for 
several objects incorporated into a larger one, and multiply 
them together. For example, if two objects of size R 1  and 
R2 are captured by an object of size R 3  located at x3, the 
probability density for detecting them after mixing at xl and 
x2 will simply be 

Similarly, we can calculate the transition probability 
density in the general case. Let the probability density for 
finding n objects of size R ,  at the points xi be 
W : ( x i , y i , R i ) ,  given that they were formed at the points 
y , .  Then the probability density for finding j objects with 
sizes R  ,..., R j  at the present time at the points x ,  ,..., xj can 
be put in the form 

Here the subscript a  specifies the various ways in which 
n objects can be superimposed upon one another (in other 
words, the various capture configurations). For example, Fig. 
1 represents all possible superimposition schemes for objects 
1, 2, and 3 with j=2, n=2,3. 
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Note that when the capture configurations are enumer- 
ated via (17), only those objects that actually capture at least 
one of the smaller objects 1, . . . , j  are to be taken into consid- 
eration; objects that are themselves captured but that capture 
no others are not. 

Finally, we note that the summation from n  to in (17) 
only makes sense if arbitrarily large objects exist in the uni- 
verse. More realistically, given that galaxies have evolved for 
only a finite time, for example, n < ( 2 - 3 ) j  is a sufficient 
condition-all the more so as terms with large n  must be 
small, reflecting the smallness of the filling factor E .  

In Eq. (17), P%(yi  ,R i )  is the probability density for pro- 
ducing a given set of n  objects at points yi in a configuration 
a such that no other external objects capture any of them. We 
have 

where Pn(y i  ,Ri )  is the probability density for producing 
some particular n objects with sizes Ri at points y i ,  while 
others fall where they may, so long as they are not captured. 
@,"(yi ,Ri )  is an indicator function that equals 1 if the objects 
are in configuration a and 0 otherwise. These test the condi- 
tions (9) for any pair of objects. For example, with j=  2 ,  
n = 2,3, for the configurations specified above, 

The corresponding transition probability densities take 
the form 

FIG. 2. All capture configurations that contribute to the pairwise ( j = 2 )  
correlation function for a) n = 2, b) n = 3, and c) n = 4 participating objects. 

Every term in the sum (17) can be put into correspon- 
dence with a diagram according to the following rules: 

1) Every arrow corresponds to a factor 
f(Ixi-xkI*Ri). 

2) A vertex with i #  1, ..., j at which no arrows terminate, 
i--+ , corresponds to a factor S(xi - y i ) .  

3) An additional factor P:(yi  ,R i )  corresponds to an en- 
tire diagram with n  vertices. 
Integration is carried out over all x i ,  y i ,  and Ri  ex- 
cept for xl ,..., xi and R, ,..., R, . The sum (17) spans 
all possible diagrams containing ns j vertices for 
which 

4) no more than one arrow terminates at each vertex; 
5) the only vertices from which no arrows originate are 

1, ...,j. 

In this way, the only diagrams that contribute to the sum 
are those that contain no loops or parts not linked to vertices 
1, ..., j. All feasible diagrams with n G 4  that contribute to the 
two-point correlation function ( j =  2) are shown in Fig. 2. 

By summing all possible diagrams for a given j, we 
obtain the probability density for finding j objects of a given 
size at a given location at the present time. Thus, in principle, 
Eq. (17) and the diagrammatic technique just described en- 
able one to calculate the final j-point correlation function 
when one knows the probability density Pn(y i  ,Ri )  at forma- 
tion time for any initial arrangement of an arbitrary number 
n of uncaptured objects. 

The quantity P n ( y i  ,Ri )  specifies the probability of a 
given disposition of density maxima of various sizes in the 
linear stage, and as we have suggested, it is completely pre- 
determined by the initial spectrum of inhomogeneities 
P ( k , t i ) .  Calculating this quantity for an arbitrary spectrum is 
a separate nontrivial problem that we have yet to solve. 
Therefore, here we merely adopt an estimate of Pn( yi ,Ri)  in 
a certain simple case: we consider a situation in which the 
positions of all objects formed are uncorrelated. This simpli- 
fication can be shown not to alter the form of the pairwise 
correlation function 6 in the strong-correlation range 5* 1. 
Assuming then that the total number of objects formed is 
large, we obtain 
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FIG. 3. Overview of all diagrams that contribute to the pairwise correlation 
function for i,j,k=0,1,2 ,... . 

where 

The domain of integration here is the entire region v of 
(y,R) space containing objects that have trapped at least one 
of the objects (y, ,Ri). The number density of objects with 
size between R and R + dR is n(R) dR , and is given by Eq. 
(6) for a scale-invariant spectrum. 

4. PAIRWISE CORRELATION FUNCTION 

We now consider the observationally more interesting 
pairwise correlation function in more detail; it can be calcu- 
lated using Eq. (17) with j=  2. We employ (18) to estimate 
Pn. For the case of interest here, with small n, note that 
E(V) is a small parameter proportional to the filling factor 
(7): 

All of the diagrams that contribute to the pairwise cor- 
relation function consist of one or two linked segments, and 
take the form illustrated in Fig. 3. 

It can easily be shown that any of these diagrams that 
contain a "tail" made up of k branches (or two tails with k 
branches in toto) introduce a small correction of order Ek to 
the corresponding tailless diagram. Thus, none of the leading 
terms in the expansion in E have tails. Starting with the lead- 
ing term, we can label these diagrams using the small param- 
eter E as shown in Fig. 4. 

By virtue of the uniformity and isotropy of the statistics 
of the initial perturbations, the desired probability density 
and the pairwise correlation function depend solely on 
r  = I xl - x21. The zeroth-order diagram describes the contri- 
bution made by initial correlations among objects that have 
not captured any others. Since in the current approximation 
we have ignored the initial correlations, this diagram makes 
a trivial contribution: 

The first diagram describes the contribution of binary 
systems: 

FIG. 4. Diagrams for j = 2 ,  nS4,  the leading diagrams in the small filling 
factor r. 

where 

[see (16)] is the redshift at the time corresponding to the 
larger member of the pair. When r<R;  and R, # R2, it is 
this diagram that provides the main contribution to the pair- 
wise correlation function. The next two diagrams describe 
the contribution of ternary systems: 

where y= (n +5)(3 - a) +3, and A is a constant of order 1. 
In (19), (20), and (21), we have written out the leading 

terms of the expansion in E. It can be shown that the corre- 
lation function contains no other contributions that might 
diverge as r+O. Note that in calculating the dominant dia- 
gram of (17) we did not make use of the relation (15) be- 
tween the formation time of an object and its size. If we were 
to do so, there would be no need to assume the validity of 
(15) when we considered the main contribution to the corre- 
lation function, and we could take Ri and zi to be indepen- 
dent characteristics of the objects. 

Furthermore, we can disregard assumption (18)-that 
the positions of the newly-formed objects are uncorrelated- 
and consider the case of arbitrary Pn(yi ,Ri). The contribu- 
tion of the principal diagram then takes the form 
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does not depend on the r  factor that takes initial correlations 
into account. Thus, the main contribution to the probability 
takes the form (23) even in the most general case, up to a 
factor C that does not depend on r .  

In actuality, observable objects (such as clusters of a 
certain richness, etc.) cover a range of sizes from Ril to 
Ri2 (corresponding to a mass range of Mi, to Mi2), and 
possibly a range of formation times as well. A more accurate 
expression for the painvise autocorrelation function, for ex- 
ample, would therefore be 

For the leading term in the strong-correlation range 
tiS-1, (19) and (22) yield 

50 

where di=n; 'I3 is the mean separation between objects, 

- 
I fi -APM CLUSTERS - - - - - - 
- - 

FIG. 5. Amplitude of the pairwise correlation 
function as a function of the mean distance be- 
tween objects.13 

Here zi is the mean time of formation of the objects 
considered, and (413) T ~ ~ R ? ~ , ~ .  Note that the 
baryon-to-dark matter ratio is on average the same for the 
two objects, so the baryon masses Mil and Mi, can be in- 
serted in (24) and (25). 

5. SUMMARY 

We see, then, that binary systems make the major con- 
tribution to the pairwise correlation function in the strong- 
correlation range ti%- 1. Not only is that contribution the ma- 
jor one with regard to the parameter p, but it grows most 
rapidly with decreasing distance r .  From (19), we see that 
the steady-state pairwise correlation of clusters, superclus- 
ters, etc. should grow as r - a  with decreasing distance, where 
a-1.8 is a universal scaling parameter that governs the 
three-dimensional nonlinear contraction of self-entrained 
nondissipative dark matter. This behavior is well known to 
be fully consistent with observed pairwise correlation func- 
tions of galaxies and  cluster^.'^ We therefore maintain that 
the theory of nonlinear contraction constructed in Refs. 1-3 
has been confirmed by the observational data. Moreover, 
since substantial use was made in the derivation of Eq. (4) of 
the smallness of the thermal velocities of particles of dark 
matter, it would seem that the observations indirectly suggest 
that, to a large extent, dark matter is cold. 

At high values of the correlation function, apart from the 
scaling law (23), its amplitude is observed to depend on the 
mean distance between objects. Figure 5 shows observa- 
tional data taken from Ref. 13. In the distance range 
20hK1Mpc<di< 80h-'Mpc, the observed amplitude Ai of 
the correlation function is 

and Ai= t i ( l  Mpc)=(0.4di)'.*. (26) 
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As we showed above, objects of this size have yet to 
reach the end of the nonlinear stage of evolution (or have 
done so in the recent past), i.e., they were formed at a rela- 
tively small redshift and lie somewhere in the range 
O<zi<0.5. The spread in zi is then negligible, and the de- 
pendence of Ai on di given by theory [Eqs. (23) and (24)] is 
consistent with the observed dependence (26). It is clear 
from (26) and the figure that galaxies form-the amplitude 
of their correlation function is appreciably higher. The same 
effect is to be noted in quasars, albeit at a lesser level. Gal- 
axies, however, come into being significantly earlier than the 
other objects plotted in Fig. 5. Assuming a mean redshift in 
(24) of 2,-5-7 for galaxies and zq= 1.5-2 for quasars, we 
obtain agreement with the observations. We note as well that 
the constant 0.4 in the experimental fitting function (26) is 
approximately twice the value obtained from Eqs. (23) and 
(24) for zi<0.5. 

Thus far, we have only discussed the main contribution 
to the correlation function in the range 1, which is, 
strictly speaking, the only range in which the equation de- 
rived above holds. This contribution comes solely from bi- 
nary systems. The contribution to ti from the next order in 
p depends on distance as r3-2a.  It is small if the correlation 
function is calculated by averaging over a large enough re- 
gion of space. It can become comparable to the contribution 
from the main term, however, if we consider, for example, 
only the immediate neighborhood of a large cluster of ob- 
jects of a given type. As 6 decreases, the r-" dependence 
will then change to r3-2". Curiously enough, this sort of 
change in slope has been observed in the correlation function 
of galaxies in a cluster,14 but a reliable comparison with the 

observations naturally requires further development of the 
theory discussed here. Specifically, to calculate ti near 1, we 
need to take accurate account of initial correlations and the 
distribution of object formation times, and we need to spe- 
cially examine the transition probability for objects that have 
not reached the steady state. 
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