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We solve the problem of the loss of stability of stationary states induced by external 
multiplicative noise in one-component systems with reactions and diffusion. We obtain the 
critical value of the noise level above which there is a transition, through intermittency, from one 
stable state of the system to another as well as the formation of new attractors for the 
system. O 1995 American Institute of Physics. 

1. INTRODUCTION =2aiS(r-r t )8( t - t ' ) .  (2) 

The study of reaction-diffusion equations with external 
noise plays a central role in problems dealing with combus- 
tion and detonation,' with the escape from a potential by 
means of noise,' with chemical kinetics: with diffusion on a 
fluctuating ~ u r f a c e , ~  in phenomena of the ballistic growth of 
crystals? and in stochastic evolutionary models6 It is well 
known that external noise can significantly change the dy- 
namic behavior of such systems, as a result of which one can 
observe noise-induced phase  transition^.^ 

At the present time there exist rather powerful methods 
which make it possible to analyze processes in reaction- 
diffusion systems without noise (see, e.g., Ref. 8). In contrast 
to this, theoretical methods for studying stochastic reaction- 
diffusion processes are still not very universal. 

Recently appreciable progress has been achieved by 
means of the so-called optimum fluctuation method in the 
study of one-component stochastic differential equations for 
a reaction-diffusion system of a general form.9 The essence 
of this method consists in the following: a formal solution of - 
the initial stochastic equation which describes a one- 
component reaction-diffusion system is approximated by the 
method of steepest descent. The system of two coupled de- 
terministic reaction-diffusion equations obtained for the ini- 
tial component and an auxiliary field as the result of this 
procedure enables us to describe both very rare events, when 
the behavior of the system is determined basically by a 
single trajectory, and the optimal, i.e., most probable, behav- 
ior of the system, averaged over an ensemble of realizations. 

We consider a one-component system with reactions and 
diffusion; its behavior is described by the following stochas- 
tic partial differential equation: 

where n(r,t) is the local density of some reactant R, g(n)  is 
a function describing the deterministic kinetics of R, A=V' 
is the Laplacian operator, and D is the diffusion constant. We 
assume that the concentrations of the other reagents A,B,C, ... 
are constant. The effect of the external noise is described by 
the term h(n) dr , t ) ,  where d r , t )  is Gaussian white noise of 
intensity a with a zero average and a correlation function 

s ( r - r l , t - t r ) = ( ~ ( r , t )  7 ( r ' , t t ) )  

By definition h(n) = 1 in the case of additive external 
noise. In the case of multiplicative noise the quantity h(n) is 
a function of n describing the noise-induced deviations from 
the deterministic behavior of the system. 

Intrinsic noise must satisfy the fluctuation-dissipation 
theorem connected with the requirement that n(r,t) be 
conserved.1° We show that the correlation function 

satisfies this requirement, where r is the noise intensity and 
in what follows (a*.) denotes averaging over an ensemble of 
random realizations of the field ((r,t). 

The formal solution of Eq. (1) in terms of integrals over 
trajectories was given in Ref. 9. In fact, each trajectory 
n =n(r,t) which is a solution of Eq. (1) has a well defined 
probability of being realized, given by the probability func- 
tional P[n (r,t)]: 

where 

X(g(1) +DAn)l .  (5)  

Here p ( r , t )  is an auxiliary real field and we have introduced 
the notation p(l)=p(r,t), h(2)=h(n(r',tt)), h '  = dhldn, and 
so on. For generality we have used a constant discretization 
y ( O ~ y s l )  which in the case of the Stratonovich interpreta- 
tion of Eq. (1) is equal to 112 and in the case of the Itoh 
interpretation is equal to It is clear that the descrip- 
tion of the quantities which are averaged over an ensemble of 
realizations should not depend on the choice of this factor. 
We shall show that our approach assumes a well defined 
choice of y. 

To select the trajectory making the largest contribution 
to the probability functional (4) we use the saddle-point ap- 
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proximation procedure.''9 The most probable (optimal) tra- 
jectory then satisfies the following variational equation: 

or, more precisely, 

Substituting Eq. (5) into (7) we get 

The substitution of (3) into Eq. (8) gives the following 
deterministic model: 

Intrinsic noise thus does not lead to noise-induced 
transitions12 and in what follows we therefore discuss effects 
induced by purely external noise. 

Substituting (2) into (8) we get the following set of equa- 
tions which describe the effect of external noise: 

for a system with external noise of intensity a the response 
of the system to a change in,the control parameter depends 
on the ratio IA-A,~/u. 

Since the attractor A(') possesses a potential of the at- 
tractive kind which has an effective barrier 

one may expect that when one exceeds some critical value of 
the control parameter a= a, this barrier will be surmounted 
and one will observe in the system a noise-induced transi- 
tion. Such behavior was observed16 in the computer simula- 
tion of the action of external multiplicative noise on a system 
described by the two-dimensional Swift-Hohenberg equa- 
tion. A method for obtaining critical values of the control 
parameter a based on the stability in the linear approxima- 
tion and a few assumptions about the behavior of the statis- 
tical moments was proposed in a recent paper.17 However, in 
the case of white noise (2) which is &correlated in space the 
expressions for a, given in Ref. 17 contain singular terms. 
We propose an approach free of this deficiency which pre- 
sents explicit solutions of Eq. (1). The basis of our method is 
a procedure for selecting a small parameter which is directly 
connected with the noise. This enables us to introduce a con- 
sistent renormalization procedure and a perturbation theory 
into the body of the optimal trajectory method (4)-(8). As a 
result the dynamics of the system (1) is split into motions in 
two mutually orthogonal subspaces and the behavior of the 
solutions lying in the "noise-induced" subspace is a solution 
of the Ginzburg-Landau equation. We describe the observed 
intermittency pattern in terms of the density peaks and 
troughs which appear and we find the conditions on the noise 
level under which new, noise-induced attractors are formed 
in the system. 

dn 
-=g(n)+DAn+2ah(n) (ph-  yh'), 
at 

2. PERTURBATION THEORY 

One should, however, emphasize that the use of the 
saddle-point approximation procedure (6)-(8) requires in the 
justification of the procedure, obvious from a physical point 
of view, the choice of a region in which the noise plays a 
significant role. For a correct interpretation of the set of Eqs. 
(10) we must be guided by the fact that the solution of this 
system is the most probable (optimal) trajectory of the ran- 
dom process described by the stochastic differential equation 
(1). The most probable behavior then is that the system 
makes a transition from the initial state n(r,O) into an attrac- 
tor n0=A(O) which lies close to it in configuration space and 
which is determined by the condition g(no) = 0. As a occurs 
explicitly in Eqs. (10) it is possible, firstly, to choose the 
noise level as a control parameter and, secondly, to study the 
response of the system to the action of the noise near a sta- 
tionary attractor. In the low-noise limit this problem was 
studied in Ref. 13. 

It has been shown by a number of authors (see, e.g., Ref. 
14) that the behavior of some dynamical systems can be 
changed appreciably when the control parameter A exceeds a 
critical value A,. For instance, it was found in Ref. 15 that 

We introduce a small parameter 

where the choice of the values of m enables us to "maintain" 
small values of E for the description of the behavior of the 
system both in the immediate vicinity of a, (m- 1 )  and also 
far from the critical value of the noise level ( m P  1).  Assum- 
ing that the deviations c n l  induced by the multiplicative 
noise are small we introduce the following functional forms: 

Substituting Eqs. (13) and (14) into Eqs. (10) we get 

an 1 
-- - - w n l + D A n l + 2 a n l ( p n l -  ye),  
at  

JP 
(15) 

--- - -wp- yg"&+DAp+2ap(pn l -E  y ) .  
at 
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3. SOLUTION OF THE GINZBURG-LANDAU EQUATION Neglecting terms which are small as E-+O we get a set of 
equations describing the behavior of the system near its at- 
tractor: 

Returning now to the initial variable p we note that as a 
result we have obtained the same set of equations as if we 
had chosen from the start the Itoh interpretation of Eq. (1). 
This means7 that in the phase transition point a= a, the 
instantaneous fluctuations are uncorrelated with the state of 
the system at the same time. In other words, in the vicinity of 
the critical point the phase space of the {n,p) E N  system is 
in actual fact a direct sum of two mutually orthogonal sub- 
spaces: 

where all attractors of the deterministic Eq. (9) belong to the 
subspace No : no E N ,  and the noise-induced subspace N, is a 
direct product: n ,@p=N,.  In this sense our approach and 
the approach proposed in Ref. 18 to describe the reaction 
kinetics with a limited diffusion perpendicular to the diffu- 
sion coordinate have a certain similarity. 

We can greatly simplify the set of Eqs. (16) which we 
have obtained, reducing it to a single equation by means of 
the following substitutions: 

Equations (16) then go over into a nonlinear Schrodinger 
equation ("with attraction" in the case of the plus sign and 
"with repulsion" in the case of the minus sign, respectively): 

Carrying out the inverse substitutions we get solutions of the 
initial set of Eqs. (16): 

where W(r,t) satisfies the Ginzburg-Landau equation 

The operation [...]Tea1 in Eqs. (20) indicates that the solution 
of Eq. (21) must be written in a real form by means of an 
analytical continuation of the free parameters satisfying the 
initial set of equations (16). 

The Ginzburg-Landau Eq. (21) naturally arises in many 
problems when one describes small deviations from critical- 
ity; it is a so-called amplitude equation to which a broad 
class of partial differential equations can be r e d ~ c e d . ~  

Equation (21) possesses an important property: the tem- 
poral evolution of its solution has the following gauge 
form:19 

dW - SF dW* SF - - - - - - - - - 
dt SW*' at SW' 

One can easily show that 

This means that the functional F has a minimum on the 
attractors of the Ginzburg-Landau Eq. (21) and is a 
Lyapunov functional for this equation. 

Since for a Ginzburg-Landau equation with repulsion 
the functional F takes on only positive values, it follows 
from (24) that the only possible solution in the limit as t--tm 
is W=O, i.e., the dynamics of the system is purely relax- 
ational. 

In what follows we restrict ourselves for simplicity to a 
one-dimensional space. Taking the solution of the corre- 
sponding nonlinear Schrodinger equation (19) with repulsion 
in the form2' 

and returning to the original variables we obtain the solutions 
which satisfy the Ginzburg-Landau equation with repulsion: 

where R and q are the free parameters of the solutions (25) 
and (26). 

In the case of a Ginzburg-Landau equation with attrac- 
tion the functional F can take on both positive and negative 
values. As a result the solutions can, depending on the initial 
values of W(r,O), describe both purely relaxational dynamics 
and the phenomenon of explosive growth.19 It was shown in 
Ref. 19 that soliton solutions of the Ginzburg-Landau equa- 
tion with attraction in the form 

7 

are "limit" solutions of (21) in the sense that if the function- 
als F of (23) and 

satisfy the following conditions: 

where the index "s" refers to the soliton solution (27), the 
cubic term will dominate in the Ginzburg-Landau equation 
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(21) with attraction and its solutions will describe the explo- 
sive growth effect. Similarly we obtain the solution satisfy- 
ing Eq. (21) with attraction: 

Substituting (30) into (23) and (28) we can easily show that 
the condition (29) for explosive growth corresponds to q > w. 

4. APPLICATION OF THE METHOD TO THE PROBLEM WITH 
MONOMOLECULAR REACTIONS 

We assume that in the medium the substance R decays 
and undergoes autocatalytical multiplication. The decay of R 
is then a monomolecular process with a constant rate which 
is independent of r and t and the multiplication occurs solely 
inside certain multiplication centers which appear at random 
moments in random positions in the medium. The multipli- 
cation centers may be generated by some external stochastic 
action, for instance, by laser irradiati~n.~' 

The rate of change of the concentration n(r,t)  of the 
substance R in such a reactive medium in the case of a one- 
dimensional space is described by the following stochastic 
differential equation: 

where w>O is the average value of the difference in the rate 
constants of the decay and the multiplication, &,t) is the 
fluctuating part of this difference, and &(r,t) describes the 
fluctuations in the rate of change of the concentration of R 
caused by the intrinsic noise in the system. 

We approximate rl(r,t) by Gaussian noise with the fol- 
lowing correlation function: 

where s ( r  - r ') describes the spatial correlation between the 
randomly appearing separate multiplication centers. It is 
shown in Ref. 3 that when the diffusion is sufficiently large, 
namely, for D B 2 u r i  (where 2 u  is the strength of the fluc- 
tuating field q(r,t) and ro  the characteristic size of a separate 
multiplication center) the function s ( r  - r ' )  can be repre- 
sented by a Sfunction. 

We note that the assumption that the deviations are 
small, which was introduced to linearize the "reaction term" 
g(n) and the functional h(n) in the general case of Eq. (I), 
is here superfluous because of the linearity of g ( n )  = - wn 
and of h(n) = n. However, in order to remain independent of 
the interpretation of Eq. (31) (choice of the factor y) we 
retain the functional forms (13) and (14) with the small pa- 
rameter E of (12). 

We have w>O, so A(')=n,=O is an attractor of the 
system and the function h(n) describing the action of the 
external noise has the form 

which is the same as (13) when there is a plus sign the 
definition (12) of E.  The problem with monomolecular reac- 
tions is then mathematically equivalent to the problem of the 

escape from a fluctuating potential which was formulated 
earlier; in what follows (see also 96) this enables us to use 
the results of Ref. 6, which were obtained for Eq. (31), and 
apply them to the study of Eqs. (16). 

According to (20), (26), and (30) the solutions of the 
stochastic differential equation (31) are the following solu- 
tions of the Ginzburg-Landau equation with repulsion and 
with attraction, respectively: 

We note22 that the nonlinear Schrodinger equations (19) 
which generate the solutions (34) and (35) are invariant un- 
der the Galilean transformation G with a free transformation 
parameter U' : 

We act with the group G on the corresponding solutions of 
the nonlinear Schrodinger equation and analytically continue 
the transformation parameter U' : 

From the "fixed" solution (34) we then get ( 5  = r - Vt) 

and from the fixed solution (35) 

Xexp q---w t-- , [ (  1; ) I;] 

We note that the "moving" solutions obtained as the 
result of acting with the group d on the fixed solutions (34) 
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and (35) go over into their fixed counterparts for V=O. The 
family of solutions (38) and (39) therefore also includes the 
"initial" solutions (34) and (35). 

It was noted in Ref. 6 that the solutions (39) describe 
peaks which are moving with a velocity V< V, = 2 and 
which are growing (or damping) with time at a rate 
Q = q -  v2/4D - w .  For the solutions (38) we have Vc= 0 
and, hence, this family of solutions shrinks to the fixed so- 
lution (34). 

It follows from (4), (5), (lo), and (13) that the probabil- 
ity for the realization (existence) of the optimal trajectory 
after a given time T, apart from a pre-exponential factor, will 
be 

We then have for the solutions (39) 

and for the solutions (38) 

where L is the characteristic size of the system. 
For a given growth rate Q the fixed solutions (35) are 

thus more probable. 
Considering these solutions as a whole we can conclude 

that as the initial perturbation approaches the attractor of the 
system (in the Q < 0  case) the effect of the noise becomes 
more significant: the solutions are described by the optimal 
trajectory in the form of the peaks (39) which decrease 
slowly with time and the fast decay of the unstable [by virtue 
of (42)] states (34) serves as the source of their formation. 
After the passage of a certain time interval one will observe 
the characteristic effect of the critical delay of the approach 
to equilibrium.23 

However, in the Q > 0  case peaks which grow with time 
can form for the solutions (35). It is just those solutions 
which determine another kind of behavior, which we shall 
now consider. 

5. DESCRIPTION OF NOISE-INDUCED INTERMIlTENCY 

It was noted in Ref. 24 that a field distribution n(r, t)  in 
that has structures accompanying high peaks with large con- 
centrations of matter and short life times or a short extension 
in space is typical for systems described by the stochastic 
differential equation (31). The spaces between them are char- 
acterized by a low concentration of matter and a large exten- 
sion. In general one calls such a situation intermittency. In 
Ref. 6 one found for the statistical moments Mk(t,r l  , . . . , rk),  

the following asymptotic behavior: 

This unusual (compared to Gaussian) behavior of the 
moments is explainedz4 by the fact that the main contribution 
to each moment comes from the peaks (39). 

Indeed, the density n = M I  of (39), averaged over an 
ensemble of realizations, has a temporal behavior which ex- 
actly corresponds to the behavior of the solutions of (39) for 

If we now leave the most probable solutions (for a given 
growth rate Q and, in fact, for a given value of the noise 
level) with V=O we get an important result: for any station- 
ary state no of the system there exists a well defined critical 
value of the noise level, 

above which this state loses its stability. In that case the 
noise-induced deviations grow with time and lead to the for- 
mation of fixed concentration peaks (39). For the higher mo- 
ments the term which is quadratic in u in Eq. (40) is the joint 
probability for the vanishing of one peak (mk- 1 )  and the 
appearance of yet another peak (mk+ 1 )  in the situation 
where there are already k pieces. 

When we exceed the critical value a , = w  of the noise 
level there are no longer stable equilibrium states in the sys- 
tem (31) and it starts to wander about in phase space, appear- 
ing as intermittency. The intermittency in the problem (31) . looks as follows:24 for a>u, there occurs an exponential 
growth of the optimal realization of the field n(r,t) [for 
u<u, the statistical moments of second and higher orders 
may also grow when the diffusion is sufficiently small-see 
(40)l. As the control parameter a increases the formation of 
moving solutions becomes more probable in the system. By 
a fixed time the statistical and spatial averages are exactly the 
same up to a certain value of ko (the order of the moment) 
while for larger k the statistical moments show the largest 
growth. This is because the collection of peaks correspond- 
ing to each statistical moment is such a rare event that it is as 
a rule not realized in the system. 

6. NOISE-INDUCED ESCAPE FROM A POTENTIAL AND 
POPULATION OF THE MEDIUM 

We established in $4 the equivalence in the mathemati- 
cal statement of the problem for describing intermittency be- 
tween the problem with monomolecular reactions described 
by the stochastic differential equation (31) and the problem 
of the escape from a potential described by Eq. (1). This is 
because our method makes it possible to split the motions in 
the phase space of the system (1) into motions in two mutu- 
ally orthogonal subspaces where the noise-induced subspace 
is the same as the phase space of the system (31). We showed 
that as a result of the action of multiplicative noise with an 
intensity u> uc the state no loses its stability and breaks up 
into concentration troughs and peaks: 

aL The probability that they are realized is independent of the 
( u -  w)kt+ - k(k+ l ) (k -  l ) t ]  

1 2 0  (44) value no of the concentration: 
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It follows from Eq. (47) that the peaks are most stable for a 
value of the control parameter a close to its critical value a, 
of (46). 

It follows from the analysis just given that the system (1) 
evolves on the characteristic slow time scale rm = E ll"t: 

where E and the index m connected with it are defined in 
(12). Now dividing the space occupied by the peaks (35) into 
small cells with a constant concentration of the reactant R 
one can consider the system (1) approximately as being in a 
state of quasi-equilibrium inside each of them. In such an 
adiabatic approximation each of these cells corresponds to its 
own value of the quasi-equilibrium concentration no(rm) and 
thus with its own potential barrier ( l l ) ,  w(rm). By applying 
our method to describe the loss of stability of the (quasi) 
equilibrium state we can describe the transition of the system 
from one stable state into another and also the formation of 
new, noise-induced states. 

We note that the medium is populated4 through the loss 
of stability of the attractor in the attraction region in which 
the system finds itself initially and the transition of the sys- 
tem into two neighboring (for a given noise level) stable 
deterministic attractors with a higher and a lower population 
concentration ni corresponding to the plus and minus signs 
in (12): n l<no<n2 .  

When the noise level a is insufficiently high to take the 
system completely out of the attraction region no of the at- 
tractor (or when one of the attractors n,  or n2 is not present), 
it is possible to form in the system (1) a new, noise-induced 
attractor iiO (in contrast to problem (31) with a linear form of 
the reactive term g(n)). From (11) and (42) we get the con- 
ditions for the stabilization of this new stable state through 
noise with a strength a: 

- g f ( i i o ) = ~  (50) 

Varying the value of the control parameter-the noise 
level u-we may observe a hysteresis effect: depending on 
the initial conditions the system will go to neighboring at- 
tractors for a given value of the control parameter. 

7. CONCLUSION 

We have shown that when the noise level reaches a cer- 
tain critical value a state which is an attractor for the given 

initial conditions loses stability. When one goes above this 
critical value of the noise level the behavior of the system 
becomes intermittent. Such a behavior is characterized by the 
presence of self-localized structures which are accompanied 
by high peaks with a large concentration of matter and a 
small spatial extension. Knowledge of the critical values of 
the noise level for each attractor of the system enables us to 
control the behavior of the system by varying the noise level. 

One may expect that by virtue of its visualizability and 
the many possible sources of external noise the proposed 
theoretical approach will often be applied to describe effects 
in multiplicative systems, especially in applications to sys- 
tems with biomolecular kinetics.25 

The author expresses his gratitude to V. A. Avetisov for 
fruitful discussions and his constant interest in this work. 
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