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Localized solutions in the form of a reduction in the field strength superposed on a nonzero 
background (dark solitons) are considered for nonintegrable nonlinear equations with a repulsive 
potential. Like ordinary solitons such solutions have attractor properties. These become 
evident in the evolution of an arbitrary initial distribution. A method of determining the analytical 
form of the equilibrium distribution consisting of linear waves plus a dark soliton is found 
using the nonlinear Schrodinger equation and the nonlinear Higgs equation as examples. A 
sufficient condition for the existence of such an equilibrium is that the dark solitons be 
nonlinearly stable in the sense of Lyapunov. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Particular solutions in the form of dark solitons are of 
importance in connection with a variety of nonlinear equa- 
tions having repulsive potentials. Specifically, it is well 
known1 that in integrable nonlinear equations the asymptotic 
form of an arbitrary initial distribution contains only linear 
waves and solitons. The number and amplitude of the waves 
and solitons are completely determined by this initial distri- 
bution. When the system is nonintegrable, dark solitons (lo- 
cal reductions in the wave intensity) can be in thermody- 
namic equilibrium with linear waves, similar to ordinary 
solitons of nonintegrable equations with attractor 
potentials.293 This means that in the course of its evolution 
the system forgets its initial distribution, and the asymptotic 
form can contain only solitons precisely balanced by waves 
in thermodynamic equilibrium with them. This means that 
the problem of finding the equilibrium distribution of waves 
on dark solitons, which is treated in the present work, is not 
meaningless. A sufficient condition for the existence of such 
an equilibrium is the nonlinear stability (in the sense of 
Lyapunov) of the  soliton^.^ In nonintegrable systems like the 
Korteweg-de Vries (KdV) and nonlinear Schrodinger (NLS) 
equations stable solitons may also exhibit attractor proper- 
ties. That is, it is thermodynamically favorable (in the sense 
of leading to an increase in entropy) for waves and solitons 
to merge and for the amplitudes of the latter to i n ~ r e a s e . ~ ' ~  
The behavior of dark solitons with small-amplitude modula- 
tion is similar to that of ordinary  soliton^:^ it is thermody- 
namically favorable for the modulation amplitude of the dark 
solitons to increase as a result of emission of linear waves. In 
contrast to ordinary solitons, the increase in the modulation 
amplitude of dark solitons is bounded, if only because the 
modulation amplitude itself is bounded. This means that dark 
solitons with a finite modulation amplitude are the most fa- 
vored thermodynamically, rather than those with the largest 
possible modulation amplitude. 

This qualitative picture for the behavior of dark solitons 
is illustrated in the present work for the NLS and Higgs (or 
Klein-Gordon) equations with quadratic repulsive poten- 
tials. 

The NLS equation with such a potential (a cubic nonlin- 

earity) can be completely integrated.' It follows that, e.g., 
solutions can be found in the form of linear waves with ar- 
bitrary modulation amplitude superposed on a dark soliton 
that is stable. Because it is completely integrable a system 
consisting of a dark soliton plus waves cannot reach thermo- 
dynamic equilibrium. Such an equilibrium becomes possible 
only when the potential or the dispersion of the integrable 
NLS equation changes, as a result of which an infinite num- 
ber of constants of motion vanish. If these corrections are 
small, then the analytical form of the usual constants of mo- 
tion of the dark solitons in waves obtained for the integrable 
NLS equation changes little, which enables one to find ex- 
plicitly the thermodynamic equilibrium of linear waves on a 
dark soliton with an arbitrary modulation amplitude. 

The Higgs equation with a cubic nonlinearity is nonin- 
tegrable. Dark solitons with the maximum modulation am- 
plitude ("black" solitons) are unstable even in the linear ap- 
proximation. The stability boundary for dark solitons can be 
estimated using the Makhan'kov criterion6 (the modified 
Vakhitov-Kolokolov condition7). Thermodynamic equilib- 
rium with linear waves is therefore possible only for dark 
solitons with a modulation amplitude less than some limiting 
value. The Higgs equation linearized about such dark soli- 
tons is identical with the linearized equations obtained from 
analyzing the transverse instability of dark solitons of the 
NLS equation in Ref. 8. Consequently, even in this case it is 
possible to find expressions for the thermodynamic equilib- 
rium distribution of waves on dark solitons with a finite 
modulation amplitude. 

2. THERMODYNAMIC PROPERTIES OF DARK SOLITONS 
OF THE NLS EQUATION WITH A REPULSIVE 
POTENTIAL 

With the repulsive potential the NLS equation 

describes the propagation of modulated ion acoustic waves 
(U= 1 ? 1 2; see Ref. 9), nonlinear waves in waveguides with a 
"normal" dependence of the index of refraction on the light 
intensity [u= I ? I 2  + a1 ? I 4  (Ref. lo), U =  1 ? 1 2  (Ref. ll)], 
and diffraction in space of a laser beam passing through a 
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diffraction grating and through scattering material [U = 1 * 1 
(Ref. 12)]. In the latter case x is the spatial coordinate in the 
transverse cross section of the beam and t is the spatial co- 
ordinate parallel to the beam. 

By writing T= + exp(- i mot) we can reduce the NLS 
with a quadratic potential U=1*12 to the standard form 

which has dark solitons with velocity v of the form8 

satisfying the boundary conditions in the limits X + ? W  

given by 1) [*I2--two; 2) T:+O Linearization of the NLS 
equation about these dark solitons and nondimensionaliza- 
tion according to 

yields the following system of linear equations: 

2 4 tanhp 1 
1:- - I-Rkp-2( cosh2 p 

which have an exact solution in the form of linear waves on 
a dark soliton with an arbitrary modulation amplitude 
a= 2w0/u2 (Ref. 8): 

To find a thermodynamic equilibrium distribution for 
these waves on a dark soliton we use the Lyapunov 
f~nct ional .~  The dark soliton exp(- ioo t )  is an ex- 
tremal of the functional formed from ordinary (belonging to 
the nonintegrable NLS equation) constants of motion: 

I * * 
P= i {VPi- *?:} dx, 

where E ,  N, and P are the constants of energy, wave number, 
and momentum, respectively.' The phase trajectories of the 
system consisting of a dark soliton plus waves are located on 
a hypersurface of the Lyapunov functional L close to the 
extremal point of Lo ,  corresponding to a dark soliton only 
when L has a definite sign (so that the dark soliton is stable). 
The second variation of the functional L describing linear 
waves takes the form 

Hence in order to find the required thermodynamic equilib- 
rium distribution we must substitute into this equation the 
expressions found above for the linear waves and note that in 
thermodynamic equilibrium ~ S ~ L  has the physical meaning 
of a temperature T. This substitution yields the following 
equilibrium values of 1 c): 1 : 

As is to be expected, for a=l this distribution is the same as 
that found previously4 for the distribution of waves on a 
small-amplitude dark soliton, propagating with nonzero ve- 
locity u = 6. This explains the asymmetry of the dis- 
tribution c): for waves moving in the direction of propaga- 
tion of the dark soliton and the distribution 4; for waves 
moving in the opposite direction. The values a + m  corre- 
spond to a wave distribution on a black soliton at rest (a dark 
soliton with the largest possible modulation amplitude). It is 
clear that in this case the asymmetry of the distributions dis- 
appears. 

Note that this thermodynamic equilibrium distribution is 
not a generalized Rayleigh-Jeans distribution 
(=T/(ok-  w0- ku)), since the integrals E w ,  Qw, and Pw 
of linear waves on a dark soliton are determined by the back- 
ground oo rather than the modulation amplitude. 

The "chemical potentials" in the Lyapunov potential, 
which plays the role thermodynamically of a free energy, are 
not arbitrary. It is only with this choice of the coefficients 
that an equilibrium between the dark soliton and the wave is 
possible. 

3. Thermodynamic properties of dark solitons of the Higgs 
equation 

Consider the one-dimensional Higgs equation with a 
quadratic potential: 

which differs from the NLS equation considered above only 
in having a higher order derivative with respect to time. Note 
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also that the substitution t+iy converts this equation to a 
two-dimensional NLS equation with a repulsive potential. It 
is not surprising that this equation has solutions in the form 
of dark solitons, analytically indistinguishable from the dark 
solitons of the NLS equation. Specifically, by substituting *= + exp( - ioo t )  we can convert the Higgs equation into 

which has dark solitons moving with velocity V: 

+O(x,t) = vlJZ- i J l w  tanh 

which satisfy the boundary conditions in the limit X +  + w  

given by 1) I*l-+wo and 2) q l - 0 .  Since the Higgs equa- 
tion is invariant under a Lorentz transformation, the second 
condition uniquely determines the velocity of the dark soli- 
ton, just as in the case of the NLS equation. 

The Higgs equation has four conventional constants of 
motion:13 the energy E (invariance with respect to t), the 
charge Q (invariance with respect to phase rotation), the mo- 
mentum P (invariance with respect to x), and the rotation M 
(invariance with respect to Lorentz transformations). Of 
these only the first three can be used to construct a Lyapunov 
functional L with definite sign: 

The extremal of this functional is given by the dark soli- 
tons considered above. To determine whether a thermody- 
namic equilibrium distribution is possible for a system con- 
sisting of a dark soliton plus waves and its form it is 
therefore necessary only to find the solutions of the Higgs 
equation linearized about a dark soliton and to substitute 
them into the expression for the second variation S'L of the 
Lyapunov functional, 

Aside from notation and the normalization, the linear- 
ized system of equations is exactly the same as the system 
considered in Ref. 8, derived in order to determine the trans- 
verse instability of dark solitons of the NLS equation: 

t-Vx 
R,I--exp(Ay), y = ------ 

d m '  

x-  Vt o i l= --- 
d m '  

where the operator L ( l )  was introduced in Ref. 8. It was in 
fact shown in Ref. 8 using perturbation theory, starting with 
dark solitons having some finite modulation amplitude, that 
this system has solutions with real values of A, the linear 
growth rate for the instability of the dark solitons. 

This can be verified most easily for a black soliton 
(+0 = - id= t a n h ( 4 m ) ) .  The operator L 
in this case becomes diagonal.8 After nondimensionalizing 
( l  = d m ,  y = A/ d x )  we find 

After eliminating R we find in analogy with Ref. 8 

In contrast to i l ,  the operator io does not have a defi- 
nite sign, so that for moderately large wo solutions of this 
equation can be found for which y is real. For example, for 
o o = O  there is an exact solution R = llcosh(xld2), y= lld2 
(see Ref. 14). This means that for not too large wo (see below 
for an estimate) a black soliton of the Higgs equation is 
linearly unstable and cannot be an attractor. Using the 
Makhan'kov criterion6 (the modified Vakhitov-Kolokolov 
condition7) we can estimate the critical modulation ampli- 
tude of a dark soliton, above which it becomes unstable. 
Specifically, the total charge Q ( a )  of a dark soliton as a 
function of the modulation amplitude a = 2 ( l  +wi)/? ceases 
to be monotonic for a*=2(l+oi)/(l-mi). Hence we see 
that in all probability for wo>l a dark soliton also becomes 
stable, which was already noted qualitatively in Ref. 14. 

As in Ref. 4, we can analytically estimate the thermody- 
namic distribution of waves on a stable dark soliton with a 
finite modulation amplitude. For this we substitute into S'L 
the asymptotic expression +o for linear waves on a dark soli- 
ton (to be precise, superposed on a constant background 
J iq )  : 
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This substitution yields the desired thermodynamic equilib- 
rium distribution: 

This expression has no singularities, since the wave phase 
velocity is larger than the velocity of the dark soliton. For 
solitons with a small modulation amplitude in the limit 
(k ,oo,  wolk)40  we find 

As in the case of the NLS equation, the distributions become 
asymmetrical when dark solitons with a small modulation 
amplitude move with nonzero velocity V= 1. 

4. CONCLUSION 

We have presented a way of determining the thermody- 
namic equilibrium distribution of waves on dark solitons 
arising asymptotically as a result of the evolution of nonlin- 
ear nonintegrable equations (such as the NLS equation and 
the Higgs equation). It is in principal applicable for multidi- 
mensional systems as well. These distributions are not a 
modified form of the Rayleigh-Jeans distribution 
[= T/(ok-  wo - kV)] , since they contain information about 
the dark soliton itself (equilibrium is possible only when the 
waves and solitons have equal "chemical potentials" for a 

specified modulation amplitude). We have also shown that it 
is not always thermodynamically favorable for the modula- 
tion amplitude of the dark soliton to increase: dark solitons 
can occur with a finite modulation amplitude less than the 
maximum value, just as in media with a saturating nonlin- 
earity. In contrast to the collapse of unstable solitons, insta- 
bility of dark solitons with a large modulation amplitude 
probably only decreases the modulation amplitude (with ab- 
sorption of waves and/or an increase in the number of dark 
solitons) until stability is attained. 
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