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We investigate the evolution of electronic states of a system made up of quantum wells and 
tunneling-transparent barriers subjected to a time-dependent electric field. We establish that the 
dynamic evolution problem for a two-level system corresponds exactly to a static scattering 
problem, and demonstrate that it is possible for dynamic analogues of reflectionless potentials to 
exist. By solving the non-stationary Schroedinger equation numerically, we find conditions 
for the dissipationless relocation of the electron density in nanostructures under the action of a 
time-dependent electric field. We show that the character of the system evolution depends 
strongly on the phase structure of the wave function in the initial state. In order to describe how 
the wave function evolves in a nanostructure subjected to a periodically time-varying 
strong external field, we have developed a dynamic analogue of the Kronig-Penney model, which 
we use here to compute the dependence of the quasi-energy E and the Floquet functions on 
the amplitude and period of the external field. We investigate how initial conditions influence the 
way the electron density is localized in the crossing regime (i.e., where branches of the quasi- 
energy intersect). We also study the evolution of electron states subjected to a slowly varying 
periodic signal (the switching-on regime) as the amplitude of the signal is varied. O 1995 
American Institute of Physics. 

I. INTRODUCTION 

Recently, there have been intensive efforts to develop 
bandgap engineering methods with the goal of creating nano- 
structures that exhibit a variety of quantum effects that re- 
semble those of natural atomic systems but are considerably 
easier to observe.' One reason for the interest in such nano- 
structures is the possibility of changing their fundamental 
microscopic parameters, i.e., the distance between energy 
levels, the symmetry of wave functions, and the systems as a 
whole, in a controllable way.2 There is special interest in the 
problem of describing the evolution of electronic states in 
time-dependent external potentials. In its practical imple- 
mentation, this problem is closely related to investigations of 
new methods for processing and transforming information 
based on tuning the electron density of a quantum structure 
in a controllable way.3 

In this paper, the specific objects of study are systems 
made up of quantum wells and barriers. Section 2 describes 
the evolution of electron states in an external field that varies 
monotonically with time. It is well known that a discontinu- 
ous change of applied voltage across a structure gives rise to 
spatial and temporal oscillations of the electron density.4 The 
origin of these oscillations, which have the character of beat- 
ing, is the fact that the initial state of the wave function, i.e., 
immediately after the field is switched on, differs from its 
steady-state value in the latter.5 In particular, this type of 
time dependence can result in a transition to a stationary 
state in which the maxima of the wave-function amplitude 
are "relocated" as a result of energy relaxation, i.e., due to 
dissipation. In the opposite limit, when the change in the 
field is adiabatically slow, the wave function evolves in space 
and time while preserving the attributes of the given quan- 
tum state. In this case, the spatial restructuring of the electron 

density is dissipationless, but it takes place slowly, over a 
time A r  much longer than the time during which the system 
energy levels satisfy the resonance (anticrossing) condition." 
As noted by ~ a n d a u , ~  the description of the time evolution of 
a quantum system in the adiabatic regime is formally analo- 
gous to the solution to a scattering problem in the quasiclas- 
sical approximation. In Sec. 2 we show that for a two-level 
system we can amplify this assertion and formulate the prob- 
lem of dynamic evolution for an external potential that varies 
with time in an arbitrary manner as a scattering problem for 
the Schroedinger equation with a potential of special form, 
or as a problem in which an electromagnetic field propagates 
in a medium with a complex coordinate-dependent index of 
refraction. In this case we show that a regime of dynamic 
evolution is possible that is analogous to resonant tunneling 
in the scattering problem, for which dissipationless reloca- 
tion is completed in a time At of the same order as the time 
A t - h / A E  for quantum oscillations, i.e., considerably faster 
than the time for adiabatic changes, and without any quan- 
tum beating (the temporal analogue of a reflectionless poten- 
tial). 

Section 3 treats the evolution of electron states of a 
quantum system in a external field varying periodically in 
time. In a weak field, a resonance regime is identified in 
which the wave function executes slow temporal oscillations 
(Rabi oscillations8) between levels coupled by the resonance 
field. In the resonance approximation, a formally exact solu- 
tion to the problem can be obtained by transforming to a 
rotating system of  coordinate^.^ The more complicated and 
interesting case is when the external field is strong enough 
that the change in the position of the energy levels under the 
action of the field is comparable to the distance between 
levels in the absence of the field. In atoms such a field may 
cause ionization. The problem of an atom in a strong elec- 
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tromagnetic field was solved by ~ e l d ~ s h , ' '  who calculated 
the ionization probability of an atom and showed that, de- 
pending on the ratio of the time for tunneling through the 
decreased field of the potential barrier to the oscillation pe- 
riod of the field, the ionization could be viewed as the result 
either of a below-barrier tunneling transition or as an above- 
barrier multiphoton transition with absorption of photons. As 
we show in Sec. 3, the evolution of electronic states of a 
system of quantum wells in a periodically time-varying ex- 
ternal field can be described in analogous terms. The differ- 
ence lies in the fact that, whereas in the problem of ioniza- 
tion of an atom the final state is located at infinity, in the 
systems we will discuss the scale of spatial evolution of the 
wave function is bounded by the dimensions of the nano- 
structure. A unique feature of nanostructures is the possibility 
of strongly modifying the electron spectrum in fields that are 
weak compared to atomic values. (The characteristic dis- 
tances between energy levels of a nanostructure decrease like 
A E N ~ I D ~  with increasing dimensions and increase like 
AE = e KD with increasing external field 8.) For this reason, 
nanostructures are very attractive systems in which to create 
strong fields and study their effects. 

The universal approach to describing a system in a 
strong periodically time-varying field is to introduce the con- 
cept of quasienergy and the Floquet basis.lly12 In the quasien- 
ergy representation, the wave function cC, takes the form 

where E is the quasienergy and @ is a function that is peri- 
odic in time (the Floquet function). A number of schemes 
have been proposed in the literature to compute the quasien- 
ergy spectrum and the Floquet  function^.'^"^ In particular, it 
has been shown that as the force parameters vary (amplitudes 
or frequencies of the external signal) the system exhibits 
both anticrossing regimes, which are usual in the static prob- 
lem (level repulsion at resonance) and crossing regimes 
(strict intersection of different branches of the quasienergy 
spectrum). These regimes are interesting because certain lin- 
ear combinations of Floquet states that belong to different 
branches of the quasienergy spectrum can be spatially local- 
ized for all times. In other words, a periodic external field is 
capable of disrupting tunneling. Usually, determination of 
the quasi-energy spectrum is a task for numerical computa- 
tions. In Sec. 3 we present and investigate a model that ad- 
mits an analytical solution leading to a qualitative analysis of 
the basic properties of the quasienergy spectrum. The model 
is the temporal analogue of the Kronig-Penney model for the 
periodic potential of a crystal lattice. We investigate how the 
initial conditions for the wave function affect the character of 
localization of the electron density in the crossing regime, 
and determine the parameters of the external force that lead 
to a crossing regime for asymmetric nanostructures. 

In Sec. 3.4 we investigate the evolution of electron states 
of a nanostructure subjected to a periodic force whose am- 
plitude is smoothly switched on. Previous numerical 
e ~ ~ e r i r n e n t s ' ~  have established that when such a system is 
subjected to a periodic field that corresponds to the crossing 
regime, the character and degree of localization of its elec- 
tron states depend in a fundamental fashion both on the way 

the amplitude increases and on the phase of the field. We will 
show below that the mechanism for generating localized 
states is connected with dissipationless relocation and how 
the character of the evolution of the electron state depends on 
the phase structure of the wave function, both of which will 
be described in the next section. 

2. DISSIPATIONLESS RELOCATION IN A MONOTONICALLY- 
VARYING EXTERNAL FIELD 

2.1. Temporal evolution of a two-level system as the 
analogue of a stationary scattering problem 

The time evolution of electronic states in a quantum 
structure (nanostructure) is described by the Schroedinger 
equation 

where H is chosen to be the Hamiltonian used in the 
method of envelopes.16 In a one-dimensional potential, the 
motions along the axis of the nanostructure (x) and in the 
plane of the layer (yz) are separable, [q(x,y ,z , t )  
= q l ( x , t ) q l I ( y  ,z,t)], and the stationary energy is the sum 
of the energy of free motion in the plane of the nanostructure 
E(kll)  = h2kf / 2m * and the size-quantized energy of longitu- 
dinal motion E n .  Under steady-state conditions the size- 
quantized energy is determined by solving a one-dimensional 
problem for the eigenstates: 

Here m* is the effective mass, and V(x) is the potential of 
the quantum structure, which we assume to be one- 
dimensional (i.e., the structure consists of a sequence of 
quantum wells and barriers). V(x) coincides with the posi- 
tion of the bottom of the conduction band (when we describe 
electrons) and the top of the valence band (when we describe 
holes); U(t) is the voltage applied to the structure, D is the 
size of the structure, and g = U / D  is the electric field inten- 
sity. 

As the applied voltage varies, the potential energy profile 
changes. The subject of our investigation will be the result- 
ing temporal evolution of the wave function. It is worth not- 
ing that control of this restructuring of the wave function in 
a quantum structure could lead to high-efficiency methods of 
processing and transforming inf~rmat ion.~ 

It is comparatively easy to arrive at a qualitative picture 
of the dynamics of electron states in nanostructures by using 
an effective Hamiltonian. Let us expand the wave function of 
the system q ( x , t )  in a basis {4i)  of wave functions for the 
isolated quantum wells of the problem without a field ( U  
= 0): 

Here ~ $ ~ ( x ) =  4(x-xi) ,  where xi  is the coordinate of the 
center of the ith well. For weakly overlapping basis wave 
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functions we can neglect the interwell matrix elements of the 
external field compared to the intrawell matrix elements Si : 

a,=-  - eU(t) eu(t) 1 4i(x)x+i(x)dx= - - D D 
Xi. (5)  

The most important features of the system behavior can be 
identified even within the two-well approximation, for which 
the non-stationary Schroedinger equation (2) has the follow- 
ing form in the basis chosen: 

Here +E are the energy levels of isolated quantum wells 
measured from the average spacing between levels, W is the 
hopping integral between wells, and 6 is the matrix element 
of the external potential U(t). The stationary energy levels 
(S=const) of the Hamiltonian (6) are 

At resonance (E= S) the distance between levels (7) is a mini- 
mum (E2- E = 2 W); however, the levels do not intersect, 
i.e., level anticrossing takes place. The probability of observ- 
ing an electron in the ith well is determined by the square of 
the absolute value (ciI2. Under steady-state conditions we 
have 

By changing the value of the parameter 6 we can bring about 
level inversion. 

The time evolution of an electron state is quite simple to 
describe when the potential changes discontinuously (at 
t = to). The wave function immediately before the potential is 
switched on, i.e., +(t= to), plays the role of an initial condi- 
tion for the Schroedinger equation (2), which describes its 
subsequent evolution. We can evaluate the behavior of the 
electron state for t >to by expanding the wave function in the 
basis of eigenfunctions of the Hamiltonian H(t>to). In this 
case, the probability of finding an electron in a given quan- 
tum well exhibits beating at frequencies fiw = E n  
- E n , ,  where E n ,  En ,  are eigenvalues of the Hamiltonian 
H(t>to).' If the stationary-state wave function of the system 
for t<to differs greatly from the same function when t>to,  
the amplitude of this beating will be large, so that the elec- 
tron density oscillates between the wells of the structure and 
can only be localized by dissipative recombination at the 
lower energy level. 

In the other limiting case, where the potential is slowly 
and adiabatically switched on, the quantum numbers of the 
quantum state where the electron is located remains invari- 
ant. The change in the probability distribution for finding an 
electron in various regions of the structure can be found by 
assuming the quantity 6 in the Hamiltonian (6) depends para- 
metrically on time. Consider the case of weak coupling: 
E S W. When there is no external voltage (S=O), an electron 
in the ground state is primarily localized in well 2. In the 
presence of a voltage 6 such that 6- E S W, the maximum of 
the wavefunction amplitude in the ground state is now lo- 

cated in well 1. If we switch on the potential S(t) adiabati- 
cally, the electron will execute dissipationless relocation 
from well 2 to well 1. The probability of dissipationless re- 
location Po, i.e., the probability that the electron remains in 
the ground state, is 

where P1 is the probability of exiting the ground state. We 
can estimate this probability in the standard way by using an 
analogy between the regime in which the Hamiltonian pa- 
rameters vary adiabatically and the problem of scattering in 
the quasiclassical approximation.' For P1 we have 

where the integral is carried out in the complex time plane 
over a contour C that encloses the point r0 at which 
E(rO) = 0 [hence E rO) = E (rO) = E2( rO) = - E (rO)]. Spe- 
cific calculations can be performed if we know how the po- 
tential depends on time. Let us consider a potential of the 
form: 

For the point r0 we have 

As a result, for PI we find 

From the condition P1 4 1 we can estimate the characteristic 
time t=  0 for adiabatic relocation of the electron density. 
When the parameters of the structure are & - W- 0.0 1 eV, 
we find @lo-l2 s. 

The two-level model allows us to give a systematic de- 
scription of the dynamic evolution of the system. By ex- 
pressing the coefficients cl,, given in (6) in terms of one 
other, we arrive at the following differential equation: 

Making the substitution t-+x reveals that the equations for 
the probability amplitudes have the form of wave equations 
for an electromagnetic field propagating in a medium with a 
position-dependent complex index of refraction: 

Here the effective index of refraction n and the absorption K 

can be expressed in the following way in terms of the pa- 
rameters of the Hamiltonian (6): 

These same equations can also be interpreted as time- 
independent Schriiedinger equations with a nonhermitian 
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Hamiltonian whose imaginary part describes the mutual con- 
version of particles with conservation of the total probability: 

Ic112+I~212= 1. 

The direct analogy with the classical scattering problem 
leads us immediately to a qualitative description of how the 
probability amplitudes evolve with time in the dynamic 
problem. The general solution for the time-dependent wave 
function can be written as a linear combination of partial 
solutions, which in the scattering problem correspond to 
waves incident on the system from right to left and from left 
to right: 

Here E+, -=E( t++m),  R, R' and T, T' are the reflection 
and transmission coefficients for waves incident from left to 
right and from right to left respectively, and a, P are numeri- 
cal coefficients determined from the initial condition. Dissi- 
pationless relocation corresponds to values of the coefficients 
p=O and R=O in (13), i.e., to a reflectionless scattering 
potential in terms of the scattering problem. 

More detailed information about the character of the dy- 
namic evolution of the electronic states can be obtained from 
numerical solution of the time-dependent Schroedinger equa- 
tion (2). 

2.2. Results of numerical calculations 

Let us discuss a structure consisting of a set of quantum 
wells separated by tunneling-transparent barriers (see the in- 
set of Fig. 1). For U= Uo=const, the piecewise-constant na- 
ture of the potential V(x) allows us to solve Eq. (2) conve- 
niently by the method of separation of variables. In this case, 
the expression for tC/(x,t) can be written in the form of a 
series 

where X,(x) is the eigenfunction of the stationary Eq. (3) for 
U= Uo corresponding to the eigenvalue E n  . The Fourier co- 
efficients a, result from expanding the eigenfunction tC/(x,O) 
= +(x) of the original state in terms of the eigenfunctions 

xn (XI. 
If the wells have the same depth and the barriers have 

the same height, these calculations are most conveniently 
performed by introducing the dimensionless coordinate 
.i=x/A, where ~ = ( 2 . r r ~ h ~ / r n * ~ ~ ~ ) " ~  and AEc is the 
height of the barrier for electrons. For the system 
GaAs/A1,Gal -,As we have Ax90 A for x = 0.3 and A-150 
A for x=0.1.  

The series (14) converges rather rapidly (often we only 
need those eigenvalues with E,<AE,), and the summation 
is easily performed numerically. In this case, the basic pro- 
cedure is to calculate E n  and X,(x) for the stationary Eq. (3). 

The method given here can be used with a time- 
dependent external force U(t) as well. In this case it is suf- 
ficient to approximate the function U(t) by a piecewise- 

FIG. 1 .  Dependence of the probability wi  for observing an clcctron in the 
ith well on time t for a two-well structure with parameters a ,=0 .4A,  
a2=0.7A, b = 0 . 5 h ,  when the voltage is switched on abruptly: 
eUIAE,=0.5 (a) and 0.15 (b). The inset to Fig. la  shows a sketch of the 
structure under study. 

constant function ~ ( t ) ,  and to apply the procedure described 
above on each of the K segments where u is constant, using 
as an initial value the solution $(x,t) obtained for the pre- 
vious interval. 

We first investigate the evolution of the wave function in 
a system containing two quantum wells of different widths. 
Let us consider the situation where the potential across the 
structure changes discontinuously from zero to a certain Uo 
that satisfies the condition e Uo> E 2  - E l  . We will assume 
that the system is initially in the ground state for U=O. In 
this case the maximum of the wave function is localized in 
the second (deeper) well, while tC/(x,O) is found to be close 
to the wave function of the stationary first excited state when 
the structure is in an external field U= Uo. Figure l a  shows 
the dependence of the probability of finding electrons in each 
of the wells wi ( t )  = $ 1  $(x,t)I2dx the limits of integration are 
the limits of the ith well) obtained by solving Eq. (2) accord- 
ing to the method described above for a structure with 
al=0.4A, a2=0.7A, b=0.5A. It is clear from the figure 
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that the maximum of the electron density remains in the 
second well, undergoing oscillations as a result of electron 
tunneling through the barrier dividing the wells. The period 
of these oscillations is determined by the energy difference 
E 2 -  E of the stationary states for U = U,. In this case, in 
order to describe the relocation it is necessary to include 
dissipative processes in the discussion. The relaxation 
mechanism that mediates the relocation involves the emis- 
sion of phonons. In this case, the characteristic time for in- 
tenvell relaxation increases rapidly with increasing barrier 
width, due to the decrease in the overlap of the wave func- 
tions of the ground and excited states.17 This time greatly 
exceeds the time for intrawell relaxation, which for transi- 
tions between spatially quantized levels in a well of 
width -100 A is 1 ps.18 For a structure based on 
Gal-,A1,As/GaAs, the quantity to=2.rrh/AE, equals 0.016 
ps for x = 0 . 3  and 0.041 ps for x=0 .1 .  In this case, the 
periods of oscillations in Fig. l a  are 0.1 and 0.25 ps respec- 
tively. 

In Fig. l b  we show the time dependence of w,,, when 
the applied voltage corresponds to the resonance value U,. 
By U ,  we mean that value for which the spacing between the 
energy levels of the first excited stationary state and the 
ground stationary state is a minimum. In this case the prob- 
abilities for absorbing an electron in the first and second 
wells turn out to be similar for these states, due to resonant 
tunneling of electrons between the wells. As in the previous 
case, oscillatory behavior of wl,,(t) is observed. The oscil- 
lation period T, is determined by the distance between en- 
ergy levels at resonance and corresponds to 0.32 ps for 
x = 0.3  and 0.82 ps for x = 0.1. It is important to note that 
the minimum probability in the second well is practically 
reduced to zero, i.e., within one period of oscillation total 
relocation of the electron density takes place, so that the 
wells appear to have changed places. 

Comparing Figs. l a  and lb,  we may conclude that in 
order for dissipationless relocation of the electron density to 
occur in such a structure it is necessary first to apply a volt- 
age to this system corresponding to the resonance, and then 
to discontinuously increase the voltage to a finite value 
U = U, when the minimum probability in the second well is 
reached (i.e., at t=Tr/2).  In Fig. 2a we show the curves 
w,,,(t) for such a regime. It is clear from the figure that, in 
this case, although the relocation is essentially complete, a 
rather large oscillatory amplitude remains. We can decrease 
this by decreasing Uo. Note that dissipationless relocation 
occurs in an antiadiabatic regime (if the external voltage 
changes discontinuously in time). 

As we showed above, characteristic times for the prob- 
lem turn out to be the order of picoseconds, so that the step- 
wise change in the voltage for the structure is very compli- 
cated to implement. For this reason, it is worthwhile to 
follow the behavior of the system when the voltage is 
switched on smoothly. Furthermore, it is important to address 
the problem of picking the form of the switching pulse so as 
to decrease the oscillations in the final state. For this we 
solved Eq. (2) for a function U(t) of the form 

FIG. 2. Change in the probabilities w,,, (1,2) with time for a two-well 
structure for (a) stepwise switching on of the external voltage with r=9 to ,  
U , =  U ,  , U o = 0 . 5 A E ,  ; (b) a linearly increasing potential with r = 5 0 t 0 ,  
U 0 = 0 . 5 A E , .  The inset shows the temporal shape of the switching pulse. 

for y=0.5, 1, and 2, i.e., signals with square-root, linear, and 
quadratic time dependence during the switch-on stage. For 
each y we calculated wi(t), varying the rise time T of the 
front and the magnitude U, of the steady-state signal. Figure 
2b shows typical dependences w,,,(t) for the linear form of 
U(t). The curves ~ ~ , ~ ( t )  have similar shapes for y=0.5 and 
2 as well. In order to achieve collisionless relocation we 
must have T>T, and Uo> V , ,  while to obtain identical am- 
plitudes for the residual oscillations T ~ , ~ <  r1 < T2 is necessary. 
As T increases, the amplitude of the oscillations decreases. 
The time T required to achieve more or less complete relo- 
cation turns out to be two to three times larger than when the 
voltage is switched on in a stepwise manner. Despite this, it 
is clear from Fig. 2b that for x = 0 .3  it is 0.5 ps and 1.2 ps for 
x=0 .1 ,  i.e., it can be even smaller than the intrawell relax- 
ation time. 

Thus, by choosing a suitable regime for switching on the 
external voltage, we can bring about collisionless relocation 
of the electron density in asymmetric quantum-size struc- 
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tures. In this case, the switching time turns out to be a pico- 
second or less in order of magnitude. 

In order to discuss the evolution of the states when the 
external electric field changes continuously, consider a sys- 
tem consisting of two identical wells separated by a barrier 
transparent to tunneling. In this case there are two evolution 
problems that are physically meaningful: first, when the sys- 
tem is in the ground state @(x,O) = I 1 )  at t = 0,  and secondly, 
when the wave function in its initial state consists of a linear 
combination of functions corresponding to the ground and 
first excited states, i.e., @(x,O) = (1 1 )  2 1 2 ) l d .  First consider 
the case where the field amplitude is linearly increasing, so 
that when the potential Uo reaches its constant value U =  Uo , 
the value of U, ensures that the ground-state wave function 
is localized in the left-hand well. When @(x,O) = 1 1)  holds, 
the probabilities for finding the electron in the two wells are 
equal in the initial state, i.e., w ,(O) = w2(0). When the 
switching-on of the voltage is sufficiently abrupt (small T), 
the quantities w,(t) and w2(t) execute out-of-phase oscilla- 
tions, such that w,>w2 always holds. The period of these 
oscillations is determined by the distance between levels for 
U= U,. As the duration T of the switching front increases, 
the amplitude of these oscillations decreases, and the final 
state of the system becomes more and more localized in the 
left-hand well. For example, if we consider a structure with 
parameters a ,  =a2=0 .50h ,  b = 0 . 3 h ,  we find that when 
U,= 0.5AEC and T= 20to the amplitude of the residual 0s- 
cillations of w, is less than lo%, i.e., for this T the switching 
regime is close to adiabatic. The system is initially in the 
ground state (with w, = w2); at the end of the adiabatic pro- 
cess it is once again in the ground state for the nonzero field 
Uo , which corresponds to w, 9 w2. 

When the initial state is a combination of the ground and 
excited states, situations are possible for which either 
w l S w 2  [when @(x,0)=(11)+12))lfi] or w , 4 w 2  [when 
@(x,O) = (1 1) - 12))/d].  It is interesting that when the field 
is switched on sufficiently slowly, the evolution of the sys- 
tem at large times for these two cases is very similar: the 
probabilities w , , ~  in the steady-state regime oscillate out of 
phase around a value G=0 .4 ,  i.e., on the average the elec- 
tron is delocalized. Figure 3 shows the functions wi(t) for 
the case @(x,O) = (1 1 )  - 1 2 ) ) / d ,  where the wave function is 
initially localized in the right-hand well. For @(x,O) = ( 1  1 )  
+ 1 2 ) ) I d  the initial stage of the evolution of wi(t) is analo- 
gous to the previous case with the interchange w1 + wZ, and 
in the steady-state regime (for t >  T) the behavior of the sys- 
tem in both cases is practically identical. At first glance this 
result is unexpected. The fact is, these two cases can be 
realized by changing the polarity of the voltage applied to 
the system while leaving the initial condition unchanged (a 
wave function localized in the left-hand well). For the adia- 
batic regime, the results are as follows. When there is no 
field on the system, the initial state is made up of the ground 
and excited states with equal weights. That is, for a symmet- 
ric structure both the ground and the first excited state are 
delocalized when U=O. As the voltage is slowly switched 
on, the system evolves to a state that is also made up of the 
ground and excited states with equal weights, but now these 
are states of the system in the external field U,. For U= U, 

FIG. 3. Dependence of the probabilities w,,, (1,2) on time t for a two-well 
structure with parameters a ,  =a2=0.5X, b=0.3A when the voltage is 
switched on linearly with r=20t0  and the initial condition Jl(x,O)=(ll) 
- I2))Itlz. 

the ground state is localized in one well and the excited state 
in another, but their combination turns out to be delocalized. 

In principle, we can prepare an initial state based on the 
more general combination @(x, 0)  = ( 1  1) +exp(i 4 )  1 2 ) ) l d .  
The cases discussed above correspond to 4=O and d=.rr. 
Calculations show that, for intermediate values of 4, the evo- 
lution for t > ~  depends only weakly on 4 when T is suffi- 
ciently long. In particular, for 4= 4 2  [ @(x,O) = ( 1  1 )  + i12))l 
d l ,  although w l =  w2 in the initial state (i.e., a situation 
analogous to the original ground state), in the steady-state 
regime the probabilities for finding an electron in each of the 
wells are close [rather than w, S w2 , the case when fix,O) 
= 1 I ) ] .  Thus, knowledge of the initial probability distribu- 
tion in each well does not provide enough information to 
describe the time evolution. The fact is that the character of 
the evolution is determined by the distribution of the system 
over states. 

3. PERIODIC FORCE AND QUASI-ENERGY SPECTRUM 

3.1. Time-dependent analogue of the Kronig-Penney model 

To investigate the evolution of quantum-size structures 
subjected to periodic time-dependent external forces, we will 
use the time-dependent analogue of the Kronig-Penney 
model, i.e., we will assume that a periodic sequence of rect- 
angular pulses acts on the system: 

for n T < t < n T +  TI, 
U(t) = 

U2 for n T + r l < t < ( n + l ) T ,  (15) 

where n is an integer and T =  T, + r2 is the period of the 
force. As we show below, a time dependence of this form 
with r1=r2 and U, = - U2 can be used to describe all the 
features of processes that occur when U(t) is harmonic. 
However, the computational methods for dealing with the 
model (15) turn out to be considerably simpler, and the re- 
sults much easier to interpret. For structures in which the 
primary contribution to the evolution comes from the two 
first energy levels, a large number of important results can be 
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obtained analytically. In contrast, it can be seen from Refs. 
13 and 14 that when the time dependence of the external 
signal is of the form U(t) = U, sin ( o t ) ,  the problem of find- 
ing the quasi-energy spectrum is quite complicated even for 
the simplest two-level system and requires numerical calcu- 
lations. Furthermore, by using this "temporal Kronig- 
Penney model," we can treat asymmetric forces as well 
( r l f  72, U1 f - U 2 )  Finally, this type of signal (or one close 
to it) can be realized in practice. 

In principle, we could immediately solve the periodic- 
force problem for any set of parameters using the solution 
algorithh described below for the time-dependent Schro- 
edinger equation. Analysis of the possible situations is 
greatly simplified if we use the concept of quasi-energy. 
Knowledge of the quasi-energy spectrum allows us to draw 
conclusions about the character of the time evolution without 
solving the full time-dependent problem. 

In order to find the quasi-energy spectrum and Floquet 
functions, let us consider the solution to the time-dependent 
Schroedinger Eq. (2) with U(t) in the form (15) on a time 
interval consisting of a single period [O,T]. In each of the 
regions [O,rl] and [rl,T] where the potential is constant, we 
can represent the wave function in the form of an expansion 
over the steady-state eigenfunctions in the fields U =  U i .  
These expansions have the form (14) when we make the 
replacements a n + a t ) ,  E,+E?), X,+X~),  where i = 1,  2 
corresponds to U1, U2 in Eq. (15). Using the condition of 
continuity at t =  r l ,  we can express the coefficients ai2) in 
terms of a;'), and then make use of the Floquet theorem in 
the form 

Substituting the expansion for $in terms of X:)(X) into (16), 
multiplying the right and left sides of the equation by 
x(,')(x), and integrating over x ,  we are led to the following 
eigenvalue problem 

where 

It is easy to show that the following relation holds for the 

The eigenvalues (17) determine the quasi-energy spectrum 
c j ,  while the eigenvectors determine the Floquet functions 
@j(x,t). 

For a system of two quantum wells separated by a tun- 
neling transparent barrier, we can choose the parameters of 
the structure such that the primary contribution to the expan- 
sion of the wave function (14) comes from the first two size- 
quantized levels both for U =  U1 and U= U2. In this case we 

can limit ourselves to the first two terms of the sum in (17). 
In this case, the equation for the eigenvalues takes the simple 
form 

where 

Let us discuss the limit U1 = - U2--to. In this case we 
have p l l+ l ,  and (18) reduces to 

whose solutions are = 1,  i 2 = y 2 ,  or to within terms of 
order n h w, 

That is, for U+O the quasi-energy coincides with the energy 
as we should expect. For arbitrary U, and U2, the solution to 
(18) offers no difficulty, i.e., the problem of finding the 
quasi-energies for the two-level system can be solved ana- 
lytically when the force is a periodic sequence of rectangular 
pulses. 

The quasi-energy concept allows us to describe the evo- 
lution of this system for an arbitrary initial condition. To do 
so, we simply need to find the expansion of the initial func- 
tion rCr,(x) in terms of the Floquet functions a j (x ,O)  at time 
t = 0.  The wave function at an arbitrary time then will have 
the form 

where gm are the coefficients of the expansion of the func- 
tion I,!J~(X) in the basis Qm(x,O). This approach has a con- 
siderable advantage over direct methods of solving the time- 
dependent Schroedinger equation when it is necessary to 
obtain the function $(x,t) over long intervals of time, or to 
obtain a solution over a wide set of initial conditions. Here 
we need only find the quasi-energy spectrum and the corre- 
sponding Floquet functions once by solving the time- 
dependent Schroedinger equation over a single period, and 
then use Eq. (20). 

The most interesting situation is when two (or more) 
quasi-energy levels coincide. It is clear from (20) that the 
time dependence of the wave function is not periodic in gen- 
eral, because the values of the quasi-energy are usually not 
commensurate. When the primary contribution to (20) comes 
from the first two levels and the behavior of *(x,t) 
becomes close to periodic, with a period T equal to the pe- 
riod of the external force. As is easy to see from (18), the 
quasi-energies of the "two-level" system coincide when the 
following relation holds: 
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Elementary analysis shows that this is the only possible situ- 
ation in which the quasi-energies can coincide. Using the 
definition of y,  we can rewrite condition (21) in the form 

The value of the quasi-energy in this case equals 

As we noted above, the period of free oscillations T: for the 
wave function when a constant electric field Ui is applied to 
the structure is determined by the separation between system 
energy levels Ai  through the relation: 

Comparing (22) and (24), it is easy to see that the quasi- 
energies intersect if, within each time ri during which the 
action of the voltage is constant, each component of the pe- 
riodic signal of the system executes an integer number of 
oscillations. In this case, the system has returned to its origi- 
nal state when the next pulse arrives. These considerations 
hold for each pulse. As a result, the system is in the ground 
state after each period, and the absolute value of the wave 
function is a periodic function with period T. In principle we 
may conclude this without analyzing the quasi-energy spec- 
trum; however, qualitative discussions do not tell us if this 
the only kind of periodic behavior possible. In contrast, the 
analysis given above shows that the solution (22) is unique. 
For a symmetric system subjected to a symmetric periodic 
force (A, =A2=A, T1 = T2= T), we may write condition (22) in 
the form 

where w =  27rlT is the frequency of the force and m is an 
integer. It is clear from (25) that the intersection of quasi- 
energies can be compared to a multiquantum process of or- 
der to 2m. 

Suppose that, in the absence of the external force, the 
distance between system levels A, satisfies the condition 

(the notation [ ] denotes the integer part of a number), i.e., as 
U+O the energy levels can be intermixed as a result of the 
k-quantum process. The first intersection of the quasi- 
energies at a finite amplitude of the periodic force takes place 
when condition (25) is fulfilled. Since A>Ao holds for the 
symmetric structure, the first intersection corresponds to 

2 m = k + l  when k is odd, 

2m = k+ 2 when k is even. (27) 

It follows from (27) that for k= 0 and k= 1 the first inter- 
section corresponds to a two-quantum process, for k = 2 and 
k= 3 to a four-quantum process, etc. 

It is also easy to obtain the condition for when more than 
two quasi-energies coincide, using Eq. (17). For a symmetric 
system and a symmetric two-pulse force, N quasi-energies 
will intersect as some parameter is changed when the follow- 
ing condition holds: 

FIG. 4. Quasi-energy .z as a function of the period of the force T for a 
structure with a , = a 2 = 0 . 5 h ,  b = 0 . 3 h ,  when Uo+O (dotted) and 
eU,=0 .02AEC.  

where k is an integer, which can be different for different 
pairs of levels. The simplest example of such a system is a 
system with equidistant levels. By choosing the parameters 
of the multiwell structure, we can ensure that (28) holds. In 
what follows we will illustrate this for the example of a 
three-well structure. 

3.2. Symmetric structures 

As an example, let us consider a symmetric system con- 
sisting of two identical quantum wells with dimensions 
a l=a2=0 .5h ,  b=0.3X. For these dimensions, in the en- 
ergy interval below the barrier height, there are only two 
energy levels whose wave functions are localized in the 
ground states of the wells. Therefore, we can initially limit 
ourselves to the first two terms of the summation (17) and 
find the eigenvalues from (18). We will assume the force to 
be symmetric, i.e., UI = - U2= UO, 71 = T/2. Let us trace 
how the values of the quasi-energy change for this system as 
external parameters such as the amplitude Uo and period T 
of the force change. As Uo+O, the dependence of the quasi- 
energy on T (or hw) can be written in the form 

~ ~ l h w = E ~ / h w - [ E ~ / h w ] ~ T / ~ ~ - [ T / ~ ~ ] ,  

where TO is the period of free oscillations of the system with- 
out a field. For Uo#O the function ci(T) is easily obtained 
by solving (18). 

Figure 4 shows how c , , ~  depend on T as U,+O (dotted 
curve) and for U,= 0.02 AE, (solid curve). Because c i  and 
ci+nfiw are equivalent, the representation of c i  is not 
unique. In Fig. 4 we have chosen a representation for which 
the branches and c2 corresponding to minimum distance 
between quasi-energies, since it is this quantity that deter- 
mines the time evolution of the wave function, and the val- 
ues of Ac and hw+Ac are equivalent. As Uo+O a crossing 
occurs at T= n To, which corresponds to an n-quantum pro- 
cess. As we noted above, the real points of intersection of the 
quasi-energy correspond to 2n-quantum processes. It is this 
that explains the change of situation when Uo+ 0: real inter- 
section of quasi-energies leads to anticrossing. This causes 
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FIG. 5 .  Temporal evolution of the probabilities for finding an electron in the 
wells w , , ~  (curves 1, 2)  and occupation probabilities for the excited energy 
level la , )2  (3) for e U o = 0 . 0 2 A E ,  when the period of the force 
T=T, ,=11.2to (a) and T=Tc ,=22 .4 to  (b). 

the time evolution of the wave functions for T=Tc,=2kro 
(crossing) and T  = Ta,=(2k + 1 )  r0 (anticrossing) to vary 
greatly. In Figs. 5a and 5b we show how the probabilities of 
observing an electron in the left and right wells depend on 
time for U o = 0 . 0 2 A E ,  (in Fig. 5a, T = 1 1 . 2 t o = r 0 ,  while 
T = 2 2 . 4 t 0 = 2 r 0  in Fig. 5b) when the system is initially in 
the ground state for U = O .  The dotted curve in Figs. 5a, 5b 
shows the square of the absolute value of the coefficient a ,  
appearing in the expansion of the wave function +(x , t )  in 
eigenfunctions of the unperturbed state. At a point of anti- 
crossing, despite the smallness of the force amplitude, there 
are times when the wave function is localized in one of the 
wells; in this case the function w ( t )  has the typical beating 
form. Within a period of this beating the terms reverse: in the 
initial state a l =  1 ,  a 2 = 0 ,  while for t = 5 . 8 t o ,  a l g O ,  a 2 = 1 .  
At a crossing point, w ( t )  is of course a periodic function 
with period T ;  its oscillation amplitude w ( t )  is small, 
1 a  ( t )  1 remains close to unity, and 1 a 2 ( t )  1 is close to zero. 
For T =  2kr0 (k is an integer) the system behavior is analo- 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
ello I AE, 

FIG. 6. Dependence of the quasi-energies on the periodic signal ampli- 
tude U o  for a symmetric structure (a, = a 2 = 0 . 5 X ,  b=0.5X) when 
T =  1  1.2t0 (solid curves) and T = 2 2 . 4 t 0  (dotted curves). 

gous to Fig. 5a; for T = ( 2 k +  l ) r o  it is analogous to Fig. 5b. 
For intermediate values of the force period, the functions 

w i ( t )  also have a characteristic beating form, but the ampli- 
tude of the oscillations decreases smoothly as we move away 
from the crossover point. The maximum value of la2(t)I2 
abruptly decreases as we move away from T,, ,  dropping to 
zero as T+T,, .  Thus if the amplitude of the force is small, 
the anticrossing points ( n h o =  Ao) are identified by the fact 
that, in this case, the average probability of observing an 
electron in the excited state is a maximum and equals 0.5. 

If the electron is initially localized, e.g., +(x,O) = ( 1  1 )  
+ 1 2 ) ) / d ,  then at an anticrossing point the functions w i ( t )  
and lai(t)l are close in form to the curves shown in Fig. 5a, 
but displaced by half a beat period. At the crossing points, 
the w i ( t )  oscillate between a maximum value equal to 
w1(0)==0.9  and a minimum of zero; l a1 ( t ) l2  and la2(t)I2 
oscillate out of phase around an average value equal to 0.5. 

Figure 6 shows how the quasi-energy depends on the 
amplitude of the force U o  for two values of the period: 
T g  r0 (solid curves) and T g  2  ro (dotted curves), obtained 
from (18). The points where the curves intersect are deter 

O ' 
oh5 0:1 0;5 0:2 0.;5 0:3 0.;5 6 4  0.'45 0: 

eUo I AE, 

FIG. 7. Geometric position of crossing point on the plane ( T , U o )  for a 
symmetric two-well structure. 
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mined by Eqs. (22), and the corresponding value of E by Eq. 
(23). For small amplitudes, the anticrossing points corre- 
spond to quasi-energies as close as possible to the neighbor- 
ing Brillouin zones; for the first zone this corresponds to 
points with maximum spacing between quasi-energies. 
Therefore it is natural to refer to points at which the distance 
between quasi-energies in the first Brillouin zone is a maxi- 
mum as anticrossing points for finite amplitudes as well. Let 
us analyze Fig. 6 using Eqs. (26), (27). The curves for T= 7, 

correspond to k=  1; therefore, the first intersection of the 
quasi-energies takes place when the condition A1=2fiwl 
holds, i.e., this point corresponds to a two-quantum process. 
For T= 2 T,, k= 2 and the first point of intersection corre- 
sponds to a four-quantum process: A 2 = 4 h 2 ;  however, 
w2=wl/2 holds i.e., at these points we have AlsA2, and they 
are observed for nearby values of the force amplitude. Analo- 
gous considerations show that for T= ro the second intersec- 
tion should be observed at the same U ,  as the three intersec- 
tions for T = 2 ro . 

The most characteristic points on the curves &(UO) are 
the crossing points. Because the points of intersection of 
quasi-energies are so important to the system evolution, we 
have showed the geometric position of these points on the 
plane (Uo,T) in Fig. 7, determined according to Eq. (22) 
using the function A(U,) obtained by solving the time- 
independent Schroedinger equation. 

In the previous discussion we have limited ourselves ev- 
erywhere to two quasi-energy levels, for which the calcula- 
tions can be done analytically. Including more than two lev- 
els requires numerical solution of the eigenvalue equations. 
Such calculations show that including a larger number of 
levels changes the function &(UO) only slightly, as is clear 
from Fig. 6 (except for bounded regions where crossing or 
anticrossing with higher levels occurs). We must emphasize 
that, in this case, the locations of the points where the first 
quasi-energy levels intersect are practically unchanged. An 
analogous situation obtains for other structures as well (two- 
well structures for which the number of energy levels ex- 
ceeds two, three-well structures, etc.). This tells us that most 
of the information about the character of the system evolu- 
tion may be obtained by analyzing the behavior of the first 
few quasi-energy levels. Confirmation of this assertion 
comes from numerical calculations of the wave-function 
evolution by direct solution of the time-dependent Schro- 
edinger equation using methods of Sec. 2.2. Here the number 
of terms of the series (14) is chosen to ensure convergence 
and achieve the required computational accuracy. In order to 
guarantee high accuracy this number should be of order 10. 
The calculations show that for force parameters correspond- 
ing to the crossing points obtained by taking into account 
two quasi-energy levels, periodic behavior of w(t) is ob- 
served when (2) is solved numerically for various initial con- 
ditions. 

In Fig. 8 we show the functions wi(t) for a symmetric 
two-well structure when T=22.28t0 and Uo=0.26AE,, 
which corresponds to the first crossing point (see Fig. 6). 
Figure 8a corresponds to $ (x ,O )  = 1 1), Fig. 8b to $(x ,O)  
= ( 1  1)  + 12))/\/2. The periodicity of the wi(t) is clearly ap- 
parent. Furthermore, Fig. 8 illustrates a number of features of 

FIG. 8. Probabilities w,,, of finding an electron in wells I and 2 as a func- 
tion of time t when T=22.4tO,  eUo=0.26AE, (crossing point), for 
$(x,O)= 11) (a) and $(x ,o)=( l l )+  l2))/fl (b). 

the evolution of a system subjected to a periodic force with 
finite amplitude. It is clear from the figure that for the initial 
ground state (Fig. 8a) the amplitude of oscillations of the 
w,(t) turns out to be considerably larger than for the case of 
small U, (Fig. 5b). Conversely, for an initially localized state 
the amplitude decreases with increasing Uo. In the latter 
case, an electron can be localized in the well by the periodic 
force.14 For this it is necessary to satisfy the crossing condi- 
tion for a rather large force amplitude. 

Figure 8 reveals a characteristic feature of wi(t): the 
obvious presence of the fourth harmonic. This is because the 
crossing point we have chosen corresponds to a four-photon 
process, i.e., a situation where the period of the force is four 
times larger than the period of the eigenmodes. Thus, fre- 
quency multiplication of the external force occurs at a cross- 
ing point. The multiplication coefficient depends on the am- 
plitude of the force, i.e., such structures can be used for 
analog-digital conversion. 

In Sec. 2 we discussed the evolution of wi(t) when 
the variation of the potential U(t) is smooth and monotonic, 
for a wave function with the initial form $(x,O)=(ll) 
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+ei412))ld2, and showed that for t > ~  the system behavior 
depends weakly on +. A different situation obtains for peri- 
odic forces. In this case, the choice +=O leads to localization 
of the electron in the left-hand well, whereas for +=T the 
periodic force localizes the electron in the right-hand well. 
As calculations show, for intermediate 4 the probability 6, 
of observing an electron in the left-hand well averaged over 
a period changes smoothly from a maximum value at +=O to 
a minimum value close to zero at +=T;  in this case, W2 
increases from zero to a maximum value. The amplitude of 
the oscillations around the average value is a minimum for 
+=O and += T, and a maximum for += d 2 ,  where Wl  = W2 
holds. Thus, in this case the evolution is a strong function of 
the phase 4.  A state with a specified value of I$ can be 
prepared from the state *(x,O) = (1 1) + 1 2 ) ) l d  by delaying 
the switching on the signal, i.e., allowing the system to ex- 
ecute free oscillations for a time t = h 41(E2 - E 

When the excitation amplitude lies outside the crossing 
region, the evolution of w(t) results from the superposition 
of oscillations corresponding to at least two Floquet modes 
with different frequencies (in general, incommensurate). The 
function w(t) has the characteristic beating form, whose fre- 
quency is determined by the spacing between quasi-energies 
for the first few Floquet modes. In this case, the contribution 
of higher modes is also significant. The form of w(t) turns 
out to be very complicated, the behavior of the system is 
close to chaotic, and the variation of w(t) is large. The prob- 
ability of observing an electron in the excited state la2(t)I2 
for a force with finite amplitude always turns out to be rather 
large, reaching a maximum at the anticrossing point. 

Everywhere above we have treated a sequence of rect- 
angular pulses, for which we are able to carry out a rather 
complete and comparatively simple analysis of the system 
behavior. In contrast, the signal dependence usually encoun- 
tered in the literature is harmonic, of the form 
U(t) = U, sin wt. As we demonstrated in the previous sec- 
tions, the time-dependent Kronig-Penney model allows us to 
describe all the features of the evolution that result from a 
harmonic signa1.13-l5 Our method of solving the time- 
independent Schroedinger equation allows us to compute 
$(x,t) for an arbitrary function U(t) as well, simply by 
approximating this function by a piecewise-constant func- 
tion. The basic results in this case turn out to be the same as 
for a sequence of rectangular pulses. 

3.3. Asymmetric structures 

In asymmetric structures, the regimes of crossing and 
anticrossing are no longer directly associated with even- 
order multiquantum transitions. We can illustrate the connec- 
tion between nth order multiquantum transitions and cross- 
ing and anticrossing regimes at the qualitative level by 
considering an effective Hamiltonian written in the basis 
(4,) of eigenstates of the system without an external field. 
In this case the anticrossing regime corresponds to the reso- 
nance approximation; in the weak-field limit this is described 
by the following two-level effective Hamiltonian: 

= ~ u , + A ( u ~  cos n w t + u , ,  sin nwt). (29) 

Here t s  are the energy levels coupled by the resonance 
field, which in general may also include transverse disper- 
sion (k,). For n = 1,  the resonance interaction amplitude is 
A = ei";P121w, where P12 is the interband matrix element of 
the pulse (for an interaction with a field of the form AV, 
where A is the vector potential). Using the canonical trans- 
formation U 

corresponding to transforming to a rotating system of coor- 
dinates, we can reduce the time-dependent problem to a 
time-independent problem with the Hamiltonian 

The spectrum of this Hamiltonian H has the form E 
= 2 J(E - ~ 1 2 ) ~  + A2, which under resonance conditions 
( E = w / ~ )  describes level anticrossing. If the wave function is 
initially in one of the stationary states of the Hamiltonian 
without a field, then it will oscillate between resonantly 
coupled states in the anticrossing regime with an amplitude 
a( t )  = (AlE) sin ( ~ t l h ) . ~  

For n >  1 ( n w = 2 ~ )  the anticrossing regime can also be 
described by using the resonant Hamiltonian (29) if we com- 
pute the nondiagonal components to the order of perturbation 
theory required by the condition n w = 2 ~ .  When a center of 
inversion is present in the system without a field, the diago- 
nal matrix elements of the term that describes the interaction 
of the system with the field (A V or e 6 x )  vanish, and nondi- 
agonal components appear only in odd orders: 

In the absence of a center of inversion ( P l l  ZO), resonant 
components appear in the even orders as well: 

Thus, once the center of inversion of the system is elimi- 
nated, we can observe transitions from the crossing regime to 
the anticrossing regime, with a corresponding change in the 
character of the time evolution of the electron states. In a 
symmetric nanostructure this can be achieved by applying a 
constant electrical bias along the nanostructure axis. 

Let us discuss the dependence of the quasi-energy on the 
signal amplitude for an asymmetric system, both for a sym- 
metric force and for a nonsymmetric one. 

In Fig. 9 (curves 1,  2) we show the functions E(U,,) for 
an asymmetric structure with dimensions a = 0.49A, 
a,= 0.50A, b = 0.3A subjected to a symmetric force. If we 
compare these curves with the analogous functions for a 
symmetric structure (see Fig. 6), we see that in the presence 
of asymmetry, crossing can convert to anticrossing. Curves 
3, 4 in Fig. 9 illustrate the fact that by choosing the duration 
of the positive and negative half-waves of the periodic signal 
we can bring about intersection of the quasi-energies for an 
asymmetric structure. The parameters of the structure were 
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FIG. 9 .  Quasi-energies E ~ , ,  as functions of the amplitude of the periodic FIG. 10. Dependence of the quasi-energies E,,, on the amplitude of a sym- 
force U ,  for an asymmetric structure ( a ,  = 0 . 4 9 h ,  a 2 = 0 . 5 A ,  b = 0 . 3 X ) .  metric periodic force for an asymmetric structure ( a ,  =0 .4X,  a 2 = 0 . 5 X ,  
Here I, 2 are for a symmetric force with r l = r 2 = 5 . 5 7 t 0 ,  3, 4 are for an b = 0 . 4 A )  when eUo=0.02AE,  (dots) and eUo=0.15AE,  (solid curves). 
asymmetric force with 7,  = 5 .49 t0 ,  r 2 = 5 . 9 3 t O .  

al=0.49A, a2=0.50A, b=0.3A; the duration of the posi- 
tive half-wave was r, =5.49to; and the negative half-wave 
duration was r0 = 5.93 to. The magnitudes of rl and r2 were 
chosen so that Eq. (24) holds for U = 0.25 AE, . It is for this 
value of the amplitude that the quasi-energies intersect in 
Fig. 9. In contrast to a symmetric two-well structure, where 
several crossing points are observed in this range of Uo, in 
this case there is only a single point where the quasi-energies 
intersect. 

Another example of a nonsymmetric force is 

For a symmetric structure, the crossing becomes anticrossing 
when AU is not equal to zero. When eAU=0.02AEc, the 
functions &(UO) are analogous to curves 1, 2 of Fig. 9. 

Intersection of quasi-energy levels can also be achieved 
when symmetric pulses (rl= r2) act on an asymmetric struc- 
ture. It is easy to see that Eq. (22) will hold if the amplitude 
is chosen so that the ratio A-/A+ (where A+,- are the sepa- 
rations between the energy levels of the first two stationary 
states when U= 2 Uo) equals the ratio of two integers llm, 
and the period equals T=4lhlA+ . In contrast to a symmet- 
ric structure, the conditions for crossing in this case will no 
longer be satisfied on a curve in the plane (T,Uo), but only 
at discrete points. 

In Fig. 10 we show the dependence of the quasi-energies 
on the force for an asymmetric structure with the parameters 
aI=0.4X, a2=0.5A, b=0.4A, and amplitudes 
Uo=0.02AEc (dotted curves) and Uo= 0. 15AEc (solid 
curves). It is clear from the figure that by varying the voltage 
Uo we can cause the anticrossing point to become a crossing 
point. At the crossing point shown in Fig. 10 we have 
A-/A+ =3, T =  30to. The parameters of the system are cho- 
sen so that the quasi-energies intersect at the resonance 
Uo= U, . 

Figure 11 shows the time evolution of the probability of 
finding an electron in the wells for this intersection point, 
under the condition that the system is initially in the ground 
state. In the first half-period, the system executes a single 

oscillation, while in the second it executes three. This is be- 
cause A+/A-=3. During the positive half-wave the voltage 
equals its resonance value; hence, the amplitude of the oscil- 
lations w , , ~  is large. The number of points of intersection of 
quasi-energies as U, varies will increase as the resonant dis- 
tance between the stationary energy levels decreases. This 
can easily be ensured by increasing the barrier width. Figure 
12 (which is analogous to the diagram shown in Fig. 7 for 
the symmetric structure) shows the geometric location of 
crossing points in the plane (T,Uo) for a structure with pa- 
rameters al=0.4A, a2=0.5k ,  b=0.7X. 

There is a certain analogy between the problem we are 
discussing, in which the relocation of electrons from one 
quantum well to another is controlled externally, and the 
problem of ionization of atoms (departure of an electron to 
infinity). In this case, instead of discussing excitation from a 
localized ground state to a state of the continuous spectrum, 
we discuss the case where a transition occurs from one lo- 
calized state to another. 

FIG. 11. Temporal evolution of the probabilities w,,* for an asymmetric 
structure when a symmetric force acts at the point of quasi-energy crossing: 
T = 3 0 t o ,  eUo=0.15AE, .  
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FIG. 12. Position of the crossing (*) and anticrossing (+) points on the 
plane (T,Uo) for an asymmetric structure (a l=0 .4h,  a2=0.5X, b=0.4X) 
and a symmetric force. 

Ionization of atoms proceeds by two alternative mecha- 
nisms: multiphoton ionization (including one-photon), and 
tunneling ionization. In the paper Ref. 10, L. V. Keldysh 
obtained a general expression for the ionization probability, 
which in the limit wew,, (where llw,, is proportional to 
the tunneling time) reduces to the expression w 
= (Bl &j exp( - C/@ for tunneling ionization, where B,  C 
are certain constants and 65 is the electric field intensity in 
the wave. In the opposite limit wBw,,,, Keldysh obtained 
the expression for multiphoton ionization w = a s 2 k ~ ,  where 
a is the cross section for the multiphoton process and ko is 
the number of photons involved. In this case the argument 
turns on the smallness of the probabilities. In our case it 
makes sense to speak of a relocation or of a transition from 
the ground state to an excited state when the corresponding 
probabilities are of order unity. The technique we are using, 
i.e., Floquet functions and the quasi-energy representation, 
allows us to describe the electron dynamics in general, in- 
cluding multiphoton behavior and tunneling, over the entire 
physically interesting range of transition probabilities. Of the 
curves that show the dependence of the frequency on field 
intensity, those that correspond to the anticrossing condition 
exhibit probabilities for these transitions of order unity. 

On these curves, in the weak-field limit it is the corre- 
sponding multiphoton processes that are responsible for the 
transition. The tunneling contribution (resonant tunneling) 
will dominate the multiphoton contribution for asymmetric 
structures when the distance between electronic levels in the 
system, which determines the value of 8d12 under condi- 
tions of resonant tunneling, significantly exceeds the value of 
the tunneling-induced splitting of the level, which decreases 
exponentially as the width of the barrier increases. The most 
favorable conditions for relocation and excitation are real- 
ized along the curve w(Uo) corresponding to anticrossing 
with a low frequency determined by the tunneling-induced 
splitting. In this case, the dependence on frequency within 
this range is actually rather weak (perhaps with the exception 
of crossing points). 

Let us turn to the situation where the number of quantum 

wells in the system is more than two. In this case we are no 
longer able to obtain simple analytic expressions for the 
quasi-energies, but they are easily computed numerically. 
For multiwell structures, we are most interested in finding 
structure parameters for which the intersection of several 
(more than two) quasi-energy levels takes place. In this con- 
nection, let us compute the spectra of quasi-energies &(UO) 
for three- and four-well structures. 

For the three-well structure, we choose the parameters of 
the wells so that there are three energy levels below the 
barrier height in the unperturbed system. Our basic interest is 
in the behavior of the three lowest quasi-energy levels. Cal- 
culations show that for a symmetric system with three iden- 
tical wells there are regions where all three levels approach 
very close to one another, although there are no exact simul- 
taneous intersections. As we noted previously, the simulta- 
neous intersection of several quasi-energy levels within the 
time-dependent Kronig-Penney model requires that the en- 
ergy levels of the system be equidistant when the constant 
field is equal in magnitude to the amplitude of the periodic 
force. This is easily achieved for a three-well structure by 
varying the width of the center well. For example, for a 
system with well sizes a l = a 2 = a 3 = 0 . 5 A ,  bl=b2=0.3A,  
the first approach of the quasi-energy levels is observed for 
eUo=0.2AE,. By solving the stationary Schroedinger 
equation, we easily find that for this constant external bias 
the energy levels become equidistant if we change the size of 
the center well to 0.492% In this case we observe the si- 
multaneous intersection of three quasi-energy levels when 
e Uo = 0.25 AE, , i.e., the first anticrossing is converted to a 
crossing. Since the distance between energy levels in steady 
state depends on the value of the external field, the levels are 
not equidistant for other Uo, and, in contrast to the two-well 
structure, only one crossing point occurs. 

As in the case of the two-well structure, calculations 
show that the main features of the function e(UO) for the 
first three levels are preserved even when we take into ac- 
count a larger number of levels. We made analogous calcu- 
lations for four-well structures. For a system of identical 
wells and identical barriers, there are no crossing points. In- 
tersection is achieved by varying the width of the wells and 
barriers. Thus, our investigations are in agreement with the 
conclusion that a superlattice made up of identical elements 
in a periodic external field exhibits only an approximation of 
band collapse (due to inclusion of only nearest 
neighbors).l3,l9 

3.4. A regime for switching on a periodic signal 

The features of most interest to us are the points of in- 
tersection of the first quasi-energy levels. In this case, the 
behavior of the system is close to periodic over a wide set of 
initial conditions (if the primary contribution to the expan- 
sion of the initial state in Floquet modes includes modes that 
correspond to quasi-energies that intersect). The details of 
the behavior of the probability of finding an electron in a 
particular well depend on the specific form of the initial 
state. For this reason, it is interesting to trace the behavior of 
the system as we switch on a periodic signal. For the time- 
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dependent analogue of the Kronig-Penney model, a good 
way to describe the switching front of the signal is to use the 
following expression: 

where G(t) is the periodic step function (15) with 
U,=  -U,=l ,  and 

uo for n>N, 

uO=[Uon/(N+ 1 )  for n S N ,  

i.e., the first N pulses have amplitudes that increase linearly 
with N. We will consider the evolution for two types of 
initial conditions: a) @(x,O) = (1 1 )  + 12))/\/2, and b) @(x,O) 
= \ I ) .  

Figure 13 shows the time dependence of the probability 
of observing an electron in the first and second wells for case 
a) when N equals 7, 8, and 10 respectively. The period of the 
force is T=22.23to, and its amplitude in the steady-state 
regime is eUo = 0.42AEC . These conditions correspond to 
the second crossing point shown in Fig. 6, and are chosen 
because the amplitude of the force in steady state will be 
rather large for an electron to be localized and relocated in 
the wells (of course, this is possible only at a crossing point). 
Especially noteworthy is the change in the behavior of the 
system in the steady-state regime for small changes in the 
number of pulses at the switch-on stage. Both relocation into 
the second well (Fig. 13a) and localization in the first well 
(Fig. 13c) are possible. Furthermore, it is possible to have a 
situation where rather strong oscillations occur in the prob- 
abilities in each of the wells in steady state, although the 
average values of these numbers remain close (Fig. 13b). 
Similar behavior is obtained for case b) as well. 

In order to illustrate the behavior of this system over a 
broader range of N, we plotted the dependence of the time- 
averaged values of the probabilities for observing an electron 
in the first well (GI) and second well (Gz) for n>N versus 
the number of periods N in the switch-on stage. Figure 14 
shows the functions w(N) when the system is initially in the 
ground state (@(x,O)= 11)). It is clear from the figure that 
there is a rather broad region where either localization in the 
first well or relocation into the second is possible, and a 
narrow region where the probabilities in the two wells are 
equal. This reflects the fact that for a periodic force the evo- 
lution of the wave function depends strongly on its initial 
distribution. The role of the transient stage, in this case, re- 
duces to preparing the initial state for the periodic regime. In 
contrast to the regime where the external constant field is 
switched on adiabatically, in this case we do not find that G 
approaches a definite limit as N goes to infinity, and different 
initial conditions do not produce appreciably different behav- 
iors of w ( t ) .  

A similar dependences on the width of the front over 
which the amplitude of the periodic excitation increases was 
observed in Ref. 15. There it was noted that localization in 
the regime of increasing fields takes place only for certain 
values of the phase of the external field. Our calculations 
imply that this stems from the way the wave function evolu- 
tion depends on its intrinsic phase structure rather than any 
direct dependence on the phase of the external field. In this 

FIG. 13. Time dependence of the probabilities of finding an electron in the 
wells wlX2 for a structure witha,=a2=0.5A, b=0.3A, when T=22.23t0 ,  
eU0=0.42AE, for a pulsed regime with pulse amplitudes that increase 
linearly for the first N periods; the values of N are 7 (a), 8 (b), and 10 (c). 
The initial condition is $(x,0) = (1 1)  + 12))/A.  

case, the following mechanism for generating localized 
states will be involved. Our study of the relocation process 
given in Sec. 2, and our calculation of the quasi-energy spec- 
trum, indicate that an external potential causes relocation of 
the electron density only for a sufficiently large force ampli- 
tude, comparable to the distance between energy levels of the 
unperturbed states. Just as during dissipationless relocation, 
discontinuous (Fig. 2a) and smooth (Fig. 2b) forces lead to 
physically similar results: up to a certain critical value in the 
amplitude, when the excitation is periodic a smooth increase 
is qualitatively equivalent to a discontinuous increase. In 
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FIG. 14. Dependence of the average probabilities of observing an 
electron in wells 1 and 2 on the number of periods N involved in the 
transient signal for +(x,O) = 11). 

turn, it follows from Fig. 8 that when the periodic force is 
switched on discontinuously, the subsequent evolution of the 
electron state varies smoothly with the initial phase structure 
of the wave function. However, our calculations imply that 
the dependence of the evolution on the phase of the intrinsic 
field is completely insignificant. The phase structure of a 
wave function formed by a superposition of stationary eigen- 
states of the system is determined by how long it has been 
evolving: 

It is possible to choose a relative phase that leads to mixing 
of various states at a specified time by choosing the initial 
phase structure of the wave function. From this we may con- 
clude that the evolution of an electron state depends on the 
phase of the field when the latter is switched on smoothly, as 
we observed in numerical experiments,15 because for differ- 
ent values of the phase of the field the wave function is able 
to acquire different relative phase shifts exp[i(E, - E2)t] up 
to a time to when the amplitude of the field becomes large 
enough to cause relocation or localization. 

4. CONCLUSIONS 

The results we have obtained in this work show that 
superlattices are convenient objects for studying the behavior 
of quantum systems in a strong electromagnetic field. We 
have established that the evolution of electronic states in 
quantum structures placed in an external field is determined 
by a combination of two factors: quantum-mechanical tun- 
neling, which dominates in strong slowly varying fields, and 
multiphoton transitions between energy levels of the system, 
which determine the dynamics in the limit of weak field 
amplitudes. In strong rapidly oscillating fields these two ef- 
fects are interdependent, since the field modifies the energy 
spectrum significantly. The characteristic scale AE of the 
distances between energy levels for the quantum structures 
we have discussed is of order 0.01 to 0.1 eV. In this case a 
strong field is one with intensity lo4-16 V/cm. At this time, 
such fields are easily attainable experimentally.20 

The time-dependent behavior of a system in a strong 
field is conveniently described in terms of the quasi-energy 
spectrum and Floquet functions. By using the formalism de- 
veloped in this paper based on the dynamic analogy with the 
Kronig-Penney model, we can analytically investigate the 
quasi-energy spectrum of quantum structures subjected to a 
periodic force. In this case the most interesting situation in- 
volves crossing, i.e., rigorous intersection of quasi-energy 
levels, for which the electron density can be dynamically 
localized in a specific part of the quantum structure. The 
quasi-energy structure of an energy spectrum that consists of 
a set of equidistant levels should manifest itself in tunneling 
experiments as The tunneling admittance of a super- 
lattice in a strong AC field was investigated in Ref. 22. The 
asymmetry in the current-voltage characteristics observed in 
this paper coincides qualitatively with our calculations (see 
Figs. 6, 9). 

In this paper we have further developed the analogy be- 
tween problems of dynamic evolution in quantum mechanics 
on the one hand and static scattering problems in optics and 
quantum mechanics on the other. Along with the dynamic 
analogue of the Kronig-Penney model, in this paper we have 
also constructed dynamic analogues of reflectionless poten- 
tials, which describe dissipationless relocation of the electron 
density for a rapid (antiadiabatic) change in the external volt- 
age on the structure. The conjunction of dissipationless relo- 
cation and dynamic localization in the crossing regime al- 
lows us to explain the dependence of the localization 
character on the phase of the external force when the ampli- 
tude of the latter increases monotonically, which we saw 
previously in numerical experiments. 
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