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The order-disorder model is used to investigate successive phase transitions and an 
incommensurate phase in a Rb2ZnC14 crystals. The effective interaction constants between the 
ordered ZnC14 tetrahedra are calculated on the basis of an electrostatic model. It is found 
that these constants fluctuate as a function of distance in both sign and magnitude. There is, 
therefore, a strong competition between the interactions. The phase diagram and 
thermodynamic properties of the model are investigated by the Monte Carlo method. The 
calculations were performed for 12X 1 2 x 2 4  and 16X 16X 24 lattices using two types of boundary 
conditions. A succession of structural phase transitions, including an intermediate modulated 
phase, which exists in the experimental temperature range, is obtained. The structure of the 
incommensurate phase is found to contain, besides long-wavelength modulation along the 
pseudohexagonal axis, a short-wavelength modulation with a period equal to that of the low- 
temperature ferroelectric phase. The computed temperature dependence of the specific 
heat, spontaneous polarization, and intensity of the satellite reflections in the modulated phase 
agrees satisfactorily with the experimental data for Rb2ZnC14 crystals. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

Rubidium tetrachlorozincate Rb2ZnC14 belongs to a 
large family of crystals with the general formula ACBX4, 
where A and C are alkali metals and BX, is a tetrahedral 
group (SO4, Se04 , Cr04,  ZnC14 , and so on). This family of 
crystals has been attracting the attention of investiagtors for 
many decades. These substances are of interest because a 
great diversity of successive structural phase transitions with 
unusual physical properties depending on the chemical com- 
position and the external conditions is observed in them. In- 
commensurate phases have been discovered in some mem- 
bers of this family of crystals. These phases are of interest 
from the standpoint of fundamental solid-state physics. A 
large number of experimental investigations of ACBX, com- 
pounds have been performed; information about the struc- 
tures, phase diagrams, and physical properties of these ma- 
terials can be found in Ref. 1, the reviews Refs. 2 and 3, and 
the literature cited in these works. 

It it important to underscore the fact that all currently 
known structures of these compounds have one property in 
common, Specifically, they are all derivatives of the high- 
symmetry hexagonal phase with the space group 
P63/mmm (D:,,). In some compounds, this phase is ob- 
sewed at high temperatures. However, indications of a hex- 
agonal phase are observed in, for example, the domain struc- 
ture up to the melting or decomposition temperature even in 
crystals with structures of lower symmetry. The distortions in 
the low-symmetry phases are mainly associated with the ro- 
tation of the tetrahedral groups with respect to both one an- 
other and the crystallographic axes of the hexagonal 

An important feature of the hexagonal phase of 
these substances is that the BX4 tetrahedra in it are necessar- 
ily disordered with respect to several equilibrium positions, 

and it is therefore natural to conjecture that the observed 
distorted structures are a result of phase transitions associ- 
ated with uniform and (or) nonuniform ordering of these 
groups. 

At high temperatures Rb2ZnC14 has a P-K2S04 structure 
(P  phase) and four molecules in an orthorhombic unit cell 
(space group Pnam).  At 302 K it undergoes a phase transi- 
tion into an incommensurate phase with modulation vector 
q= ( 1  - S)c*/3, where c* is the first reciprocal-lattice vector 
in the hexagonal direction. As the crystal cools further, S 
decreases and vanishes at 189 K when the system is locked 
into the ferroelectric commensurate phase ( F  phase, space 
group Pna21),  in which the pseudohexagonal axis is tripled 
compared to the room-temperature phase, so that the unit cell 
contains twelve molecules. With further cooling Rb2ZnC14 
undergoes another transition at 74 K into a monoclinic phase, 
whose space group has still not been determined. These 
phase transitions are undergoing intensive experimental 
study (see Refs. 1-3 and references cited there). The phase 
transitions in Rb2ZnC14 have been described theoretically 
both from the phenomenological and microscopic 
~ i e w ~ o i n t s . " ~ ' ~  

The static structures of the P and F phases, the dynamic 
states of Rb2ZnC14 at different temperatures in the P phase, 
and transitions from the paraelectric into the ferroelectric 
phase and from the ferroelectric into the monoclinic phase at 
low temperatures were studied in Ref. 4 by the method of 
molecular dynamics. The inter- and intramolecular interac- 
tions were calculated by means of an ab initio quantum- 
chemical approach. However, the structure of the incommen- 
surate phase (I), the phase transitions P -+ I -+ F, and the 
behavior of the thermodynamic properties of Rb2ZnC14 near 
the transitions were discussed in Ref. 4. 
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FIG. 2. Four positions of the ZnC1, tetrahedra in the D:, phase. FIG. 1. Projection of the average structure of Rh,ZnCl, on a plane perpen- 
dicular to the hexagonal axis in the D:, phase. 

In the present work phase transitions in Rb2ZnC14 are 
investigated using an approach that is based on the assump- 
tion that Rb2ZnC14, like other crystals of the ACBX, family, 
has an hexagonal paraphase with the space group 
P6-3 lmmm and that the observed sequence of phase transi- 
tions is associated with ordering of the BX4 tetrahedra, 
which in this phase have four equally probable positions of 

In Sec. 2 the effective interaction constants between the 
ordered tetrahedra are calculated on the basis of the electro- 
static model. It is shown that the sign and magntude of these 
constants fluctuate as function of the distance, as a result of 
which there is a strong competition between the interactions. 
It is well known that mean-field approximations are not suit- 
able for investigating the thermodynamic properties of sys- 
tems with competing interactions. For this reason we employ 
the Monte Carlo method, which is described in Sec. 3, to 
calculate the phase diagram and the thermodynamics of the 
phase transitions. The computational results are presented in 
Sec. 4. The phase diagram of Rb2ZnC14 with an intermediate 
modulated phase is obtained, the temperature dependence of 
the modulation vector is calculated, and the thermodynamic 
characteristics of the phase transitions are calculated. In Sec. 
5 the results are discussed and compared to existing experi- 
mental data. 

where 

1, if the BX4 group occupies position i 
cJL 

otherwise. 7 

The equation (1) takes into account the fact that the unit cell 
2. THE MODEL. CALCULATION OF THE INTERACTION in the hexagonal phase contains two nonequivalent tetrahe- 
CONSTANTS dra (two ordered sublattices) which we distinguish by the 

The projection of the structure of the hexagonal phase of 
Rb2ZnC14 is shown in Fig. 1. To calculate the effective in- 
teraction constants and the thermodynamic properties we 
employ the model proposed in Ref. 5. In this model it is 
assumed that in the hexagonal phase the B& tetrahedra are 
disordered with respect to the four equilibrium positions 
(Fig. 2). The interaction constants are calculated on the basis 
of the electrostatic model.7 

We start from the Hamiltonian 

indices I and 11. In Eq. (1) the matrix vo0(r- r') represents 
the direct octupole-octupole interaction between tetrahedra, 
which are assumed to be regular; dA,C are the dipole mo- 
ments of metals of the type A(Rb2) and C(Rbl) and are 
assumed to be point dipoles with polarizabilities a, and 
ac. We note that in the present calculation the polarizabil- 
ities of the metals Rb, and Rb2 are adjustable parameters, 
since, together with the electronic polarizability, they also 
take into account the elastic polarizability associated with the 
displacement of the metal ions. The matrix ~ ~ , ' ( r -  r r )  rep- 

H= - '2 v','( resents the dipole-dipole interaction matrix between the 
oo r - r r ) c ; ( r ) c ; ( r r )  - ix v;il(r metals and the matrix Fod(r- r r )  represents the octupole- 

dipole interaction. The effective Hamiltonian is obtained 
- rr)c;'(r)c:(r') from Eqs. (1) by the standard  transformation^:^ 
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TABLE I. Effective interaction constants. 

where 

where E is the unit matrix; p ( q ) ,  ~ ' ( q ) ,  and are 
the Fourier transforms of the intra- and interlattice dipole- 
dipole interaction matrices, and P,'(wi,q) is the Fourier 
transform of the octupole-dipole interaction matrix. 

The details of the calculation of the interaction matrices 
in Eq. (2) are presented in Ref. 6. Here we present only the 
computational results for Rb2ZnC14. In the present calcula- 
tion we have used the following values of the unit-cell pa- 
rameters of the hypothetical hexagonal phase of 
Rb2ZnC14:ao=7.3 A and co=10.58 A . The value of a. was 
determined by extrapolating the temperature dependence of 
this parameter in the paraelectric phase, and the value of co 
was chosen by analogy with the oxide members of this fam- 
ily in which the hexagonal phase exists at high temperatures 
and a large jump in the parameter c, occurs at the transition 
into this phase.9 

In calculating the octupole-dipole interaction, the inter- 
action of the BX4 tetrahedron with five and six nearest met- 
als of type A and C, respectively, was taken into account. The 
dipole-dipole interaction was calculated by the Ewald 
method. The integration in q-space was performed by the 
Gauss method. The polarizabilities were chosen so as to 
minimize the energy of the ferroelectric phase at low tem- 
peratures: 

The octupole moment I 3  of the ZnC1, group was determined 
by matching the experimental value of the temperature of the 
paraelectric-to-incommensurate phase transition ( P - + I )  in 
Rb2ZnC14: 

13(ZnC14) = 83.58.10-~~esu- cm3. 

The effective interaction constants V;,(R) = v : ~ ( R )  and 
v :~(R)  were calculated within twelve coordination spheres 
up to R = 2co inclusively; the computed values are presented 
in Table I. As one can see from this table, the sign and 
magnitude of the interaction constants fluctuate as functions 
of the distance, so that there is a strong competition between 
the interactions. Note that the same competition between in- 
teractions also occurs in other crystals of the ACBX4 
family,6,10 but the interactions in Rb2ZnC14 have a character- 
istic feature: Calculations of the energy at T=O in a finite 
system (16X 16X 24) for phases with different types of uni- 
form and nonuniform orderings show that several phases 
with close energies, including a ferroelectric phase observed 
below 190 K, are present in it. On the other hand, in 
CsLiS04, for example, at low temperatures only two phases, 
including the experimentally observed phase, have a lower 
energy than other phases (see Table 11). It is this peculiarity 
of the interactions in Rb2ZnC14 that is apparently responsible 
for the presence of an incommensurate phase in it at finite 
temperatures. 
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TABLE 11. Energies and structures of the ordered low-temperature phases. 

3. COMPUTATIONAL METHOD 

We employed the standard Monte Carlo method which is 
applied to Ising-type models.11312 A modification was intro- 
duced in connection with the fact that in this case each 
BX, tetrahedron has four equally probable positions (instead 
of two as in the Ising model). The process of determining the 
thermodynamic quantities was initiated by setting the initial 
configuration of the system. The ordered configurations were 
usually chosen to initialize the Monte Carlo procedure at low 
temperatures. At the next step, when the temperature is in- 
creased, the last configuration at the preceding temperature 
was used as the initial configuration. Next, the program suc- 
cessively sorted through all pseudochanges in the lattice, ex- 
amining each tetrahedron as an object for rotation into the 
new state. A random number generator was used to select 
one of the three possible states. The relative probability of 
two states12 was examined 

which describes the probability that a state v with energy 
E ,  is engendered from a state p with energy E , .  If 
p,,> 1 holds, the tetrahedron rotates. Otherwise the rotation 
of the tetrahedron is associated with a random number r, 
generated by the random number generator in the interval 
from 0 to 1. If r < p , ,  holds, the tetrahedron rotates. 

Two types of boundary conditions were used: Periodic 
boundary conditions and boundary conditions with pseu- 
dospins (phantoms). The latter conditions were recently pro- 

posed in Ref. 13 for investigating systems with competing 
interactions. In Ref. 13 the two-dimensional triangular X-Y 
model was studied by the Monte Carlo method. In the 
present work the boundary conditions with phantoms are 
somewhat modified from those of Ref. 13, since here a dis- 
crete pseudospin, rather than the continuous pseudospin of 
the X-Y model, is present at each lattice site. The changes 
concerned the configuration of the phantom spins surround- 
ing the main spins. The number of phantom spins is deter- 
mined by the number of interacting coordination spheres, 
and their configuration after each Monte Carlo step was set 
according to the obtained configuration of the main lattice. 

It should be noted that we tried free boundary condi- 
tions, but in the present case, even at low temperatures, the 
system very rapidly slid into a metastable state and remained 
in it with a reasonable number of Monte Carlo steps. This is 
associated with the fact that, even for quite large lattices, too 
many "spins" remain free because of the large number of 
interactions, and the competition between them makes the 
system very unstable. 

The calculations were performed on 12X 12X 24 and 
16X 16X 24 three-dimensional hexagonal lattices. The ther- 
modynamic quantities were calculated in the standard 
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-8 FIG. 3. Temperature dependence of the internal energy: 
The crosses and ellipses represent boundary conditions 
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where U is the internal energy, V i j ( s , m )  is defined in Eq. 
(2), s is the number of the coordination sphere, m is the 
lattice site, C is the specific heat, qi are the order parameters 
(which will be defined below), xi is the susceptibility, and 
(AA12 = ( A  2, - ( A ) ~ .  One Monte Carlo step consisted of 
successive attempts to rotate all tetrahedra. The first 1000 
Monte Carlo steps were discarded and did not participate in 
the averaging. The averages were calculated in two steps: 
after p steps the average over a group (usually p = 50) was 
determined and then the final averaging over groups (usually 
70)  was performed. All calculations were then repeated at a 
different temperature. 

4. RESULTS 

At low temperatures the structure of the ordered phase 
which the system reaches as a result of the Monte Carlo 
calculations has the following occupation numbers: 

I I n l ( ~ o ) = n 3 ( ~ l ) = n ~ 1 ( ~ 2 ) = n ~ ( ~ , ) =  1 ,  

I n1(R4)=n:(R5)=n~(R6)=ny(~,)= 1,  (6) 

where 

The values of n:(R) were determined from the Monte 
Carlo data at the temperature T/Ti=0.3 ,  where Ti  is the 
temperature of the transition into the modulated phase. At 
lower temperatures the problem of metastable states arises 
when the system cools from the disordered or modulated 

phases. The ordered phase has orthorhombic symmetry with 
the space group c;, and 12 molecules per unit cell. 

In the Monte Carlo procedure the order parameters were 
calculated as follows: 

where the equivalence of the cell parameters a .  and bo of the 
hexagonal phase is taken into account. 

The computational results for the phase diagram and the 
behavior of the thermodynamic quantities for Rb2ZnC14 are 
displayed in Figs. 3-7. We do not present the computational 
results here for the 12X 12X 24 lattice, since they are essen- 
tially identical to the computational results for the 
16X 16X 24 lattice (excluding the behavior of the specific 
heat inside the incommensurate phase), and in what follows 
we discuss only the computational results for the 
16X 16x24 lattice. Here, three successive phase transitions 
occur. The first transition, occurring with decreasing tem- 
perature, from the completely disordered hexagonal phase 
into an orthorhombic phase is associated with partial order- 
ing of the ZnCI4 tetrahedra, which in this phase take on with 
equal probability predominantly two of four positions. The 
symmetry of this phase is 0:: and the unit cell contains four 
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FIG. 4. Temperature dependence of the susceptibility X, . The 
notation is the same as in Fig. 3. 

molecules; cell doubling (relative to the hexagonal phase) 
occurs in a plane perpendicular to the hexagonal axis. It is 
this structure that is observed RbzZnC1, at high 

The computed temperature of the transition 
from the hexagonal into the orthorhombic phase Tcl =700 K 
is much higher than the decomposition temperature 
(T=550  K). For this reason this transition is not observed in 
RbzZnC1,. 

As the temperature decreases further, a phase transition 
into the modulated phase occurs at Ti= TFP=302 K. Finally, 

at Tc2=200 K a lock-in transition into a ferroelectric ordered 
phase with the space group c;, and twelve molecules per 
unit cell occurs. The pseudohexagonal axis is tripled com- 
pared to the paraelectric phase, as is observed 
experimentally.' The calculated temperature of the lock-in 
transition agrees well with the experimental value 
T:;p=192 K. The temperatures of the hexagonal + ortho- 
rhombic and orthorhombic + incommensurate phase transi- 
tions were determined from the Monte Carlo data according 
to the peaks in the temperature dependence of the specific 

FIG. 5. Temperature dependence of the specific 
heat (same notation as in Fig. 3); R is the gas con- 
stant. Inset: Comparison of the Monte Carlo data 
(dots, boundary conditions with phantom spins) 
with the experimental data of Ref. 14 (solid trace). 

FIG. 6. Temperature dependence of the order pa- 
rameters. Same notation as in Fig. 3. 
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FIG. 7. Temperature dependence of the spontaneous polarization: The 
crosses represent the Monte Carlo data (phantom-spin boundary conditions) 
and the dashed curve represents the average (over layers) value of P ,  in the 
modulated phase. The solid curve represents the experimental data of Ref. 
15. 

heat (Fig. 5). We encountered definite difficulties in deter- 
mining the temperature of the lock-in transition, since there 
is a large spread in the specific-heat data for the incommen- 
surate phase (Fig. 5). This spread does not decrease signifi- 
cantly as the lattice size increases. We estimated the tempera- 
ture of the lock-in transition from the inflection in the 
temperature dependence of the internal energy (Fig. 3). 

We now discuss the incommensurate phase. The struc- 
ture of this phase is spatially modulated along the 
pseudohexagonal axis and the modulation depends on the 
temperature. According to the Monte Carlo data, the ordering 
of the BX, tetrahedra in layers perpendicular to the hexago- 
nal phase is uniform at all temperatures, including the region 
in which the modulated phase exists. Inside this phase, how- 
ever, the degree of ordering of the tetrahedra changes from 
layer to layer. Figure 8 displays the degree of ordering of the 
tetrahedra in the layers for two temperatures in the modu- 
lated phase. The ordering in the layers in the ordered ferro- 
electric phase is shown for comparison in Fig. 8b. Here only 
the computational results for the case of boundary conditions 
with phantom spins are presented. The same results are ob- 
tained for periodic boundary conditions. The long- 
wavelength modulation inside the incommensurate phase de- 
pends on the temperature. This is especially noticeable 
whenphantom spins are used in the boundary conditions, 
when the system itself selects the modulation period. At all 
temperatures the periodic boundary conditions impose a spe- 
cific period on the system. One can see from Fig. 8 that 
inside the incommensurate phase short-wavelength modula- 
tion of the ordering of the layers is present in addition to 
long-wavelength modulation. The period of this modulation 
is c o ,  i.e., where co is the cell parameter of the ferroelectric 
phase, and here, together with different orientations of the 
tetrahedra in the layers, there is a large difference in the 
average magnitude of these orientations from layer to layer 
inside the tripled cell. Note that traces of this modulation are 
present in both the ferroelectric and paraelectric phases at 
temperatures close to the modulated-phase region. 

To determine the temperature dependence of the modu- 
lation periods, we calculated the structure factor S(q) in 
terms of the correlation function G ll(R) : 

a, 0.2 
2 
a 0  
a, 
n Number of layer 

n Number of layer 

- 
n Number of layer 

FIG. 8. Spatial dependence of the degree of ordering of the layers at differ- 
ent temperatures T=2SS K (a), 225 K (b), and 135 K (c). Phantom-spin 
boundary conditions; the notation corresponds to the configurations from 
Table 11: open circles - a l ;  filled ellipses - 134; open ellipses - a2; filled 
ellipses - a5. 

The functions S(O,O,q) and S(2,0,q) for different tem- 
peratures are displayed in Fig. 9. One can see that in the 
ferroelectric phase, in addition to the peak at q = 0, there is a 
peak at q =  113. We note that the same peak also appears at 
all values of q which are rriultiples of 113. Inside the modu- 
lated phase the position of this peak varies very little with 
temperature, but the intensity of the peak decreases strongly 
with increasing temperature and the peak vanishes in the 
paraelectric phase. 

5. DISCUSSION. COMPARISON WITH EXPERIMENT 

The temperature dependence of the internal energy, spe- 
cific heat, order parameters, and susceptibility, as obtained 
from the Monte Carlo data for two types of boundary condi- 
tions, is displayed in Figs. 3-6. The solid trace in the inset of 
Fig. 5 represents the experimental curve of the specific heat 
of Rb2ZnC14. As one can see from this figure, the agreement 
between the computed and experimental curves is satisfac- 
tory, including the region in which the modulated phase ex- 
ists, where the Monte Carlo calculations give a large spread 
in the specific heat, as has already been mentioned. Crystal- 
line Rb2ZnC14 is a nonintrinsic ferroelectric material and the 
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FIG. 9. Structure factor as a function of the wave vector 
at different temperatures. Inset: Profile of the x-ray re- 
flection of the first satellite with q=(2,0,2/3+ 6) in 
Rb,ZnCI,. The dashed curves represent the Monte 
Carlo data (phantom-spin boundary conditions) and the 
solid curves represent the experimental data.16 

measured quantity is the spontaneous polarization P ,  . In this 
model the absolute value of the polarization in the ferroelec- 
tric phase is not calculated, since displacements of metal 
atoms and distortions of the BX4 tetrahedra in the low- 
symmetry phase are not studied in this model, but the tem- 
perature dependence of P ,  can be obtained. The quantity 
P,  , defined by the equations 

is proportional to the spontaneous polarization. Figure 7 dis- 
plays both the computed and experimental temperature de- 
pendencea of P,. The agreement between these curves is 
good. 

The structure of the modulated phase of Rb2ZnC1, was 
determined in Ref. 17. It was found that the modulation of 

the structure is determined mainly by the nonuniform (in the 
direction of the pseudohexagonal axis) rotation of the 
ZnC1, tetrahedra, and it has a long-wavelength character. 
The short-wavelength modulation of the structure found here 
as a result of the Monte Carlo calculations in the temperature 
range 200 K < T <  300 K was not observed in experiments. 
The computed long-wavelength modulation of the structure 
agrees qualitatively with the experimental modulation. 

The temperature dependence of the modulation vector in 
the incommensurate phase of Rb2ZnC14 was studied in Ref. 
16 in connection with the temperature dependence of the 
x-ray reflections on the vectors (2,0,q). The inset in Fig. 9 
displays the experimental and Monte Carlo values of the 
intensities at different temperatures inside the modulated 
phase, and Fig. 10 displays the temperature dependence of 
S. As one can see from these figures, the agreement between 
the computed and experimental curves is only qualitative. 
The experimental curve of the intensity is much narrower 
than the computed curve, and the measured maximum value 
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FIG. 10. Temperature dependence of the modulation vector q = ( l  
- S)c*/3 in Rb2ZnC14. The crosses represent the Monte Carlo data 
(phantom-spin boundary conditions) and the solid curve represents the ex- 
perimental data of Ref. 16. 

of S is almost three times the maximum value extracted from 
the Monte Carlo data. 

As mentioned in the introduction, at 74 K Rb2ZnC14 
undergoes another transition into a monoclinic phase, whose 
structure has not yet been determined experimentally. In Ref. 
4 a structure with the space group C l  c l  and 48 molecules 
per unit cell (phase b in Table 11) was obtained for this phase 
by the method of molecular dynamics with the inter- and 
intramolecular interaction constants calculated from first 
principles. The Monte Carlo method does not work at low 
temperatures, and in the present work the transition into the 
monoclinic phase was not investigated. As one can see from 
Table 11, however, the energy of the phase calculated at T= 0 
for a finite lattice with the constants given in Table I and in 
Ref. 4 is much higher than the energy of several phases with 
other types of ordering of the ZnC1, tetrahedra, and it is 
unlikely that this phase is realized in Rb2ZnC14 at low tem- 
peratures. 

In conclusion, we shall summarize the basic results ob- 
tained in this work. The model with the interaction constants 
(calculated in the electrostatic approximation) between the 
ZnC14 tetrahedra describes correctly the sequence of transi- 
tions in Rb2ZnC14, including the intermediate modulated 
phase. The computed temperatures of the lock-in transition 
into the commensurate ferroelectric phase and the behavior 
of the thermodynamic quantities agree satisfactorily with the 
experimental data. One possible prediction of this work is 
the existence, in the modulated phase, of a short-wavelength 

modulation associated not only with different orientations of 
the tetrahedra but also with the substantially different degree 
of ordering of the tetrahedra in layers belonging to a unit cell 
of the ferroelectric phase. Another prediction concerns the 
change in the phase diagram of Rb2ZnC14 under uniaxial 
pressure. We investigated the change accompanying a 
change in the ratio co lao  of the cell parameters of the hex- 
agonal phase in the region where the modulated phase exists. 
We found that this region decreases sharply as a result of a 
small decrease in the parameter co and vanishes together 
with the tripled ferroelectric phase as the ratio co lao  de- 
creases by approximately 10%. This means that the phase 
diagram of Rb2ZnC1480 state will change substantially under 
uniaxial pressure applied along the pseudohexagonal axis. It 
would be interesting to check these predictions experimen- 
tally and to determine the structure of the low-temperature 
phase. 
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